汽车发动机空气滤清器消声特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进气噪声是发动机主要噪声源之一。本文介绍了发动机进气噪声的研究现状和方法,阐述了进气噪声源特性、产生机理以及控制方法。由于空气滤清器可以作为一个有效的进气消声器,论文对空气滤清器的声学特性进行了详细研究。
     考虑到滤纸是一种有效的吸声材料,它对空气滤清器消声特性的影响应加以考虑。论文通过实验测量结果和软件计算结果的对比,验证了使用声学软件SYSNOISE计算吸声材料声学特性的正确性,并且研究了吸声材料对空气滤清器消声性能的影响。
     研究无流状态下空气滤清器和吸声材料声学特性的测量原理。为了验证阻抗管系统进行两载荷法测量消声器传递损失的正确性,设计了简单圆形膨胀腔消声器。结合自编MATLAB程序,以长纤维玻璃丝棉作为吸声材料实验样品,验证了阻抗管进行两载荷法测量吸声材料声学特性方法的正确性,并测量出滤纸的声学特性参数——复波数和复阻抗。
     以某型捷达车空气滤清器为研究对象,建立其有限元模型,将测得滤纸的声学特性参数导入声学软件SYSNOISE中作为滤纸的材料属性,通过声学仿真计算出空气滤清器的传递损失,与实验测量结果比较表明,对空滤器模型的处理是合理的。对于简化的空滤器模型,研究了固定滤纸在空滤器中的位置和厚度,固定进气内插管长度,改变出口内插管长度对空滤器声学特性的影响。计算结果表明,可以通过调整内插管的长度来改善空气滤清器的消声性能。
Induction noise is one of the major automotive noise sources. This paper introduced the situation and methods of intake system noise study, explained the source characteristics and generation mechanisms as well as the control method of intake noise. In view of the fact that the air cleaner may act as an effective intake silencer, the present paper investigated the acoustic attenuation characteristics of air cleaner in detail.
     Filter paper is a good absorbing material, and its effect on the acoustic attenuation characteristics of air cleaner should be considered. The acoustic characteristics of absorptive materials calculated by SYSNOISE were validated by comparing the experimental results with the calculated results. The effect caused by utilizing absorptive material on muffler had also been studied.
     The methods of measuring the acoustic characteristic parameters of air cleaner and absorbing material had been studied for the case without mean flow. According to the principle of Two-Load method, the simple expansion chamber was used to verify the methods of measuring the transmission loss of muffler carried out by impedance tube, and the fiber glass was used to verify the methods of measuring the acoustic characteristic parameters of absorptive material combined with the subroutine coded by MATLAB. The characteristic impedance and complex wavenumber of filter paper had also been measured.
     The finite element models of air cleaner were created based on the physical model of Jetta car and the acoustic characteristic parameters of filter paper were imported to software SYSNOISE for modedling the property of filter paper. The transmission loss of air cleaner had been calculated and compared with the measured results. The results indicated that the model created for air cleaner was reasonable. A simplified model based on the physical model of air cleaner was also created; the acoustic attenuation characteristics of the air cleaner had been studied with the position and thickness of filter paper fixed, the extended length of inlet pipe invariable, the extended length of outlet pipe variable. The results indicated that the desired acoustic attenuation performance of air cleaner can be obtained by accommodating the length of extended pipes.
