铈锆储氧材料的纳米级制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铈锆固溶体储氧材料是三效催化剂的重要组成部分,对拓宽催化剂的空燃比窗口,稳定催化性能有着重要的作用。纳米催化材料由于尺寸效应表现出有别于传统材料的物化性能及催化活性,受到广泛关注。本文采用两相法制备纳米铈锆固溶体,并通过与传统铈锆进行储放氧性能比较,明确了纳米材料特有的尺寸效应在铈锆固溶体上的体现;制备了介孔纳米铈锆球体和具有壳核结构的铈锆/氧化铝复合氧化物,为制备具有抗高温烧结性能的催化剂材料做了基础研究。
     系统研究了两相法制备纳米铈锆固溶体的成核、生长机理,发现铈前驱体的水解速率、晶体的成核及生长速率更快,在反应初始阶段首先得到富铈相纳米团簇,而后锆逐渐进入纳米晶体中,并最终形成均一的铈锆固溶体;与常规铈锆固溶体比较,纳米级Ce0.6Zr0.4O_2样品的[Ce~(3+)]/[Ce~(4+)]比值由0.233提高至0.403,400℃时样品OSC由0.237 mmol[O]/g提高至0.393 mmol[O]/g,反应速率由0.016μmol CO_2·s~(-1)提高至0.021μmol CO_2·s~(-1),反应活化能由61.2 KJ/mol降低至46.1 KJ/mol。
     采用气溶胶辅助自组装方法制备了介孔纳米铈锆固溶体,考察了酸、表面活性剂等参数对铈锆固溶体结构及性能的影响。结果表明:随着有机酸酸性变弱,晶体的成核、生长速率减慢,可以得到具有中空结构和层状有序排列结构的产物;采用亲水端更长的F127为表面活性剂有利于提高材料的比表面积和孔体积,分别为104 m2/g和0.29 cm3/g,且样品具有更高的储放氧能力,新鲜样品500℃时的OSC值为0.551 mmol[O]/g,老化样品700℃时的OSC为0.851 mmol[O]/g;HCl用量提高后,材料形状的完整性下降,老化处理后结构容易被破坏,导致样品储放氧性能大幅度下降。
     以形成乳液或微乳液为实验基础,制备具有壳核模型的铈锆/氧化铝复合氧化物,并对样品进行了储放氧性能测试。结果表明:甲苯/水反应体系工艺较为繁琐,得到的样品氧化铝层较厚,储放氧性能较差;采用四氢呋喃/水反应体系得到的样品氧化铝厚度为1~2nm,氧化铝层厚度最薄,制备工艺最为简单,新鲜样品500℃时的OSC为0.569 mmol[O]/g,老化样品700℃的OSC为0.390 mmol[O]/g,在同系列样品中具有最高的储放氧性能;采用气溶胶辅助自组装方法可以快速、连贯地制备具有壳核结构的铈锆/氧化铝复合氧化物,但表面活性剂减少后,氧化铝层的厚度不均。
As an oxygen storage materials and a key part of three-way catalyst, ceria-zirconia solid solution has important effect on broadening the window of air/fuel ratio and stabilizing the performance of catalyst. Owing to the size effect, nanocrystal presents unique physical-chemical and catalytic characteristic, which is much different from the bulk one. The nanocrystal ceria-zirconia solid solution was prepared through two-phase method. The size-effect of nanocrystal CeO_2-ZrO_2 was investigated by comparing the OSC performance of nanocrystal CeO_2-ZrO_2 and the bulk one. The mesoporous spherical CeO_2-ZrO_2 nanocrystal and CeO_2-ZrO_2/Al2O3 complex compounds with core/shell structure was synthesized, which provides elementary research about preparation of anti-aggregation catalyst.
     The CeO_2-ZrO_2 nanocrystal was prepared by two-phase method. The effect of reaction parameter, such as amount of capping-agents, on shape of products and further the characteristic of two-phase method were investigated. The process of nucleation was longer than normal and always overlapped with the crystallization process in the two-phase approach. The formation of the Ce-rich clusters was faster than that of Zr-rich clusters, leading to the formation of Ce-rich NCs at a short reaction time. Prolonging the reaction time allows further incorporation of the Zr component into the NCs, forming homogeneous NCs with the composition controlled by the ratios of the precursors used. The weaker interaction between capping agents and precursor accelerates the hydrolysis of precursor, nucleation and growth of crystal, and increase the crystalline of product.
