增压稀燃电控预混合LPG发动机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源短缺和环境污染问题不断加剧,液化石油气(LPG)作为一种汽车替代燃料被广泛应用,全世界LPG汽车的保有量已超过1500万辆。目前,国内外对乘用车小缸径LPG发动机所做的研究比较深入,相关技术也趋于成熟,应用较多。然而,将LPG应用于大缸径稀燃发动机上时,会出现热效率较低、排温过高、容易爆震等许多新的问题,制约了LPG在商用车发动机上的应用。本文围绕大缸径增压稀燃电控预混合LPG发动机开发过程中的关键技术,开展了以下具体研究工作:
     1、建立了增压稀燃电控预混合LPG发动机工作过程仿真模型,结合仿真结果与实验数据完成了压缩比、配气相位的结构优化。通过结构优化提高了发动机的动力性和经济性,功率提高15.6kw,全速全负荷工况下气耗降低9.1g/kw?h,排温降低43℃。
     2、进行了比例调节式混合器中空气阀、燃气阀的结构优化,提出了基于理想流量特性的空气阀和燃气阀设计方法,满足了发动机对空燃比及混合气流量调节的要求。本文将比例调节式混合器理解为单自由度振动系统,其中导压孔是其主要阻尼元件,通过改变导压孔的结构形状,提高了混合器的动态响应特性。
     3、建立了电控调压器内部气体状态变化和阀门可运动部件的物理模型和数学模型。结合仿真计算结果和实验数据,分析了电控调压器的稳态及动态特性。基于电控调压器的结构及特性,分析得出影响其燃料出口压力控制的关键因素为增压压力正确测量及音圈电机电磁力的精确控制。本文通过卡尔曼滤波将增压压力传感器的信号进行实时滤波,消除了由于进气充排效应及增压波动引起的信号失真及外界干扰,实现了增压压力的正确测量。本文将卡尔曼滤波应用于音圈电机的电流观测与PI控制,卡尔曼滤波器可以在不影响系统动态性能的情况下非常高效的滤除系统中的噪声,明显改善了系统的控制性能,很好的保证音圈电机电磁力的瞬态输出,实现了燃料出口压力的精确控制。
     4、提出了LPG发动机双火花塞点火快速稀燃方法。本文通过三维仿真工具建立了LPG发动机缸内燃烧模型,对比分析了单、双火花塞不同点火方式对缸内燃烧及发动机性能的影响,证明了采用双火花塞点火方式可以使缸内的燃烧更稳定更快速,有利于提高发动机的动力性及经济性,同时有效避免发动机发生爆震,使LPG发动机压缩比的进一步提高成为可能。本文进一步细致分析了双火花塞点火模式下火花塞位置、点火能量、涡流比对发动机燃烧过程的影响,为合理组织缸内燃烧提供了理论基础。
With the continuous aggravation of energy shortage and environmental pollution, liquefied petroleum gas (LPG) is widely used as an alternative fuel for automobile. All over the world the amount of the LPG vehicles has exceeded 15 million. At present the research on small-bore LPG engine of passenger car is very intensive and the related techniques has tended to be mature. However, when LPG was used on big-bore lean-burn engine many new problems were caused, such as low thermal efficiency, high emission temperature and easy to knock, etc. These problems restrict the application of LPG on commercial vehicles. Centering on the key technologies of big-bore turbocharged lean burn electronically-controlled gas mixed LPG engine, this paper carried out the following specific research work:
     The simulation of the engine working process has been done. The compression ratio and the distribution phase have been optimized by integrating the simulation results with the experimental data. The power performance and fuel economy have been improved by these optimization work, engine power increased by 15.6kw, gas consumption decreased by 9.1g/kw?h, exhaust temperature decreased by 43℃at the point of full load and full speed. The structure of mixer’s air valve, mixer’s gas valve and mixer’s pressure transmission hole have been optimized to meet the requirements of air-fuel ratio adjustment and gas mixture flow control. The pressure transmission hole is the major damping element of the proportional control mixer. The structure of the pressure transmission hole has been optimized to increase the dynamic response characteristics of the mixer.