引文
[1] Y. Nishio, T. Kohama, O. Kuroda. New approach to low-noise air intake system development. SAE Transactions, 1991, 100(2): 1388-1400P
    [2] 施展.车用空气滤清器.小型内燃机.1994,23(6):49-55页
    [3] 邵恩坡,程汉华.发动机进气噪声产生的机理及其控制.小型内燃机.1994,23(4):44-47页
    [4] P.O.A.L. Davies. Practical flow duct acoustics. Journal of Sound and Vibration, 1988, 124(1): 91-115P
    [5] P.O.A.L. Davies. Piston engine intake and exhaust system design. Journal of Sound and Vibration, 1996, 190(4): 677-712P
    [6] P.O.A.L. Davies, K.R. Holland. I.C. engine intake and exhaust noise assessment. Journal of Sound and Vibration, 1999, 223(3): 425-444P
    [7] P.O.A.L. Davies, M.F. Harrison. Predictive acoustic modelling applied to the control of intake/exhaust noise of internal combustion engines. Journal of Sound and Vibration, 1997, 202(2): 249-274P
    [8] M.F. Harrison, P.T. Stanev. A linear acoustic model for intake wave dynamic in IC engines. Journal of Sound and Vibration, 2004, 269: 361-387P
    [9] M.F. Harrison, I. De Soto, P.L. Rubio Unzueta. A linear acoustic model for multi-cylinder IC engine intake manifolds including the effects of intake throttle. Journal of Sound and Vibration, 2004, 278: 975-1011P
    [10] M.F. Harrison, R. Perez Arenas. A hybrid boundary for prediction of intake wave dynamics in IC engines. Journal of Sound and Vibration, 2004, 270: 111-136P
    [11] M.F. Harrison, P.T. Stanev. Measuring wave dynamics in IC engine intake systems. Journal of Sound and Vibration, 2004, 269: 389-408P
    [12] P.A. Rusch, A.K. Dhingra. Numerical and experimental investigation of the acoustic and flow performance of intake systems. Journal of Vibration and Acoustics, 2002, 124: 334-339P
    [13] J.S. Lamancusa, K.B. Todd. An experimental study of induction noise in four-cylinder internal combustion engines. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1989, 111: 199-207P
    [14] Jeong-Guon Ih, Hoi-Jeon Kim, Kazuo Shinoda. Effect of intake length on the radiated intake noise. INTER-NOISE 2006. 3-6 December 2006, HONOLULU, HAWAII, USA
    [15] Y.S. Kim, D.J. Lee. Numerical analysis of internal combustion engine intake noise with a moving piston and a valve. Journal of Sound and Vibration, 2001, 241(5): 895-912P
    [16] 林进修,林晓.空气滤清器与进气消声.汽车研究与开发.1996(6):32-37页
    [17] 杨诚,邓兆祥,阮登芳,梁锡昌.进气噪声产生机理分析及其降噪.汽车工程.2005,27(1):68-71页
    [18] 张振良.发动机进气消声器研究.重庆大学硕士学位论文.2003
    [19] Hao Zhi-yong, Jia Wei-xin, Fang Fang. Virtual design and performance prediction of a silencing air cleaner used in an I.C. engine intake system. Journal of Zhejiang University SCIENCE, 2005, 6A(10): 1107-1114P
    [20] J. Igarashi, M. Toyama. Fundamentals of acoustical silencers. Report No 339. Aeronautical Research Institute, University of Tokyo, December 1958: 223-241P
    [21] M.L. Munjal. Acoustics of ducts and mufflers. New York, Wiley-interscience, 1987: 55-60P, 261-265P, 201-207P
    [22] A.D. Jones, G.L. Brown. Determination of two-stroke engine exhaust noise by the method of characteristics. Journal of Sound and Vibration, 1983, 82(2): 305-327P
    [23] A.I. Abd EI-Rahman, A.S. Sabry, A. Mobarak. Non-linear simulation of single pass perforated tube silencers based on the method of characteristics. Journal of Sound and Vibration, 2004, 278: 63-81P
    [24] 马强,李翔,张志华,张天元.用特征线法和传递矩阵法解析预报柴油及排气噪声.内燃机学报,1991,9(3):259-266页
    [25] A. Onorati. Prediction of the acoustical performances of muffling pipe systems by the method of characteristics. Journal of Sound and Vibration, 1994, 171(3): 369-395P
