半导体掺杂和表面若干稳定结构及其性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今追求科技产品多功能的信息时代,人们对微纳尺度光电器件和电子器件的要求日益提高。为获得新功能器件,制备稳定的n型和p型掺杂的新型化合物半导体材料凸显重要;同时,器件的比表面积随器件的尺度减小迅速增大,Si表面上金属的结构和特性对器件的性能影响极大。然而,在纤锌矿结构ZnO新型光电半导体中,存在非对称掺杂和获得的p型掺杂不稳定和极性表面非零偶极矩的静电不稳定的难题;在Si表面上的金属原子所形成的纳米团簇也存在结构稳定性和电子结构不确定等问题。极大地制约了这些半导体结构材料的应用。为此,本论文着重就纤锌矿结构ZnO中Ga-N等电子对共掺杂p型材料、Zn和O极性表面结构、Si(111)-(7×7)表面Zn纳米团簇结构的稳定性及其电子结构性质开展研究。
     首先,从纤锌矿结构ZnO的p型掺杂稳定性和能带结构调制的角度出发,计算了两种Ga-N等电子对共掺杂构型的总能、态密度和能带结构。总能计算表明,共掺有利于N_O受主杂质的稳定,并提高N在ZnO晶体中的掺杂浓度。态密度和能带结构结果显示,共掺构型Ⅰ较构型Ⅱ更有利于N_O引入的空穴和Ga_(Zn)引入的电子的完全互补偿,从而不改变完整晶格ZnO的基本电子结构性质,而仅仅抬高其价带顶,在价带顶处产生一个完全占据的非有效杂质态,有效降低了N_O的受主电离能,并提高了N_O的p型掺杂效率。
     其次,干净无再构Zn和O极性表面的几何结构和电子结构性质的计算表明,形成Zn极性表面后,最外Zn原子层稍微向外移动,并在完整晶格ZnO的导带底处产生了新的陡峭表面态,使得费米能级抬高进入导带,形成n型导电。形成O极性表面后,最外O原子层向内大幅度位移,并在完整晶格ZnO的价带顶处产生了新的平坦表面态,费米能级下移进入价带,使O面具有p型导电性。结合Zn和O极性表面的STM观测认为,Zn表面的稳定通过形成以O原子为台阶边沿的能量最低的{10(?)0}为台阶纳米小面的三角岛锯齿台面,改变表面Zn/O比,以补偿极性表面电荷。而O表面的稳定则主要通过表面电荷的转移和p型表面态的生成来补偿极性表表面电荷。
     最后,在Si(111)-(7×7)表面生长出了全同的Zn纳米团簇,结合扫描隧道显微镜和第一性原理总能计算及理论STM模拟研究结果显示,Zn纳米团簇中心倾向于被一个Zn原子所占据,使Zn纳米团簇不同于其它金属纳米团簇(N=6),形成最稳定的Zn_7Si_3原子构型。STS测量结果表明,在扫描偏压为±0.5V时Zn_7Si_3纳米团簇几乎消失不见的现象是Si(111)-(7×7)表面位于-0.3和+0.5V处的Si顶戴原子表面悬挂键态被饱和,形成具有半导体态密度分布的结果;Zn_7Si_3纳米团簇占据层错半单胞,清空了与之近邻的无层错半单胞中最近邻中心Si顶戴原子在-0.3V处的占据电子,澄清了近邻无层错半单胞中最近邻3个中心Si顶戴原子在占据态STM形貌像中变暗的物理起源。不同Zn覆盖度下Zn/Si(111)-(7×7)表面的STM形貌研究表明,Zn薄层的生长模式为经典的层状-岛状生长模式。所生长的Zn薄层不是普通的六角密堆积金属Zn薄层,而是多层蜂窝状Zn纳米团簇阵列层。对不同衬底温度生长的Zn薄层STM形貌研究发现,随着Zn原子单层与衬底Si(111)-(7×7)表面间距的增大,Si(111)-(7×7)表面对Zn原子单层的作用逐渐减弱,并导致Zn原子层的生长从单层生长模式转变为岛状生长模式,并对不同Zn原子单层的电子态产生显著的影响。原位RHEED衍射图样和STM形貌像分析显示,第一Zn原子单层为Zn_7Si_3纳米团簇组成的纳米团簇阵列层。从第二Zn原子单层开始,金属Zn纳米团簇通过直接在Zn_7Si_3纳米团簇上柱状堆叠而成。金属Zn纳米团簇中的Zn原子以六角密堆积结构方式排布,与Si(111)-(7×7)表面的外延关系为Zn(0001)//Si(111)和Zn[11(?)0]//Si[11(?)]。
In the information age,multi-functional products have attracted much attention as the rapid development of science and technology.In order to obtain the products, people make great efforts to new feature optoelectronic semiconductors and Si electronic devices in nano-scale.However,a crucial problem of structure stability should be overcome before new optoelectronic devices and the nano-scale Si devices could potentially make inroads into the world.For a new optoelectronic semiconductor,wurtzite ZnO faces the difficulty and instability of p-type conductivity and the electrostatic instability of Zn and O polar surfaces.For the nano-scale Si devices,the geometrical and electronic structures of metal-clusters adsorbed on Si surfaces are subject to instability and unknown problems.Therefore,in the thesis we mainly studied the structural and electronic properties of isoelectronic Ga-N codoping of wurtzite ZnO,Zn and O polar surfaces of wurtzite ZnO,and self-assembled Zn nanoclusters on the Si(111)-(7×7)surfaces.