     The different OSC performance between nanocrystal CeO_2-ZrO_2 prepared by two-phase method and bulk one prepared by sol-gel method was systemically investigated. The emergence of tetragonal phase moves towards higher zirconia concentrations with decreasing particle size mainly due to increasing zirconia solubility in cubic ceria. The reduced crystal size affords the NCs with higher concentrations of Ce~(3+) ([Ce~(3+)]/[Ce~(4+)]=0.403) and oxygen vacancy, shorter diffusion length, and lower CO-CO_2-conversion activation energy (46.1 KJ/mol). These unique size-enhancing properties lead to NC-derivate CZ with significantly higher OSC (0.393 mmol[O]/g at 400 oC), faster oxygen storage/release kinetics, and faster CO conversion (0.021μmol CO_2·s~(-1) at 400 oC).
     The mesoporous CeO_2-ZrO_2 nanocrystal was prepared by aerosol-assisted self-assembly process. The effect of acid and surfactant on structure and OSC performance of produced CeO_2-ZrO_2 nanocrystal was investigated. The weaker acid nature of organic acid slows down the nucleation and growth process, leads to formation of CeO_2-ZrO_2 with hollow structure or showing a vesicular mesophase. Using block copolymer F127 with longer hydrophilic PEO is in favor of increasing the BET surface area (104 m2/g) and pore volume (0.29 cm3/g) and further enhancing the OSC performance (0.551 mmol[O]/g at 500 oC). The double amount of HCl results in poor shape integrity and OSC performance of the mesoporous CeO_2-ZrO_2.
     Base on the formation of emulsion and micro-emulsion, the CeO_2-ZrO_2/Al_2O_3 complex compounds with core/shell structure was synthesized and their OSC performance was further tested. The procedure of toluene/water system is much more complicated and the layer of Al2O3 is thicker (~10 nm) than others. The CeO_2-ZrO_2/Al_2O_3 with thinnest layer (1-2 nm) of Al2O3 and best OSC performance (0.569 mmol[O]/g at 500 oC)was synthesized by THF/water system. It is convenient and fast to prepare CeO_2-ZrO_2/Al_2O_3 when the aerosol-assisted self-assembly was adopted. The thickness of Al2O3 layer is not homogenous according to the decreased amount of P123.
引文
[1]中华人民共和国中央政府网,截至2009年8月底我国机动车保有量达到1.8亿辆, 2009-09-09, http://www.gov.cn/jrzg/2009-09/09/content_1412541.htm
    [2]中国新闻网,中国机动车保有量将破2亿车市是否需要调控,2010-10-13, http://www.chinanews.com/auto/2010/10-13/2583644.shtml
    [3] Shen M, Yang M, Wang J, et al., Pd/support interface-promoted Pd-Ce0.7Zr0.3O2-Al2O3 automobile three-way catalysts: studying the dynamic oxygen storage capacity and CO, C3H8, and NO conversion, Journal of Physical Chemistry C, 2009, 113 (8), 3212~3221
    [4] Zhao M W, Shen M Q, Wang J, Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2, Journal of catalysis, 2007, 248(1), 258-267
    [5] Ka?par J, Fornasiero P, Hickey N, Automotive catalytic converters: current status and some perspectives, Catalysis Today, 2003, 77(4): 419~449
    [6]王务林,赵航,王继先,汽车催化转化器系统概论,北京:人民交通出版社, 1999.10
    [7] K?nig A, Herding G, Hupfeld B, et al., Current tasks and challenges for exhaust aftertreatment research. A viewpoint from the automotive industry, Topics in Catalysis, 2001, 16(1-4): 23~31
    [8] Di Monte R, Kaspar J, Nanostructured CeO2-ZrO2 mixed oxides, Journal of Material Chemistry, 2005, 15 (6): 633~648
    [9] Kaspar J, Fornasiero P, Graziani M, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today, 1999, 50 (2): 285~298
    [10] Aneggi E, Boaro M, de Leitenburg C, et al., Insights into the redox properties of ceria-based oxides and their implications in catalysis, Journal of Alloys and Compounds, 2006, 408: 1096~1102
    [11] Di Monte R, Ka?par J, Heterogeneous environmental catalysis - a gentle art: CeO2-ZrO2 mixed oxides as a case history, Catalysis Today, 2005, 100(1-2): 27~35
    [12] Loong C K, Ozawa M, The role of rare earth dopants in nanophase zirconia catalysts for automotive emission control, Journal of Alloys and Compounds, 2000, 303, 60~65