    [26] C.I.J. Young, M.J. Crocker. Prediction of transmission loss in mufflers by the finite element method. Journal of the Acoustical Society of America, 1975, 57: 144-148P
    [27] A. Craggs. A finite element method for damped acoustic system: An application to evaluate the performance of reactive muffler. Journal of Sound and Vibration, 1976, 48:377-392P
    [28] R.J. Astley, W. Eversman. A finite element formulation of the eigenvalue problem in lined ducts with flow. Journal of Sound and Vibration, 1979, 65(1): 61-74P
    [29] K.S. Peat. Evaluation of four-pole parameters for ducts with flow by the finite element method. Journal of Sound and Vibration, 1982, 84(3): 389-395P
    [30] 蔡超,宫镇,诸圣国.存在气流时轴对称抗性消声气传递损失的有限元解法.汽车工程.1994,16(5):296-302页
    [31] 王耀前,陆森林.ANSYS在抗性消声器分析中的应用.江苏大学学报(自然科学版).2003,24(3):53-56页
    [32] O.Z. Mehdizadeh, M. Paraschivoiu. A three-dimensional finite element approach for predicting the transmission loss in mufflers and silencers with no mean flow. Applied Acoustics, 2005, 66: 902-918P
    [33] F.D. Denia, A. Selamet, F.J. Fuenmayor, R. Kirby. Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. Journal of Sound and Vibration, (2007), doi: 10. 1016/j, jsv. 2007.01.005
    [34] Z.L. Ji, Q. Ma, Z.H. Zhang. A boundary element scheme for evaluation of four-pole parameters of ducts and mufflers with low Mach number non-uniform flow. Journal of Sound and Vibration, 1995, 185(1): 107-117P
    [35] Z.L. Ji, Z.L. Sha. A boundary element approach to sound transmission/radiation problems. Journal of Sound and Vibration, 1997, 206(2): 261-265P
    [36] Z.L. Ji, A. Selamet. Boundary element analysis of three-pass perforated duct mufflers. Noise Control Engineering Journal, 2000, 48(5): 151-156P
    [37] M.A. Biot. Theory of propagation of elastic waves in a fliud-saturated porous solid. I. low-frequency range. Journal of the Acoustical Society of America, 1956, 28(2): 168-178P
    [38] 乔文孝,吴文虬,王耀俊.多孔介质声学研究进展.物理学进展.1996,16(3/4):386-395页
    [39] J.F. Allard. Propagation of sound in porous media: Modelling sound absorbing materials. England: Elsevier Science, 1993, 24-25P
    [40] M.E. Delany, E.N. Bazley. Acoustical properties of fibrous absorbent materials. Applied Acoustics. 1970, 3: 105-116P
    [41] 季振林.穿孔管阻性消声器消声性能计算及分析.振动工程学报.2005,18(4):453-457页
    [42] Chao-Nan Wang. Numerical decoupling analysis of a resonator with absorbent material. Applied Acoustics, 1999, 58: 109-122P
    [43] I.J. Lee, A. Selamet, N.T. Huff. Acoustic characteristic of coupled dissipative and reactive silencers. SAE: 2003-01-1643
    [44] 方丹群编著.空气动力性噪声与消声器.北京:科学出版社,1978:59-91页
    [45] 方丹群,王文奇,孙家麒编著.噪声控制.北京:北京出版社,1986:401-403页
    [46] 任文堂,郄维周编著.交通噪声及其控制.人民出版社.1984:249-257页
    [47] Richard van Basshuysen, Fred Schafer. Internal combustion engine handbook. SAE International: Warrendale, Pa. 2004: 240-247P
    [48] Glenn Sievewright. Air flow noise of plastic air intake manifolds. SAE: 2000-01-0028
    [49] W.W. Kraft. The reduction of air-rush noise in plastic engine intake manifolds. SAE: 2000-01-0044
    [50] T. Huff. Norman. Materials for absorptive silencer systems. SAE: 2001-01-1458
    [51] 杜功焕,朱哲民,龚秀芬著.声学基础.南京大学出版社.2001:163-180页
    [52] A. Craggs. A finite element method for modelling dissipative mufflers with a locally reactive lining. Journal of Sound and Vibration, 1997, 54(2): 285-296