     Firstly,we demonstrated that the isoelectronic Ga-N complex in wurtzite ZnO can enhance the stability of the N_O acceptor and the N concentration by using the first-principles total energy calculations.As indicated by the calculated electronic structures,one of the isoelectronic Ga-N complexes can form a totally passive donor-acceptor complex by almost keeping on the basic electronic structure of undoped wurtzite ZnO,but only generates an additional fully occupied band above the top of the valence band.Then the ionization energy of the excess N_O acceptors will be reduced largely and the p-type conductivity will be enhanced significantly.
     Secondly,we calculated the geometrical and electronic structures of the Zn and O polar surfaces.For the Zn polar surface,steep surface states appear in the band gap of bulk ZnO and follow the bottom of bulk conduction band.Moreover,Fermi level shifts up into the conduction band,which leads to the n-type conduction behaviour. For the O polar surface,flat surface states emerge above the top of the valence band of bulk ZnO as Fermi level shifts down a little into the valence band.Thus,the O polar surface can be predicted to have the p-type conduction behaviour.STM measurements showed that the Zn polar surface can be stabilized by reducing the surface Zn/O stoichiometry with 0 atoms occupied at the edge of the triangular terraces.Different from the stabilization mechanism of the Zn polar surface,the O polar surface can be stabilized by transforming the surface charges and forming the p-type surface states.
     Finally,we successfully fabricated the identical-size Zn nanoclusters grown on Si(111)-(7×7)at room-temperature and demonstrated the atomic structure of the clusters by combining in situ STM and theoretical simulation.Due to the varying valence,Zn nanoclusters are favor in forming the Zn_7Si_3 geometrical structures with one characteristic Zn atom occupying the center and therefore distinguish this system from other nanoclusters(N=6).STS measurements indicate that the drastic depressions of the Zn_7Si_3 nanoclusters with respective to the corner Si adatoms at low bias voltages of±0.5V are attributed to the saturation of the metallic Si adatom dangling bond states at about-0.3 and +0.5V,which further reveal the semiconducting characteristics of the Zn_7Si+3 nanoclusters.Due to vanishing the Si adatom surface dangling bond state at about-0.3V,the closest edge Si adatoms in the nearest neighboring uncovered UHUCs are strongly influenced and thus almost darkened in the filled-state STM images,indicating the charge transfer from the closest edge Si adatoms to the Zn_7Si_3 nanocluster.We also demonstrated the Stranski-Krastanov(SK) growth mode of the multilayered Zn nanocluster arrays on the Si(111)-(7×7)surfaces. STM measurements showed that the interaction between the Zn atoms and the Si(111)-(7×7)surface become weak as the distance between the Zn atomlayer and the Si(111)-(7×7)surface increases,which will induce the transformation from the Frank-VanderMerwe(FV)mode to the Volmer-Weber(VW)mode,and further influence significantly the electronic properties of different Zn atomlayers.In-situ RHEED measurements suggest that the 1~(st)Zn atomlayer is composed of the Zn_7Si_3 nanoclusters.The 2~(nd)and 3~(rd)Zn atomlayers are made up of the Zn nanoclusters, which directly stack on the top of the Zn_7Si_3 nanoclusters with the hexagonal-closed-pack atomic geometry.And due to the specific atomic structure of Zn_7Si_3 nanoclusters,Zn(0001)and Si(111)are parallel with each other with an in-plane epitaxial relationship as Zn[112~-0]//Si[112~-].
引文
[1]G F.Neumark.Achievement of Well Conducting Wide-Band-Gap Semiconductors:Role of Solubility and Nonequilibrium Impurity Incorporation[J].Phys.Rev.Lett.,1989,62(15):1800-1803.
    [2]D.J.Chadi.Doping in ZnSe,ZnTe,MgSe,and MgTe Wide-Band-Gap Semiconductors[J].Phys.Rev.Lett.,1994,72(4):534-537.
    [3]S.B.Zhang,S.-H.Wei,and A.Zunger.Microscopic Origin of the Phenomenological Equilibrium “Doping Limit Rule” in n-Type Ⅲ-ⅤSemiconductors[J].Phys.Rev.Lett.,2000,84(6):1232-1235.
    [4]T.Minami,H.Sato,H.Nanto,and S.Takata.Group Ⅲ Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering[J].Jpn.J.Appl.Phys.,1985,24:L781-L784.
    [5]S.B.Zhang,S.-H.Wei,and A.Zunger.A Phenomenological model for systematization and prediction of doping limits in Ⅱ-Ⅵ an Ⅰ-Ⅲ-Ⅵ_2compounds[J].J.Appl.Phys.,1998,83(6):3192-3196.