    [13] Engler B, Koberstein E, Schubert P, Automotive exhaust gas catalysts: Surface structure and activity, Applied Catalysis, 1989, 48 (1): 71~92
    [14] Markaryan G L, Ikryannikova L N, Muravieva G P, et al., Red-ox properties andphase composition of CeO2-ZrO2 and Y2O3-CeO2-ZrO2 solid solutions, Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 1999, 151(3): 435~447
    [15] Boaro M, Giordano F, Recchia S, et al., On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts, Applied Catalysis B: Environmental, 2004, 52(3): 225~237
    [16] Vidmar P, Fornasiero P, Ka?par J, et al., Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide, Journal of Catalysis, 1997, 171(1): 160~168
    [17] Wen M F, Yu B, Wang Q P et al., Study on the properties of nanometer CeO2 doped with Zr4+, La3+, Pr3+, Journal of Materials Science & Technology, 2004, 20 (3): 357~360
    [18] Hori C E, Permana H, Ng K Y S, et al., Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system, Applied Catalysis B: Environmental, 1998, 16(2): 105~117
    [19] Fornasiero P, Ka?par J, Graziani M, On the rate determining step in the reduction of CeO2-ZrO2 mixed oxides, Applied Catalysis B: Environmental, 1999, 22(1): L11~L14
    [20] Vlaic G, Di Monte R, Fornasiero P, et al., Redox property-local structure relationships in the ph-loaded CeO2-ZrO2 mixed oxides, Journal of Catalysis, 1999, 182(2): 378~389
    [21] Murota T, Hasegawa T, Aozasa S et al., Production method of cerium oxide with high storage capacity of oxygen and its mechanism, Journal of Alloys and Compound, 1993, 193 (1-2): 298~299
    [22] Ozawa M, Kimura M, Isogai A, The application of Ce-Zr oxide solid solution to oxygen storage promoters in automotive catalysts, Journal of Alloys and Compound, 1993, 193 (1-2): 73~75
    [23] Letichevsky S, Tellez C A, de Avillez R R, et al., Obtaining CeO2-ZrO2 mixed oxides by coprecipitation: role of preparation conditions, Applied Catalysis B: Environmental, 2005, 58(3-4): 203~210
    [24] Mamontov E, Brezny R, Koranne M, et al., Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2, Journal of Physical Chemistry B, 2003, 107(47): 13007~13014
    [25] Enzo S, Delogu F, Frattini R, et al., Structure characterization of ceria-zirconia powder catalysts prepared by high-energy mechanical milling: A neutron diffraction study, Journal of Materials Research, 2000, 15(7):1538~1545
    [26] Potdar H S, Deshpande S B, Khollam Y B, et al., Synthesis of nanosized Ce0.75Zr0.25O2 porous powders via an autoignition: glycine nitrate process, Materials Letters, 2003, 57(5-6): 1066~1071
    [27] Morris M A, Reidy H M, Preparation of ceria-zirconia and yttria-zirconia mixedoxides of unusual pore structures, Ceramics International, 2005, 31(7): 929~935
    [28] Kumar K S, Mathews T, Sol-gel synthesis and microwave assisted sintering of zirconia-ceria solid solution, Journal of Alloys and Compounds, 2005, 391(1-2): 177~180
    [29] Dhage S R, Gaikwad S P, Muthukumar P, et al., Synthesis of Ce0.75Zr0.25O2 by citrate gel method, Materials Letters, 2004, 58(21): 2704~2706
    [30] Vidal H, Kaspar J, Pijolat M et al., Redox behavior of CeO2-ZrO2 mixed oxides - II. Influence of redox treatments on low surface area catalysts, Applied Catalysis B: Environmental, 2001, 30 (1-2): 75~85
    [31] Vidal H, Kaspar J, Pijolat M et al., Redox behavior of CeO2-ZrO2 mixed oxides I. Influence of redox treatments on high surface area catalysts, Applied Catalysis B: Environmental, 2000, 27 (1): 49~63
    [32] Kaspar J, Fornasiero P, Baiducci G et al., Effect of ZrO2 content on textural and structural properties of CeO2-ZrO2 solid solutions made by citrate complexation route, Inorganica Chimica Acta, 2003, 349: 217~22
    [33] Mamontov E, Brezny R, Koranne M, et al., Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2, Journal of Physical Chemistry B, 2003, 107(47): 13007~13014