     Physical and mathematical model of the gas state variation and the movable elements of electric pressure regulator in fuel supply system were established. The steady state and dynamic characteristics of electric pressure regulator has been analyzed by the experimental data and the simulation results. Base on the structure and features of electric pressure regulator this paper draws a conclusion that the key factors affected the pressure control are the validity of air pressure after turbocharging and the accuracy control of pressure difference regulation force. The signal from the air pressure probe after turbocharging was filtered real-timely by Kalman filter. The signal distortion and external interference due to manifold filling and emptying process and turbocharging fluctuation has been eliminated, so the air pressure probe after turbocharging can be measured correctly. Kalman filter was used in current observation and PI control during the coil current accuracy control of voice coil motor, and the Kalman filter can eliminate the noise in the system avoid of affecting the system dynamic performance, the control performance was improved notably, so the transient output of the pressure difference regulation force of voice coil motor was ensured and the accuracy control of fuel outlet output pressure was realized.
     This paper presents a method of LPG engine dual spark ignition rapid lean-burning. A in-Cylinder combustion model of the LPG engine has been built with tools of 3D simulation. The impacts on in-cylinder combustion and engine performance in different ignition ways (single spark ignition and dual spark ignition) have been compared and analyzed. And it proved that the dual spark ignition can make the in-cylinder combustion more stable and fast, and this is benefit for increasing the thermal efficiency of the engine and decreasing the exhaust temperature. Knockings can be efficiently avoided at the same time,that make the improvement of compression ratio more possible. This paper do further detail research on the impact of combustion process in different ignition plug locations, ignition energy and swirl rates, which is good for establishing the theoretical base for optimization of in-cylinder combustion process.
引文
[1]中国汽车工业协会.2009年世界各国(地区)汽车产量明细,2010.05.06.
    [2]中国汽车工业协会.2010年中国汽车行业产销量统计数据,2011.01.20.
    [3]边耀璋.汽油机燃用汽油和液化石油气对比实验研究[J].天然气汽车信息,1997(1).
    [4]李经田.以液化气作为内燃机车的燃料[J].国外内燃机车,1987(4).
    [5]吴建平.国外的汽车排放法规[J].汽车科技,2001(1):10-14.
    [6]濑古俊之.汽车排放法规及燃油消耗动向和与之相适应的发动机燃烧技术[J].国外内燃机,2001(3):9-15.
    [7]贺克斌,郝吉明,傅立新等.我国汽车排气污染现状与发展[J].环境科学,1996,17(4):80-83.
    [8]罗毅.代用燃料DME及其研究[J].小型内燃机及摩托车,2001.
    [9]汪卫东.国外三大汽车排放法规体系[J].柴油机设计与制造,No.4(Serial No.105),2003:4-8.
    [10]汪卫东.国内外汽车排放法规对比分析[J].商用汽车,2004(11).
    [11]清洁汽车行动项目背景.全国清洁汽车行动信息网.www.cleanauto.com.cn.
    [12]车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段) GB 17691-2005
    [13] (美)皮特.布鲁克史密斯,马永波译.未来的灾难[M].海口:海南出版社,2004.
    [14]丁祖荣.气候变暖与国际社会的责任—兼论《京都议定书》的意义与作用[J].浙江理工大学学报,2007,l24(3):278-282.
    [15]宋海燕,高海洋,田冬莲,等.欧洲对汽车CO2排放与油耗控制的现状与对策[J].世界汽车,2003(5):53-55.
    [16]李艳梅,等.中国碳排放变化的因素分解与减排途经分析[J].资源科学,2010(2):218-222.
    [17]孙济美.天然气和液化石油气汽车[M].北京:北京理工大学出版社,1999.
    [18]高莹,于秀敏,李君,等.单燃料LPG多点喷射柴油机的热负荷控制[J].吉林大学学报(工学版),2002(3),1-5.
    [19]邹祖烨.国外代用燃料汽车发展概况[M].北京:中国铁道出版社,1998.
    [20]王佐明,孙永儒.几种汽车代用燃料的发展现状及趋势[J].黑龙江交通科技,2007(3):74.
    [21] Sierens, R. Experimental and theoretieal study of liquid LPG injection [C]. SAE Paper 922363.
    [22] Wu T D, Chen Y N, et al. Design optimization for an LPG automobile engine[C]. International Journal of Vehiele Design, 2000,v24nl:100-120.
    [23] Branner J L, Kamel M M, et al. B5.9 Propane gas engine development[C]. ICE of ASME, 1999,v32(2):9-15.
    [24] Raina A, Midkiff K C, et al. Charaeterization of the effects of methane and propane mixtures on performance and emissions in a spark-ignited engine[C]. ICE of ASME, 1998,v30(3):67-74.