    [6]D.B.Laks,C.G.Van de Walle,G.F.Neumark,and S.T.Pantelides.Acceptor doping in ZnSe versus ZnTe[J].Appl.Phys.Lett.,1993,63(10):1375-1377.
    [7]A.F.Kohan,G.Ceder,D.Morgan,and C.G.Van de Walle.First-principles study of native point defects in ZnO[J].Phys.Rev.B,2000,61(22):15019-15027.
    [8]C.G.Van de Walle.Hydrogen as a Cause of Doping in Zinc Oxide[J].Phys.Rev.Lett.,2000,85(5):1012-1015.
    [9]C.G.Van de Walle.Defect analysis and engineering in ZnO[J].Physica B,2001,308-310:899-903.
    [10]S.F.J.Cox,E.A.Davis,S.P.Cottrell,P.J.C.King,J.S.Lord,J.M.Gil,H.V.Alberto,R.C.Cil(?)o,J.Piroto Duarte,N.Ayres de Campos,A.Weidinger,R.L.Lichti,and S.J.C.Irvine.Experimental Confirmation of the Predicted Shallow Donor Hydrogen States in Zinc Oxide[J].Phys.Rev.Lett.,2001,86(12):2601-2604.
    [11]Y M.Strzhemechny,H.L.Mosbacker,D.C.Look,D.C.Reynolds,C.W.Litton,N.Y Garces,N.C.Giles,L.E.Halliburton,S.Niki,and L.J.Brillson.Remote hydrogen plasma doping of single crystal ZnO[J].Appl.Phys.Lett.,2004,84(14):2545-2547.
    [12]K.Ip,M.E.Overberg,Y W.Heo,D.P.Norton,S.J.Pearton,S.E.Stutz,B.Luo,F.Ren,D.C.Look,and J.M.Zavada.Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO[J].Appl.Phys.Lett.,2003,82(3):385-387.
    [13]D.C.Look,J.W.Hemsky,and J.R.Sizelove.Residual Native Shallow Donor in ZnO[J].Phys.Rev.Lett.,1999,82(12):2552-2555.
    [14]D.C.Look,D.C.Reynolds,J.R.Sizelove,R.L.Jones,C.W.Litton,G.Cantwell,and W.C.Harsch.Electrical properties of bulk ZnO[J].Solid State Commun.,1998,105(6):399-401.
    [15]H.Kato,M.Sano,K.Miyanoto,and T.Yao.Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy[J].J.Cryst.Growth,2002,237-239:538-543.
    [16]S.Y Myong,S.J.Baik,C.H.Lee,W.Y Cho,and K.S.Lim.Extremely Transparent and Conductive ZnO:Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using AlCl_3(6H_2O) as New Doping Material[J].Jpn.J.Appl.Phys.,1997,36:L1078-L1081.
    [17]B.M.Ataev,A.M.Bagamadova,A.M.Djabrailov,V.V.Mamedov,and R.A.Rabadanov.Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD[J].Thin Solid Films,1995,260(1):19-20.
    [18]V.Assuncao,E.Fortunato,A.Marques,H.Aguas,I.Ferreira,M.E.V.Costa,and R.Martins.Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f.Sputtering at rom temperature[J].Thin Solid Films,2003,427(1-2):401-405.
    [19]Z.F.Liu,F.K.Shan,Y X.Li,B.C.Shin,and Y S.Yu.Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition[J].J.Cryst.Growth,2003,259(1-2):130-136.
    [20]H.J.Ko,Y.F.Chen,S.K.Hong,H.Wenisch,T.Yao,and D.C.Look.Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy[J].Appl.Phys.Lett.,2000,77(23):3761-3763.
    [21]C.Bayram,F.Hosseini Teherani,D.J.Rogers,and M.Razeghi.A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN[J].Appl.Phys.Lett.,2008,93(8):081111/1-081111/3.
    [22]W.Walukiewicz.Defect formation and diffusion in heavily doped semiconductors[J].Phys.Rev.B,1994,50(8):5221-5225.
    [23]Y.J.Zeng,Z.Z.Ye,W.Z.Xu,L.L.Chen,D.Y.Li,L.P.Zhu,B.H.Zhao,and Y.L.Hu.Realiztion of p-type ZnO films via mondoping of Li acceptor[J].J.Cryst.Growth,2005,283(1-2):180-184.
    [24]Y J.Zeng,Z.Z.Ye,W.Z.Xu,D.Y Li,J.G Lu,L.P.Zhu,and B.H.Zhao.Dopant source choice for formation of p-type ZnO:Li acceptor[J].Appl.Phys.Lett.,2006,88(6):062107/1-062107/3.
    [25]E.Mollwo,G Mueller,and P.Wagner.Energetische lage des Cu-akzeptorniveaus in ZnO-Einkristallen[J].Solid State Commun.,1973,13:1283-1287.
    [26]Y Kanai.Admittance spectroscopy of ZnO crystals containing Ag[J].Jpn.J.Appl.Phys.,1991,30:2021-2022.
    [27]C.H.Park,S.B.Zhang,and S.-H.Wei.Origin of p-type doping difficulty in ZnO:The impurity perspective[J].Phys.Rev.B,2002,66(7):073202/1-073202/3.