    [34] Kaspar J, Fornasiero P, Nanostructured materials for advanced automotive de-pollution catalysts, Journal of Solid State Chemistry, 2003, 171 (1-2): 19~29
    [35] Kaspar J, Fornasiero P, Graziani M, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today, 1999, 50 (2): 285~298
    [36] Formasiero P, Di Monte R, Rao G R, et al., Rh-loaded CeO2-ZrO2 solid solutions as highly effects oxygen exchanges: Dependence of the reductions behavior and the oxygen storage capacity on the structural properties, Journal of Catalysis, 1995, 151(1): 168~177
    [37] Trovarelli A, Zamar F, Llorca J, et al., Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling, Journal of Catalysis, 1997, 169(4): 490~502
    [38] Fornasiero P, Balducci G, Di Monte R, et al., Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2, Journal of Catalysis, 2001, 164(1): 173~183
    [39] Jongnam P, Jin J, Soon G K, et al., Synthesis of monodisperse spherical nanocrystals, Angewandte Chemie International Edition, 2007, 46(25), 4630~4660
    [40] Skorvanek I, OIHandley R C, Fine-particle magnetism in nanocrystalline Fe-Cu-Nb-Si-B at elevated temperatures, Journal of Magnetism and Magnetic Materials, 1995, 140(1), 467~468
    [41] Ngo A T, Pileni M P, Nanoparticles of cobalt ferrite: influence of the applied fieldon the organization of the nanocrystals on a substrate and on their magnetic properties, Advanced Materials, 2000, 12(4), 276~279
    [42] Petit C, Taleb A, Pileni M P, Self-organization of magnetic nanosized cobalt particles, Advanced Materials, 1998, 10(3), 259~261
    [43] Liu C, Zou B, Rondinone A J, et al., Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings, Journal of the American Chemical Society, 2000, 122(26), 6263~6267
    [44] Vestal C R, Zhang Z J, Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles, Journal of the American Chemical Society, 2003, 125(32), 9828~9833
    [45] Lalatonne Y, Richardi J, Pileni M P, Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals, Nature Materials 2004, 3(2), 121~125
    [46] Lisiecki I, Albouy P A, Pileni M P, Face-Centered-Cubic“supracrystals”of cobalt nanocrystals, Advanced Materials, 2003, 15(9), 712~716
    [47] Park S J, Kim S, Lee S, et al., Synthesis and magnetic studies of niform iron nanorods and nanospheres, Journal of the American Chemical Society, 2000, 122(35), 8581~8582
    [48] Cordente N, Respaud M, Senocq F, et al., Synthesis and magnetic properties of nickel nanorods, Nano Letter, 2001, 1(10), 565~568
    [49] Dumestre F, Chaudret B, Amiens C, et al., Unprecedented crystalline super-lattices of monodisperse cobalt nanorods, Angewandte Chemie International Edition, 2003, 42(42), 5213~5216
    [50] Wang X, Zhuang J, Peng Q, et al., A general strategy for nanocrystal synthesis, Nature, 2005, 437(7055), 121~124
    [51] Bao N, Shen L, Wang Y, et al., A facile thermolysis route to monodisperse ferrite nanocrystals, Journal of the American Chemical Society, 2007, 129(41), 12374~12375
    [52] Zeng H, Rice P M, Wang S X, et al., Shape-controlled synthesis and shape-induced texture of mnFe2O4 nanoparticles, Journal of the American Chemical Society, 2004, 126(37), 11458~11459
    [53] Trentler T J, Denler T E, Bertone J F, et al., Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions, Journal of the American Chemical Society, 1999, 121(7), 1613~1614
    [54] Joo J, Yu T, Kim Y W, et al., Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals, Journal of the American Chemical Society, 2003, 125(21), 6553~6557
    [55] Chen J P, Lee K M, Sorensen C M, et al., Magnetic properties of microemulsionsynthesized cobalt fine particles, Journal of Applied Physics, 1994, 75(10), 5876~5878