    [25] Hamai K, Kawajiri H, Ishizuka T, Nakai M. Combustion Fluctuation Mechanism Involving Cyele TO cycle Spark Ignition Variation Due to Gas Flow Motion in S.I.Engine. Twenty-First Symposium(International) on Combustio.
    [26]侯庆贺,杨靖华.液化石油气资源及其综合利用.当代化工,2010,Vol.39,No.3.:287-289.
    [27]国家统计局.中国能源统计年鉴2010[M].中国统计出版社,2011.
    [28]徐兆坤,蒋妙范,张珏成,李俊鹏,赵华.不同气体燃料理化特性对发动机性能的影响[J].上海工程技术大学学报,2006(01).
    [29]袁守利,杜传进,颜伏伍,侯献军.LPG车用发动机技术的现状和发展展望[J].能源技术,2007,Vol.28,No.3.
    [30]徐兆坤等.LPG/汽油两用燃料汽车发动机的性能特征及其技术对策[J].小型内燃机与摩托车,2002(2):10-13.
    [31]赵猛,蒋炎坤,吴峰胜.LPG发动机的研究现状和发展前景[J].柴油机设计与制造,2007,1(15).
    [32] Caton J A, McDermott M, et al. Development of a dedicated LPG-fueled spark-ignition engine and vehicle for the 1996 Propane Vehicle Challenge[C]. SAE Paper 972692.
    [33] Sierens R. Experimental and theoretical study of liquid LPG injection[C]. SAE Paper 922363.
    [34] Luhman D J, et al. Emission Control of a Propane Fueled Small Utility Engine Utilizing Air/Fuel Ratio Control and Three-way Catalyst[C]. SAE paper 932445.
    [35] Wu T D, Chen Y N, et al. Design optimization for an LPG automobile engine[C]. International Journal of Vehicle Design,2000,v24 n1:100-120.
    [36] Branner J L, Kamel M M, et al. B5.9 propane gas engine development[C]. ICE of ASME, 1999,V32(2):9-15.
    [37] Raina A, Midkiff K C, et al. Characterization of the effects of methane and propane mixtures on performance and emissions in a spark-ignited engine[C]. ICE of ASME, 1998,V30(3):67-74.
    [38]高卫民,周毅,等.桑塔纳2000GSI型轿车配置电喷LPG系统的开发与研究[J].内燃机工程,2001,22(1):70-72.
    [39]朱义伦,何方正.低排放LPG发动机控制系统开发研究[J].内燃机工程,2000,(4):48-52.
    [40]赵新顺,霍天强,等.LPG-汽油双燃料发动机试验研究[J].小型内燃机与摩托车,2002,31(3):38-40.
    [41]朱义伦,何方正等.电控液化石油气发动机排放试验[J].上海交通大学学报,2001,35(5):746-749.
    [42]邓宝清,李理光,等.混合式液化石油气小型发动机排放性能的研究[J].内燃机学报,2002,20(4):287-291.
    [43]顾善愚,赵奎翰,等.汽油/液化石油气(LPG)两用燃料发动机的研究[J].内燃机学报,2001,19(4):323-326.
    [44]黄振洲,马凡华,等.LPG/汽油双燃料发动机排放规律的试验研究[J].内燃机工程,2001,22(2):58-60.
    [45]阿比旦,等.液化石油气汽车技术的发展与应用[J].汽车技术,2001(11):5-8.
    [46] Ohyama Y, Nogi T, et al. Effects of fuel/air mixture preparation on fuel consumption nd exhaust emission in a spark ignition engine[C]. IMechE Paper, No.925023,C389/232,1992:59-64.
    [47]严兆大,周重光,等.工程车燃用LPG动力性和排放的影响[J].内燃机工程,Vol.22,2001,No.2.
    [48]熊树生.桑塔纳汽油/液化石油气双燃料发动机燃气的燃烧特性及性能研究[D].浙江:浙江大学博士学位论文,2000.
    [49] Stuart R. Natural Gas as a Transportation Fuel[C]. SAE Paper 931829.
    [50] Andrea Unieh. Natural Gas:A Promising Fuel for IC Engine[C]. SAE Paper 930929.
    [51] SeanSong,Philip A. Dual-Fuelling of a Prechamber Diesel Engine with Natural Gas[C]. ASME,Paper 85-DGP-3.
    [52] Takashi Nishikawa. Multi-Fuel Engine Designed for Co-generation Plant[C]. DIESEL & GAS TURBINE WORLDWIDE,1988(3).