    [28]R.M.Park,M.B.Troffer,C.M.Rouleau,J.M.DePurdt,and M.A.Haase.p-type ZnSe by nitrogen atom beam doping during molecular beam epitaxial growth[J].Appl.Phys.Lett.,1990,57(20):2127-2129.
    [29]Y Sato and S.Sato.Preparation and some properties of nitrogen-mixed ZnO thin films[J].Thin Solid Films,1996,281-282:445-448.
    [30]K.Iwata,P.Fons,A.Yamada,K.Matsubara,and S.Niki.Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE[J].J.Cryst. Growth,2000,209:526-531.
    [31]X.Wang,S.Yang,J.Wang,M.Li,X.Jiang,G.Du,X.Liu,and R.P.H.Chang.Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition[J].J.Cryst.Growth,2001,226:123-129.
    [32]A.B.M.A.Ashrafi,I.Suemune,H.Kumano,and S.Tanaka.Nitrogen-Doped p-Type ZnO Layers Prepared with H_2O Vapor-Assisted Metalorganic Molecular-Beam Epitaxy[J].Jpn.J.Appl.Phys.,2002,41:L1281-L1284.
    [33]D.C.Look,D.C.Reynolds,C.W.Litton,R.L.Jones,D.B.Easong,and G.Cantwell.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J].Appl.Phys.Lett.,2002,81(10):1830-1832.
    [34]K.Minegishi,Y.Koiwai,Y.Kikuchi,K.Yano,M.Kasuga,and A.Shimizu.Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition[J].Jpn.J.Appl.Phys.,1997,36:L1453-L1455.
    [35]Z.Z.Ye,J.-G.Lu,H.-H.Chen,Y.-Z.Zhang,L.Wang,B.-H.Zhao,and J.-Y.Huang.Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering[J].J.Cryst.Growth,2003,253(1-4):258-264.
    [36]J.Wang,G.Du,B.Zhao,X.Yang,Y.Zhang,Y.Ma,D.Liu,Y.Chang,H.Wang,H.Yang,and S.Yang.Epitaxial growth of NH3-doped ZnO thin films on 〈02(?)4〉 oriented sapphire substrates[J].J.Cryst.Growth,2003,255(3-4):293-297.
    [37]Z.Ji,C.Yang,K.Liu,and Z.Ye.Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate-ammonia solution[J].J.Cryst.Growth,2003,253(1-4):239-242.
    [38]X.Guo,H.Tabata,and T.Kawai.Epitaxial growth and optoelectronic prperties of nitrogen-doped ZnO films on(11(?)0)Al_2O_3 substrate[J].J.Cryst.Growth,2002,237-239:544-547.
    [39]M.Joseph,H.Tabata,and T.Kawai.p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping[J].Jpn,J.Appl.Phys.,1999,38:L1205-1207.
    [40]X.Li,Y.Yan,T.A.Gessert,C.L.Perkins,D.Young,C.DeHart,M.Young,and T.J.Courts.Chemical vapor deposition-formed p-type ZnO thin films[J].J.Vac.Sci.Technol.A,2003,21(4):1342-1346.
    [41]W.Xu,Z.Ye,T.Zhou,B.Zhao,L.Zhu,and J.Huang.Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source[J].J.Cryst.Growth,2004,265(1-2):133-136.
    [42]C.Wang,Z.Ji,K.Liu,Y.Xiang,and Z.Ye.p-Type ZnO thin films prepared by oxidation of Zn3N2 thin films deposited by DC magnetron sputtering[J].J.Cryst.Growth,2003,259(3):279-281.
    [43]E.Kaminska,A.Piotrowska,J.Kossut,A.Barcz,R.Butkute,W.Dobrowolski,E.Dynowska,R.Jakiela,E.Przezdziecka,R.Lukasiewicz,M.Aleszkiewicz,P.Wojnar,and E.Kowalczyk.Transparent p-type ZnO films obtained by oxidation of sputter-deposited Zn_3N_2[J].Solid State Commun.,2005,135(1-2):11-15.
    [44]P.W Tasker.The stability of ionic crystal surfaces[J].J.Phys.C:Solid State Phys.,1979,12:4977-4984.
    [45]C.Noguera.Polar oxide surfaces[J].J.Phys.:Condens.Matter,2000,12(31):R367-R410.
    [46]O.Dulub,U.Diebold,and G Kresse.Novel stabilization mechanism on polar surfces:ZnO(0001)-Zn[J].Phys.Rev.Lett.,2003,90(1):016102/1-016102/4.
    [47]A.Wander,F.Schedin,P.Steadman,A.Norris,R.McGrath,T.S.Turner,G.Thornton,and N.M.Harrison.Stability of Polar Oxide Surfaces[J].Phys.Rev.Lett.,2001,86(17):3811-3814.
    [48]A.Wander and N.M.Harrison.The stability of polar oxide surfaces:The interaction of H_2O with ZnO(0001) and ZnO(000T)[J].J.Chem.Phys.,2001,115(5):2312-2316.