    [56] Pileni M P, Ninham B W, Gulik-Krzywicki T, et al., Direct relationship between shape and size of template and synthesis of copper Metal Particles, Advanced Materials, 1999, 11(16), 1358~1362
    [57] Maillard M, Giorgio S, Pileni M P, Silver nanodisks, Advanced Materials, 2002, 14(15), 1084~1086
    [58] Ingert D, Pileni M P, Limitations in producing nanocrystals using reverse micelles as nanoreactors, Advanced Functional Materials, 2001, 11(2), 136~139
    [59] Murray C B, Norris D J, Bawendi M G, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, 1993, 115(19), 8706~8715
    [60] Mutin P H and Vioux A, Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure, Chemistry of Materials, 2009, 21(4), 582~596
    [61] Corriu R J P, Leclercq D, Lefevre P, et al., Preparation of monolithic gels from silicon halides by a non-hydrolytic sol-gel process, Journal of Non-Crystalline Solids, 1992, 146(1), 301~303
    [62] Bourget L, Corriu R J P, Leclercq D, et al., Non-hydrolytic sol-gel routes to silica, Journal of Non-Crystalline Solids, 1998, 242(2), 81~91
    [63] Ba J, Polleux J, Antonietti M, et al., Non-aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous Mesostructures, Advanced Materials, 2005, 17(20), 2509~2512
    [64] Pinna N, Garnweitner G, Antonietti M, et al., Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process, Advanced Materials, 2004, 16(23), 2196~2200
    [65] Jansen M, Guenther E, Oxide gels and ceramics prepared by a nonhydrolytic sol-gel process, Chemistry of Materials, 1995, 7(11), 2110~2114
    [66] Caruso J, Hampden-Smith M J, Ester Elimination: A General Solvent Dependent Non-Hydrolytic Route to Metal and Mixed-Metal Oxides, Journal of Sol-Gel Science and Technology, 1997, 8(1), 35~39
    [67] Liu X, Zhou K, Wang L, et al., Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, Journal of the American Chemical Society, 2009, 131(9), 3140~3141
    [68] Mai H, Sun L, Zhang Y et al., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes, Journal of Physical Chemistry B, 2005, 109(51), 24380~24385
    [69] Yu T, Joo J, Park Y I, et al., Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes,Angewandte Chemie International Edition, 2005, 44(45), 7411~7414
    [70] Zhang J, Ohara S, Umetsu M, et al., Colloidal ceria nanocrystals: A tailor-made crystal morphology in supercritical Water, Advanced Materials, 2007, 19(2), 203~206
    [71] Huo Z, Chen C, Liu X, et al., One-pot synthesis of monodisperse CeO2 nanocrystals and superlattices, Chemical Communications, 2008, (32), 3741~3743
    [72] Taniguchi T, Watanabe T, Matsushita N, et al., Hydrothermal synthesis of monodisperse Ce0.5Zr0.5O2 metastable solid solution nanocrystals, European Journal of Inorganic Chemistry, 2009, 2009(14), 2054~2057
    [73] Stark W J, M?dler L, Maciejewski M, et al., Flame synthesis of nanocrystalline ceria-zirconia: effect of carrier liquid, Chemical Communications, 2003, (5), 588~589
    [74] Wright C S, Walton R I, Thompsett D, et al., One-step hydrothermal synthesis of nanocrystalline ceria-zirconia mixed oxides: the beneficial effect of sodium inclusion on redox properties, Advanced Materials, 2007, 19(24), 4500~4504
    [75] Zhao N N, Pan D C, Nie W, Ji X L, Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization. Journal of the American Chemical Society, 2006, 128(31), 10118~10124
    [76] Brust M, Walker M, Bethell D, et al., Journal of the Chemical Society, Chemical Communications, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system, 1994, 1994(7), 801~802
    [77] Horsewell S L, Kiely C J, O’Neil I A, et al., Alkyl isocyanide-derivatized platinum nanoparticles, Journal of the American Chemical Society, 1999, 121(23), 5573~5574
    [78] Chen S W, Huang K, Stearns J A, Alkanethiolate-protected palladium nanoparticles, Chemistry of Materials, 2000, 12(2), 540~547
    [79] Kang S Y, Kim K, Comparative dtudy of dodecanethiol-derivatized silver nanoparticles prepared in one-phase and two-phase systems, Langmuir, 1998, 14(1), 226~230