    [53]程宗明.液化石油气汽车用燃料特性与改装部件功能[J].天然气汽车信息,1997(1).
    [54]刘世贤,金晖.液化石油气作为汽油机燃料的实验研究[J].内燃机工程,1985(l).
    [55] Yorick Duchaussoy, Alain Lefebvre and Robert Bonetto. Dilution Interest on Turbocharged SI Engine Combustion[C]. SAE Paper2003-01-0629.
    [56] M Pervalet.“Clean Fuel-Automotive LPG”.
    [57]王从文,孟宪民.LPG摩托车的研究现状及发展前景[J].山东内燃机,2003(1):14-16.
    [58]姚勇,邸敏艳,高清波.在电喷发动机上燃用LPG的试验研究[J].小型内燃机与摩托车,2005(4):2.
    [59]胡春明.单燃料LPG电喷发动机的排放实验研究[J].2004年中国摩托车排放控制技术研讨会论文选登.
    [60] Andrea Gerini. Ultra Low Emissio ns Vehicle Using LPG Engine Fuel[C]. SAE Paper961079.
    [61]黄振洲.492Q汽油机燃用液化石油气后NOx排放规律的试验研究[J].内燃机学报,2001,19(2):139.
    [62] Rijkeboer R C, et al.Potential Impact of Four Different Car Fuels on the Duteh Environment. SAE Paper 941914.
    [63]周重光,严兆大,等.空燃比对LPG发动机排放特性影响的研究[J].内燃机工程,Vol.23,2002,No.5.
    [64]朱义伦.电控液化石油气发动机动力性能研究[J].车用发动机,2000(4):8.
    [65]王学合,黄震.车用电控LPG发动机爆震控制的研究[J].车用发动机,2004(3):8-11.
    [66]邵敏,王向阳,刘红.LPG车用润滑油的应用研究[J].石油商技,2002(5):7-9.
    [67]陈宗明.液化石油气汽车发展动向[N].环境导报,2000(2).
    [68]魏明.天然气/液化石油气汽车的现状和发展前景[J].中国农业大学学报,2000,5(6):102-106.
    [69]陈振彪.我国清洁替代燃料汽车技术发展战略的选择[J].汽车情报,2007,35:5-8.
    [70]袁景元,顾和明,陈笃红,等.CNG、LPG汽车发展状况[J].江苏理工大学学报,1999,20(4):41-44.
    [71]后藤新一,若狭良治,等.LPG燃料发动机系统的研制动向[J].国外内燃机,2002(1):15-21.
    [72]周重光.LPG发动机三维燃烧模拟计算与试验研究[D].浙江:浙江大学博士论文,2003.
    [73]邓宝清,李理光,等.混合器式液化石油气小型发动机排放性能的研究[J].内燃机学报,2002,20(4):287-291.
    [74] Roberto, Cipollone, Carlo Villante. A/F and Liquid-phase Control in LPG injected Spark Ignition[R]. SAE paper 2000-01-2974.
    [75] Cipollone R, Villante C. A/F and Liquid-Phase Control in LPG Injected Spark Ignition IC E. SAE Paper 2000-01-2974.
    [76] Lutz B R, Stanglmaier R H,Matthews R D. The Effects of Fuel Composition, System Design, and Operating Conditions on In-System Vaporization and Hot Start of a Liquid-Phase LPG Injection System. SAE Paper 981388.
    [77] Demirbas A. Fuel properties of hydrogen, liquefied petroleum gas(LPG), and compressed natural gas(CNG) for transportation. Energy Sources, 2002,24(7):601-610.
    [78]高莹,李君,杨世春.LPG汽车的发展历程及未来[J].代用燃料汽车国际学术会议,ICAFV,2006,No.0622.
    [79]杨世春.基于模型的LPG单一燃料发动机电控系统的研究[D].吉林:吉林大学博士论文,2004.
    [80]张振东,孙跃东.电控LPG单燃料发动机开发研究[J].车用发动机,2002(6):21-24.
    [81]邵千钧,何文华,周文华,等.电控喷射改善燃用LPG发动机动力性的研究[J].内燃机工程,2002,23(5):15-18.
    [82]李君,朱昌吉,王立君,等.电控LPG液态喷射发动机的改装与性能试验[J].吉林工业大学自然科学学报,2001(4):1-5.