    [49]M.Kunat,St.G.Girol,Th.Becker,U.Burghaus,and Ch.Woll.Stability of the polar surfaces of ZnO:A reinvestigation using He-atom scattering[J].Phys.Rev.B,2002,66(8):081402/1-081402/3.
    [50]V.Staemmler,K.Fink,B.Meyer,D.Marx,M.Kunat,S.Gil Girol,U.Burghaus,and Ch.Woll.Stabilization of Polar ZnO Surfaces:Validating Microscopic Models by Using CO as a Probe Molecule[J].Phys.Rev.Lett.,2003,90(10):106102/1-106102/4.
    [51]B.Meyer.First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen andhydrogen[J].Phys.Rev.B,2004,69(10):045416/1-045416/10.
    [52]G.Binning,H.Rohrer,Ch.Gerber,and E.Weibel.Surface studies by scanning tunneling microscopy[J].Phys.Rev.Lett.,1982,49(1):57-61.
    [53]G.Binning,H.Rohrer,Ch.Gerber,and E.Weibel.Tunneling through a controllable vacuum gap[J].Appl.Phys.Lett.,1982,40(2):178-180.
    [54]G.Binning and H.Rohrer.Scanning tunneling microscopy-from birth to adolescence[J].Rev.Mod.Phys.,1987,59(3):615-625.
    [55]G.Binning and H.Rohrer.In touch with atoms[J].Rev.Mod.Phys.,1999,71(2):S324-S330.
    [56]C.M.Melliar-Smith and A.R.Storm.A Simple Flying Spot Scanner Design for Electron Lithography[J].Rev.Sci.Instrum.,1973,44(9):1282-1285.
    [57]Y.-C.Lin,I.Adesida,and A.R.Neureuther.Monte Carlo simulation of registration signals for electron beam microfabrication[J].Appl.Phys.Lett.,1980,36(8):672-674.
    [58]Y.-C.Lin,A.R.Neureuther,and I.Adesida.Alignment signals from silicon tapered steps for electron beam lithography[J].J.App.Phys.,1982,53(2):899-911.
    [59]C.M.Sotomayor Torres.Alternative Lithography[M].New York:Springer Press,2003.
    [60]K.-B,Choi and J.J.Lee.Passive compliant wafer stage for single-step nano-imprint lithography[J].Rev.Sci.Instrum.,2005,76(7):075106/1-075106/6.
    [61]J.Mohr,W.Ehrfeld,and D.M(?)nchmeyr.Requirements on resist layers in deep-etch synchrotron radiation lithography[J].J.Vac.Sci.Technol.B,6(6): 2264-2267.
    [62]D.M(u|¨)nchmeyr and J.Langen.Manufacture of three-dimensional microdevices using synchrotron radiation[J].Rev.Sci.Instrum.,1992,63(1):713-721.
    [63]D.J.Eaglesham and M.Cerullo.Dislocation-free Stranski-Krastanow growth of Ge on Si(100)[J].Phys.Rev.Lett.,1990,64(16):1943-1946.
    [64]C.Priester and M.Lannoo.Origin of self-assembled quantum dots in highly mismatched heteroepitaxy[J].Phys.Rev.Lett.,1995,75(1):93-96.
    [65]J.-F.Jia,X.Liu,J.-Z.Wang,J.-L.Li,X.S.Wang,Q.-K.Xue,Z.-Q.Li,Z.Zhang,and S.B.Zhang.Fabrication and structural analysis of Al,Ga,and In nanocluster crystals[J].Phys.Rev.B,2002,66(16):165412/1-165412/10.
    [66]H.Brune,M.Giovannini,K.Bromann,and K.Kern.Self-organized growth of nanostructure arrays on strain-relief patterns[J].Nature,1998,394(6692):451-453.
    [67]K.S.Kim,H.Morikawa,W.H.Choi,and H.W.Yeom.Strong Lateral Electron Coupling of Pb Nanowires on Stepped Si(111):Angle-Resolved Photoemission Studies[J].Phys.Rev.Lett.,2007,99(19):196804/1-196804/4.
    [1]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2007.
    [2]K.G G(u|¨)nther.Z.Naturforsch[J].1958,13A:1081.
    [3]J.E.Davey and T.Pankey.Epitaxial GaAs Films Deposited by Vacuum Evaporation[J].J.Appl.Phys.,1968,39(4):1941-1948.
    [4]M.A.Herman and H.Sitter.Molecular Beam Epitaxy:Fundamentals and Current Status[M].New York:Springer,1996.
    [5]张立钢.分子束外延和异质结构[M].上海:复旦大学出版社,1988.
    [6]张艳锋.Si(111)衬底上Pb薄膜的低温生长、电子 结构和量子效应研究[D].北京:中国科学院物理研究所,2005.
    [7]A.Ichimiya and P.I.Cohen.REFLECTION HIGH-ENERGY ELECTRON DIFFRACTION[M].Cambridge:Cambridage university press,2004.
    [8]J.E.Mahan,K.M.Geib,G.Y.Robinson,and R.G.Long.A review of the geometrical fundamentals of reflection high-energy electron diffraction with application to silicon surfaces[J].J.Vac.Sci.Technol.A,1990,8():3692-3700.