    [80] Pan D C, Zhao N N, Wang Q, et al., Facile synthesis and characterization of luminescent TiO2 nanocrystals, Advanced Materials, 2005, 17(16), 1991~1995
    [81] Pan D C, Jiang S C, An L J, et al., Controllable synthesis of highly luminescent and monodisperse CdS nanocrystals by a two-phase approach under mild conditions, Advanced Materials, 2004, 16(12), 982~985
    [82] Zhao N, Nie W, Liu X, et al., Shape- and size-controlled synthesis and dependent magnetic properties of nearly monodisperse Mn3O4 nanocrystals, Small, 2008, 4(1), 77~81
    [83] Pan D C, Ji X L, An L J, et al., Observation of nucleation and growth of CdS nanocrystals in a two-phase system, Chemistry of Materials, 2008, 20(11), 3560~3566
    [84] Yang S W, Gao L, Controlled synthesis and self-assembly of CeO2 nanocubes, Journal of the American Chemical Society, 2006, 128(29), 9330~9331
    [85] Boissiere C, Grosso D, Chaumonnot A, et al., Aerosol route to functionalnanostructured inorganic and hybrid porous materials, Advanced Materials, 2011, 23(5), 599~623
    [86] Pang J B, Stuecker J N, Jiang Y B, et al., Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks, Small, 2008, 4(7), 982~989
    [87] Rao G V R, Lopez G P, Bravo J, et al., Monodisperse mesoporous silica microspheres formed by evaporation-induced self assembly of surfactant templates in aerosols, Advanced Materials, 2002, 14(18), 1301~1304
    [88] Baccile N, Grosso D, Sanchez C, Aerosol generated mesoporous silica particles, Journal of Materials Chemistry, 2003, 13(12), 3011~3016
    [89] Alonso B, A Douy, Veron E, et al., Morphological and textural control of spray-dried mesoporous silica-based spheres, Journal of Materials Chemistry, 2004, 14(13), 2006~2016
    [90] Areva S, Boissiere C, Grosso D, et al., One-pot aerosol synthesis of ordered hierarchical mesoporous core-shell silica nanoparticles, Chemical Communications, 2004, 2004(14), 1630~1631
    [91] Ji X L, Hu Q Y, Hampsey J E, et al., One-pot aerosol synthesis of ordered hierarchical mesoporous core-shell silica nanoparticles, Chemistry of Materials, 2006, 18(9), 2265~2274
    [92] Jiang X M, Brinker C J, Aerosol-assisted self-assembly of single-crystal core/nanoporous shell particles as model controlled release capsules, Journal of the American Chemical Society, 2006, 128(14), 4512~4513
    [93] Ostomel T A, Shi Q H, Tsung C, et al., Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity, Small, 2006, 2(11), 1261~1265
    [94] Lu Y, Fan H, Stump A, et al., Aerosol-assisted self-assembly of mesostructured spherical nanoparticles, Nature, 1999, 398(6724), 223~226
    [95] Tsung C, Fan J, Zheng N, et al., A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks, Angewandte Chemie International Edition, 2008, 47(45), 8682~8686
    [96] Zhang Q, Lee I, Ge J, et al., Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts, Advanced Functional Materials, 2010, 20(14), 2201~2214
    [97] Kresge C T, Leonowicz M E, Roth W J, et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359(6397), 710~712
    [98] Davis M E, Ordered porous materials for emerging applications, Nature, 2002, 417(6891), 813~821
    [99] Zhao D, Feng J, Huo Q, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279(5350), 548~552
    [100] Zhao D, Huo Q, Feng J, et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, Journal of the American Chemical Society, 1998, 120(24), 6024~6036
    [101] Cha J, Cui P and Lee J, et al., A simple method to synthesize multifunctional silica nanocomposites, NPs@SiO2, using polyvinylpyrrolidone (PVP) as a mediator, Journal of Materials Chemistry, 2010, 2010(20), 5533~5537
    [102] Zhang Q, Zhang T, Ge J, et al., Permeable silica shell through surface-protected etching, Nano Letters, 2008, 8(9), 2867~2871