    [83]胡定军,朱辉.LPG发动机空燃比闭环控制系统的设计[J].小型内燃机与摩托车,2001,30(3):19-23.
    [84]薛金林,姚国忠.电控多点喷射LPG发动机的开发[J].车用发动机,2005(10):5.
    [85]袁银男,郭晓亮,聂春飞,等.LPG-柴油双燃料发动机电控喷气系统设计[J].内燃机工程,2004(2).
    [86]李波.LPG液态喷射发动机工作过程研究[D].浙江:浙江大学项士论文,2002.
    [87] Barry R L, et al. Effects of fuel composition,system design,and operating conditions on in-system vaporization and hot start of a liquid-phase LPG infection system[C]. SAE Paper 981388.
    [88]邵千钧,何文华,周文华,等.LPG进气道液态喷射的实验研究[J].内燃机学报,2003,21(1):65-68.
    [89]邵千钧.点燃式发动机燃用LPG电控喷射研究[D].浙江:浙江大学项士论文,2000.
    [90]邵千钧.电控LPG发动机及其缸内直接喷射技术的研究[D].浙江:浙江大学项士论文,2003.
    [91]邵千钧,何文华,等.缸内直接喷射应用于LPG发动机的研究[J].内燃机工程,2002,23(6):6-8.
    [92]余政,高卫民.汽车液态电喷液化石油气技术的应用[J].上海汽车,1999,(9):38-39.
    [93] Yongsheng He. Development and Application of a Lean NOx Trap Model[C]. SAE Paper 2006-01-0686.
    [94] Mattavi J N. Effects of Combustion Chamber Design on Combustion in SI Engines[C]. SAE Paper 821587.
    [95] N.W.Sung, S.P.Jun. The Effect of Combustion Chamber Geometry in a SI Engine[C]. SAE Paper 972996.
    [96] K.Matsumoto, T.Inoue, K. Nakanishi, T.Okumura. The Effects of Combustion Chamber Design andCompression Ratio on Emissions,Fuel Economy and Octane Number Requirement[C]. SAE Paper 770193.
    [97] R.C.Belaire, G.C.Davis, J.C.Kent, R.J.Tabaczynski. Combustion Chamber Effects on Burn Rate in aHigh Swirl Spark Ignition Engine[C]. SAE Paper 830335.
    [98] Y.Nakajima. Trends in Increasing Compression Ratio and Future Tasks[J]. Journal of Society of Automotive Engineers of Japan, Vol.39,No.9,1985.
    [99] N.Hashimoto, T.Shiraishi, H.Tanaka. Development of a Low HC, High Efficiency Combustion Chamber for a High Power 4V Engine[C]. FISITA 24thVol.2,1992.
    [100] John P. Conversion of Two Small Utility Engine to LPG Fuel[C]. SAE Paper 932447.
    [101] David Checkel. Performance and Emissions of a Converted RABA 2356 Bus Engine in Diesel and Dual Fuel Diesel/Natural Gas Operation. SAE Paper 931823.
    [102] Klaus Kunberger. Spark-Ignited Lean Burn Gas Engine Launched. DIESEL & GAS TURBINE WORLDWIDE,1995(4).
    [103] Mike Brezonick. Cumminus Announced Significant Gas Engine Expansion with Electronic Natural Gas Engine. INTERNATIONALED,1994(12).
    [104] Jone Kane. Conoco Natural Gas Engine Oil Passes 7000 Hours Field Test in Lean Burn Engine. INTERNATIONALED,1994(10).
    [105] Doherty K, Blair G P, Douglas R. The Initial Development of a Two Stroke Cycle Biogas Engine. SAE Paper 932398.
    [106]张春化,等.液化石油气在汽油机上的应用研究[J].世界汽车,1997,12.
    [107]薛盛松.12V190ZDT-2型天然气发动机.石油机械[J],1991(5).
    [108]糜振唬.气体发动机燃料特性的探讨[J].柴油机,1987,6.
    [109]刘生全,等.液化石油气在492Q汽油机上的应用[J].汽车运输,1994,1.
    [110]姚喜贵,王宇.CA6102汽油机改装成天然气发动机的性能试验研究[J].内燃机,1996(4).
    [111] Allen Wand etal. Homogenous Charge Combustion Ignition (HCCI) of Diesel Fuel. SAE Paper 971676.
    [112] Kinji Tsujimura. The Concept and Recent Achievements about the Research of HCCI Combustion System. Proceedings of the International Symposium on“Clean and High-Efficiency Combustion in Engines”2002,8.