    [9]H.Luth.Surfaces and Interfaces of Solid Materials[M].New York:Springer,1995.
    [10]方永勋.分子束外延入门[M].北京:国防工业出版社,1981.
    [11]G.Binning,H.Rohrer,Ch.Gerber,and E.Weibel.Surface studies by scanning tunneling microscopy[J].Phys.Rev.Lett.,1982,49(1):57-61.
    [12]G.Binning,H.Rohrer,Ch.Gerber,and E.Weibel.Tunneling through a controllable vacuum gap[J].Appl.Phys.Lett.,1982,40(2):178-180.
    [13]G.Binning and H.Rohrer.Scanning tunneling microscopy-from birth to adolescence[J].Rev.Mod.Phys.,1987,59(3):615-625.
    [14]G.Binning and H.Rohrer.In touch with atoms[J].Rev.Mod.Phys.,1999,71(2):S324-S330.
    [15]G.Binning,H.Rohrer,Ch.Gerber,and E.Weibel.7×7 reconstruction on Si(111)resolved in real space[J].Phys.Rev.Lett.,1983,50(2):120-123.
    [16]陆家和,陈长彦.表面分析技术[M].北京:电子工业出版社,1987.
    [17]白春礼.扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992.
    [18]Ph.Avouris,I.W.Lyo,and F.Bozso.Atom-resolved surface chemistry:The early steps of Si(111)-(7×X7)oxidation[J].J.Vac.Sci.Technol.B,1991,9(2):424-430.
    [19]V.Madhavan,W.Chen,T.Jamneala,M.F.Crommie,and N.S.Wingreen.Tunneling into a single magnetic atom:Spectroscopic evidence of the Kondo resonance[J].Science,1998,280:567-569.
    [20]H.J.Lee and W.Ho.Single-bond formation and characterization with a scanning tunneling microscope[J].Science,1999,286:1719-1722.
    [21]D.M.Eigler and E.K.Schweizer.Positioning single atoms with a scanning tunneling microscope[J].Nature,1990,344:524-526.
    [22]M.F.Crommie,C.P.Lutz,and D.M.Eigler.Confinement of electrons to quantum corrals on a metal surface[J].Science,1993,262:218-220.
    [23]陈成钧著,华中一,朱昂如,金晓峰译毫扫描隧道显微学引论[M]北京:中国轻工业出版社,1996.
    [24]J.Bardeen.Tunnelling from a many-particle point of view[J].Phys.Rev.Lett.,1961,6(2):57-59.
    [25]J.Tersoff and D.R.Hamann.Theory and application for the scanning tunneling microscope[J].Phys.Rev.Lett.,1983,50(25):1998-2001.
    [26]J.Tersoff and D.R.Hamann.Theory of the scanning tunneling microscope[J].Phys.Rev.B,1985,31(2):805-813.
    [27]www.ieap.uni-kiel.de/surface/ag-kipp/stm/stm.htm[Z].
    [1]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,2000.
    [2]M.Born and K.Huang.Dynamical Theory of Crystal Lattices[M].Oxford:Oxford universtiy press,1954.
    [3]D.R.Hartree.Proc.Cam.Phil.Soc,1928,24:89.
    [4]V.Z.Fock.Phys.,1930,61:209.
    [5]L.H.Thomas.Proc.Cambridge Philos.Soc,1927,23:542.
    [6]E.Fermi.Z.Phys.,1928,48:73.
    [7]P.Hohenberg and W.Kohn.Inhomogeneous Electron Gas[J].Phys.Rev.,1964,136(3B):B864-B871.
    [8]W.Kohn.Nobel Lecture[J].Rev.Mod.Phys.,1998,71:1253.
    [9]W.Kohn and L.J.Sham.Self-Consistent Equations Including Exchange and Correlation Effects[J].Phys.Rev.,1965,140(4A):A1133-A1138.
    [10]J.C.Slater.A Simplification of the Hartree- Fock Method[J].Phys.Rev.,1951,81:385.
    [11]D.M.Ceplerley and B.J.Alder.Ground State of the Electron Gas by a Stochastic Method[J].Phys.Rev.Lett,1980,45(7):566-569.
    [12]J.P.Perdew and A.Zunger.Self-interaction correction to density-functional approximations for many-electron systems[J].Phys.Rev.B,1981,23(10):5048-5079.
    [13].P.Perdew and Y.Wang.Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.B,1992,45(23):13244-13249.
    [14]C.Lee,W.Yang,and R.C.Parr.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.B,1988,37:785-789.
    [15]A.D.Becke.Density-functional exchange-energy approximation with correct asymptotic behavior[J].Phys.Rev.A,1988,38:3098-3100.
    [16]J.P.Perdew,K.Burke,and M.Ernzerhof.Generalized Gradient Approximation Made Simple[J].Phys.Rev.Lett,1996,77(18):3865-3868.
    [17]M.C.Payne,M.P.Teter,D.C.Allan,T.A.Arias,and J.D.Joannopoulos.Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients[J].Rev.Mod.Phys.,1992,64(4):1045-1097.