    [103] Ge J, Zhang Q, Zhang T, et al., Core-satellite nanocomposite catalysts protected by a porous silic shell: controllable reactivity, high stability, and magnetic recyclability, Angewandte Chemie International Edition, 2008, 47(46), 8924~8928
    [104] Tan H, Xue J M, Shuter B, et al., Synthesis of PEOlated Fe3O4@SiO2 nanoparticles via bioinspired silification for magnetic resonance imaging, Advanced Functional Materials, 2010, 20(5), 722~731
    [105] Zhou H, Wu H, Shen J, et al., Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity, Journal of the American Chemical Society, 2010, 132 (14), 4998~4999
    [106] Seo J, Jun Y, Ko S, et a., In situ one-pot synthesis of 1-Dimensional transition metal oxide nanocrystals, The Journal of Physical Chemistry B, 2005, 109 (12), 5389~5391
    [107] Dagtepe P, Chikan V, Quantized ostwald ripening of colloidal nanoparticles, The Journal of Physical Chemistry C, 2010, 114 (39), 16263~16269
    [108] Yang H G, Zeng H C, Preparation of hollow anatase TiO2 nanospheres via ostwald ripening, The Journal of Physical Chemistry B, 2004, 108 (11), 3492~3495
    [109] Zhang Z, Zhong X, Liu S, et al., Aminolysis route to monodisperse titania nanorods with tunable aspect ratio, Angewandte Chemie International Edition, 2005, 44(22), 3466~3470
    [110] Colon G, Pijolat M, Valdivieso F, et al., Surface and structural characterization of CexZr1-xO2 CEZIRENCAT mixed oxides as potential three-way catalyst promoters, Journal of the Chemical Society-Faraday Transactions, 1998, 94 (24): 3717~3726
    [111] Fu Y P, Lin C H, Preparation of CexZr1-xO2 powders by microwave-induced combustion process, Journal of Alloys and Compound, 2003, 354 (1-2): 232~235
    [112] Boaro M, Giordano F, Recchia S, et al., On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts, Applied Catalysis B: Environmental, 2004, 52 (3): 225~237
    [113] Costa C N, Christou S Y, Georgiou G, et al., Mathematical modeling of the oxygen storage capacity phenomenon studied by CO pulse transient experiments over Pd/CeO2 catalyst, Journal of Catalysis, 2003, 219 (2): 259~272
    [114] Fan J, Weng D, Wu X D, et al., Modification of CeO2-ZrO2 mixed oxides by coprecipitated/impregnated Sr: Effect on the microstructure and oxygen storage capacity, Journal of Catalysis, 2008, 258(1), 177~186
    [115] Fan J, Wu X D, Wu X D, et al., Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides: Effect on the OSC performance, Appled Catalysis B: Enviromental, 2008, 81(1-2), 38~48
    [116] Yuan Q, Yin A, Luo C, et al., Facile synthesis for ordered mesoporousγ-aluminas with hgh thermal stability, Journal of the American Chemical Society, 2008, 130(11), 3465~3472
    [117] Morris S M, Fulvio P F, and Jaroniec M, et al., Ordered mesoporous alumina-supported metal oxides, Journal of the American Chemical Society, 2008, 130(45), 15210~15216
    [118] Li L, Duan W, Yuan Q, et al., Hierarchical c-Al2O3 monoliths with highly ordered 2D hexagonal mesopores in macroporous walls, Chemical Communications, 2009, 2009(41), 6174~6176
    [119] Bakshi M S, Sachar S, Influence of temperature on the mixed micelles of Pluronic F127 and P103 with dimethylene-bis-(dodecyldimethylammonium bromide), Journal of Colloid and Interface Science, 2006, 296 (1) 309~315
    [120] Wang J, Wen J, and Shen M, Effect of interaction between Ce0.7Zr0.3O2 and Al2O3 on structural characteristics, thermal stability, and oxygen storage capacity, The Journal of Physical Chemistry B, 2008, 112 (13), 5113~5122
    [121] Balducci G, Islam M S, Kaspar J, et al., Bulk reduction and oxygen migration in the ceria-based oxides, Chemistry of Material, 2000, 12 (3): 677~681
    [122] Balducci G, Islam M S, Kaspar J, et al., Reduction process in CeO2-MO and CeO2-M2O3 mixed oxides: A computer simulation study, Chemistry of Material, 2003, 15 (20): 3781~3785

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700