    [113] Hisashi Akagawa and etal. Approaches to Solve Problems of the Premixed LeanDiesel Combustion. SAE Paper 1999-01-0183.
    [114] Yoshinori Iwabuchi, et al. Trial of New Concept Diedel Combustion System Premixed Combustion-Ignited Combustion. SAE Paper 1999-01-0185.
    [115] John.B, Heywood. Internal Combustion Engine Fundamentals, McGraw-Hill Book Company,1988.
    [116]胡春明.火花点燃式LPG发动机快速稀燃及排放控制的研究[D].天津:天津大学博士论文,2006.
    [117] Swords M D, Kalghatgi G T, Watts A J. An Experimental Study of Ignition and FlameDevelopment in a Spark Ignition Engine[C]. SAE Paper 821220.
    [118] Keck J C, Heywood J B, Noske G. Early FlameDevelopment and Burning Rates in Spark Ig Engines and their Cyclic Variability[C]. SAE Paper 870164.
    [119] Ishizuka T, Nakai M. Combustion Fluctuation Mechanism Involving Cycle-to-cycle SparkIgnition Variation due to Gas Flow Motion in SI Engines[C]. 21th Symposium on Combustion,1986.
    [120] Anderson RW. The Effect of Ignition System Power on Fast Burn Engine Combustion[C]. SAE Paper 870549.
    [121] Ziegler, GFW, et al. Influence of a Breakdown Ignition System on Performance and EmissionCharacteristics[C]. SAE Paper 840992.
    [122]余本雄.超高能点火装置的开发及其在稀薄混合气点火中的应用[J].汽车工程,2004,26(1):27-31.
    [123]王桂芝,赵长禄.汽油机工作过程数值模拟的研究进展[J].车辆与动力技术,2004(2):56-64.
    [124] AVL-BOOST用户手册.
    [125]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [126] Marco Chiodi, Hans-Jürgen Berner, Michael Bargende. Investigation on Mixture Formation and Combustion Process in a CNG-Engine by Using a Fast Response 3D-CFD-Simulation[C]. SAE Paper 2004-01-3004.
    [127]汪席文.车用LPG混合器设计与试验研究[J].设计与计算,2003(04):32-36.
    [128]研华(AdvanTech)数据采集卡用户手册.
    [129]刘峥,张扬军.内燃机一维非定常流动[M].北京:清华大学出版社,2007.
    [130]何新楷,等.稳定真空度混合器的设计[J].汽车技术,1992(9):13-19.
    [131]景思睿,张鸣远.流体力学[M].北京:西安交通大学出版社,2001.
    [132]刘鹤年.流体力学[M].北京:中国建筑工业出版社,2004.
    [133]林建忠,阮晓东,陈邦国,王建平,周洁,任安禄.流体力学[M].北京:清华大学出版社,2005.
    [134] Kalman R E. A New Approach to Linear Filtering and Predicticn Theory Trans. ASME, J,Bas,Eng,82D(1960),31-45
    [135] Chen G. Approximate Kalman Fiherting. World Scientific Publishing Co. Inc. 1993
    [136]王培德,史忠科,张发民,张洪才.非线性滤波与辨识的应用与发展[J].控制理论与应用,1993,10(2):121-129.
    [137] Sanders C W, et al. Decentralized FUter for Interacting Systems. Proc. 4th Symp on Nonlinear Estimation Theory and Applications,San Diego,1973
    [138] Kerr H, Chln L. Advances in Theory and Technology of Applications of Nonlinear Filter and Kalman Filtering. AGARD AG-256,1982,1-49.
    [139] Marble F E, Broadwell J E. The Coherent Flame Model for Turbulent Chemieal Reaetions. Projeet Squid Report TRW-9-PU,1977.
    [140] Reitz R D. Computer Modeling of Sprays. Pittsburgh Spray Technology Short Course,1996.
    [141]虞育松,姚宝峰.CNG发动机火核形成和发展的三维数值模拟研究[R].工程热物理学报,2006,2(27):151-154.
    [142] Herweg R, Maly R R. A Fundamental Model for Flame Kernel Formation in SI Engines. SAE Paper 922243.
    [143]刘瑞林,刘巽俊,关立哲,等.进气道和燃烧室形状对火花点火发动机燃烧过程影响的研究[J].内燃机学报,1994,4:333-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700