    [18]G.P.Francis and M.C.Payne.Finite basis set corrections to total energy pseudopotential calculations[J].J.Phys.:Condens.Matter,1990,2:4395-4404.
    [19]J.R.Chelilowsky and Y.Saad.Electronic structure of clusters and nanocrystals.M.Rieth and W.Schommers Eds.Handbook of theoretical and computational nanotechnology[Z].American Scientific,2004.
    [20]http://beam.helsinki.fi/~akrashen/esctmp.html[Z].
    [21]N.W.Ashcroft.Electron-ion pseudopotentials in metals[J].Phys.Lett.,1966,23(1):48-50.
    [22]D.R.Hamann,M.Schluter,and C.Chiang.Norm-Conserving Pseudopotentials[J].Phys.Rev.Lett.,1979,43(20):1494-1497.
    [23]D.Vanderbilt.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Phys.Rev.B,1990,41(11):7892-7895.
    [24]G.Kresse and J.Hafner.Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J].J.Phys.:Condens.Matter,1994,6(40):8245-8257.
    [25]G.Kresse and J.Furthmuller.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys.Rev.B,1996,54(16):11169-11186.
    [26]G.Kresse and J.Hafner.Ab initio molecular dynamics for liquid metals[J].Phys.Rev.B,1993,47:R558-R561.
    [27]G.Kresse and D.Joubert.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Phys.Rev.B,1999,59(3):1758-1775.
    [28]D.Vanderbilt.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Phys.Rev.B,1990,41(11):7892-7895.
    [29]J.P.Perdew and Y.Wang.Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.B,1992,45(23):13244-13249.
    [30]J.P.Perdew,K.Burke,and M.Ernzerhof.Generalized Gradient Approximation Made Simple[J].Phys.Rev.Lett.,1996,77(18):3865-3868.
    [31]H.J.Monkhorst and J.D.Pack.Special points for Brillouin-zone integrations[J].Phys.Rev.B,1976,13(12):5188-5192.
    [32]H.Hellmann.Einfuhrung in die Quantumchemie[M].Deuticke:Leipzig,1937.
    [33]R.P.Feynman.Forces in Molecules[J].Phys.Rev.,1939,56(4):340-343.
    [34]M.T.Yin and M.L.Cohen.Theory of lattice-dynamical properties of solids:Application to Si and Ge[J].Phys.Rev.B,1982,26(6):3259-3272.
    [35]H.Karzel,W.Potzel,M.Lofferlein,W.Schiessl,M.Steiner,U.Hiller,G.M.Kalvius,D.W.Mitchell,T.P.Das,P.Blaha,K.Schwarz,and M.P.Pasternak.Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures[J].Phys.Rev.B,1996,53(17):11425-11438.
    [36]E.H.Kisi and M.M.Elcombe.u parametrs for the wurtzite structure of ZnS and ZnO using powder neutron diffraction[J].Acta Crystallogr.,Sect.C:Cryst.Struct.Commun.,1989,C45:1867-1870.
    [37]M.Catti,Y.Noel,and R.Dovesi.Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations[J].J.Phys.Chem.Solids,2003,64(11):2183-2190.
    [38]Z.G.Yu,H.Gong,and P.Wu.Lattice dynamics and electrical properties of wurtzite ZnO determined by a density functional theory method[J].J.Cryst.Growth,2006,287(1):199-203.
    [39]C.J.Bradley and A.P.Cracknell.The mathematical theory of symmetry in solids:Representation theory for point groups and space Groups[M].Oxford:Clarendon press,1972.
    [40]A.F.Kohan,G.Ceder,and D.Morgan.First-principles study of native point defects in ZnO[J].Phys.Rev.B,2000,61(22):15019-15027.
    [41]L.G.Wang and A.Zunger.Cluster-Doping Approach for Wide-Gap Semiconductors:The Case of p-Type ZnO[J].Phys.Rev.Lett.,2003,90(25): 256401/1-256401/4.
    [42]R.L.Hengehold and R.J.Almassy.Electron Energy-Loss and Ultraviolet-Reflectivity Spectra of Crystalline ZnO[J].Phys.Rev.B,1970,1(12):4784-4791.
    [43]M.Oshikiri,Y.Imanaka,F.Aryasetiawan,and G.Kido.Comparison of the electron effective mass of the n-type ZnO in the wurtzite structure measured by cyclotron resonance and calculated from first principle theory[J].Physica B,2001,298:472-476.
    [44]Y.N.Xu and W.Y Ching.Electronic,optical,and structural properties of some wurtzite crystals[J].Phys.Rev.B,1993,48(7):4335-4349.
    [45]N.N.Syrbu,I.M.Tiginyanu,V.V.Zalamai,V.V.Ursaki,and E.V.Rusu.Exciton polariton spectra and carrier effective masses in ZnO single crystals [J].Physica B,2004,353:111-115.
    [46]G.Zwicker and K.Jacobi.Experimental band structure of ZnO[J].Solid State Comm.,1985,54:701-704.