    [53] S.H. Jang, J.G. Ih. On the multiple microphone method for measuring induct acoustic properties in the presence of mean flow. Journal of the Acoustical Society of America, 1998, 103: 1520-1526P
    [54] M.G. Jones, P.E. Stiede. Comparison of methods for determining specific acoustic impedance. Journal of the Acoustical Society of America, 1997, 101: 2694-2704P
    [55] 马大猷主编.噪声与振动控制工程手册.北京:机械工业出版社,2002:395-425页
    [56] A.F. Seybert, D.F. Ross. Experimental determination of acoustic properties using a two-microphone random-excitation technique. Journal of the Acoustical Society of America, 1977, 61: 1362-1370P
    [57] A.F. Seybert. Two-sensor methods for the measurement of sound intensity and acoustic properties in ducts. Journal of the Acoustical Society of America, 1988, 83(6): 2233-2239P
    [58] J.Y. Chung, D.A. Blaser. Transfer function method of measuring in-duct acoustic properties. I. Theory. Journal of the Acoustical Society of America, 1980a, 68: 907-913P
    [59] J.Y.Chung, D. A. Blaser. Transfer function method of measuring in-duct acoustic properties. II. Experiment. Journal of the Acoustical Society of America, 1980b, 68: 914-921P
    [60] R. A. Scott. An apparatus for accurate measurement of the acoustic impedance of sound-absorbing materials. Proceedings of the Physical Society, 1946b, 58: 253-264P
    [61] S. L. Yaniv. Impedance tube measurement of propagation constant and characteristic impedance of porous acoustical material. Journal of the Acoustical Society of America, 1973, 54: 1138-1142P
    [62] H. Utsuno, T.Tanaka, T.Fujikawa, A. F. Seybert. Transfer function method for measuring characteristic impedance and propagation constant of porous materials. Journal of the Acoustical Society of America, 1989, 86: 637-643P
    [63] Z. Tao, D. W. Herrin, A. F. Seybert. Measuring bulk properties of sound-absorbing materials using the two-source method. Noise and Vibration Conference SAE, 2003
    [64] Iljae Lee, Ahmet Selamet, T. Huff Norman. Acoustic impedance of perforations in contact with fibrous material. Journal of the Acoustical Society of America, 2006, 119(5): 2785-2797P
    [65] L. L. Beranek, I.L. Ver. Noise and vibration control engineering. New York: Wiley-interscience, 1992: 203-232P
    [66] R.H.Nichols. Flow-resistance characteristics of fibrous acoustical materials. Journal of the Acoustical Society of America, 1947, 19: 866-871P
    [67] V. Tarnow. Measured anisotropic air flow resistivity and sound attenuation of glass wool. Journal of the Acoustical Society of America,. 2002, 111: 2735-2739P
    
    [68] LMS SYSNOISE Rev 5.6. Chapter 15 VIOLINS: 12-13P
    
    [69] Z. Tao, A. F. Seybert. A review of current techniques for measuring muffler transmission loss. Noise and Vibration Conference SAE, 2003
    [70] M.L. Munjal, A.G. Doige. Theory of a two source-location method for direct experimental evaluation of the four-pole parameters of an aeroacoustic element. Journal of Sound and Vibration, 1990, 141(2): 323-333P
    [71] C.D. Smith, T.L. Parrott. Comparison of there methods for measuring acoustic properties of bulk materials. Journal of the Acoustical Society of America, 1983, 74: 1577-1582P
    [72] 张志华,周松,黎苏.内燃机排放与噪声控制.哈尔滨工程大学出版社.1999:205-213页
    [73] American Society for Testing and Materials 1993 ASTM C522-87(Reapproved 1993), Philadephia, PA. Standard test method for airflow resistance of acoustical materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700