    [47]C.G.Van de Walle and J.Neugebauer.First-principles calculations for defects and impurities:Applications to Ⅲ-nitrides[J].J.Appl.Phys.,2004,95(8):3851-3879.
    [48]F.Oba,A.Togo,I.Tanaka,J.Paier,and G.Kresse.Defect energetics in ZnO:A hybrid Hartree-Fock density functional study[J].Phys.Rev.B,2008,77(24):245202/1-245202/6.
    [49]J.A.Dean.Lange's Handbook of chemistry[M].New York:McGraw-ill,1992.
    [50]G.Binnig,H.Eohrer,Ch.Gerber,and E.Weibel.7×7 reconstruction on Si(111)resolved in real space[J].Phys.Rev.Lett,1983,50(2):120-123.
    [51]K.Takayanagi,Y.Tanishiro,M.Takahashi,and S.Takahashi.Structure-analysis of Si(111)-(7×7)reconstructed surface by transmission electron-diffraction[J].Surf.Sci.,1985,164:367.K.Takayanagi,Y.Tanishiro,M.Takahashi,and S.Takahashi.Structrual analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy[J].J.Vac.Sci.Technol. A,1985,3(3):1502-1506.
    [52]R.J.Hamers,R.M.Tromp,and J.E.Demuth.Surface Electronic Structure of Si(111)-(7×7)Resolved in Real Space[J].Phys.Rev.Lett.,1986,56(18):1972-1975.
    [53]K.D.Brommer,M.Galvan,A.Dal Pino Jr.,and J.D.Joannopoulos.Theory of adsorption of atoms and molecules on Si(111)-(7×7)[J].Surf.Sci.,1994,314(1):57-70.
    [54]K.Cho and E.Kaxiras.Intermittent diffusion on the reconstructed Si(111)surface[J].Europhys.Lett.,1997,39(3):287-292.
    [55]K.Cho and E.Kaxiras.Diffusion of adsorbate atoms on the reconstructed Si(111)surface[J].Surf.Sci.Lett.,1998,396:L261-L266.
    [56]C.Zhang,G.Chen,K.Wang,H.Yang,T.Su,C.T.Chan,M.M.T.Loy,and X.Xiao.Experimental and Theoretical Investigation of Single Cu,Ag,and Au Atoms Adsorbed on Si(111)-(7×7)[J].Phys.Rev.Lett.,2005,94(17):176104/1-176104/4.
    [57]A.Zhao,X.Zhang,G.Chen,M.M.T.Loy,and X.Xiao.Initial stages of the adsorption of Ge atoms on the Si(111)-(7×7)surface[J].Phys.Rev.B,2006,74(12):125301/1-125301/8.
    [58]H.J.Monkhorst and J.D.Pack.Special points for Brillouin-zone integrations [J].Phys.Rev.B,1976,13(12):5188-5192.
    [1](U|¨).(O|¨)zg(u|¨)r,Ya.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Do(?)an,V.Avrutin,S.-J.Cho,and H.Morkoc.A comprehensive review of ZnO materials and devices[J].J.Appl.Phys.,2005,98(4):041301/1-041301/103.
    [2]S.J.Pearton,D.P.Norton,K.Ip,Y.W.Heo,and T.Steiner.Recent advances in processing of ZnO[J].J.Vac.Sci.Technol.B,2004,22(3):932-948.
    [3]Y.Sun,P.Xu,C.Shi,F.Xu,H.Pan,and E.Lu.A FP-LMTO study on the native shallow donor in ZnO[J].J.Electron Spectrosc.Relat.Phenom.,2001,114-116:1123-1125.
    [4]P.Erhart,A.Klein,and K.Albe.First-principle study of the structure and stability of oxygen defects in zinc oxide[J].Phys.Rev.B,2005,72(8):085213/1-085213/7.
    [5]A.Janotti and C.G.Van de Walle.Native point defects in ZnO[J].Phys.Rev.B,2007,76(16):165202/1-165202/22.
    [6]C.G.Van de Walle.Defect analysis and engineering in ZnO[J].Physica B,2001,308-310:889-903.
    [7]F.Oba,S.R.Nishitani,S.Isotani,H.Adachi,and I.Tanaka.Energetics of native defects in ZnO[J].J.Appl.Phys.,2001,90(2):824-828.
    [8]S.B.Zhang,S.-H.Wei,and A.Zunger.Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J].Phys.Rev.B,2001,63(7):075205/1-075205/7.
    [9]E.Lee,Y.-S.Kim,Y-G.Jin,and K.J.Chang.Compesation mechanism for N acceptors in ZnO[J].Phys.Rev.B,2001,64(8):085120/1-085120/5.
    [10]A.F.Kohan,G.Ceder,D.Morgan,and C.G.Van de Walle.First-principles study of native point defects in ZnO[J].Phys.Rev.B,2000,61(22):15019-15027.
    [11]C.H.Park,S.B.Zhang,and S.-H.Wei.Origin of p-type doping difficulty in ZnO:The impurity perspective[J].Phys.Rev.B,2002,66(7):073202/1-073202/3.
    [12]T.M.Barnes,K.Olson,and C.A.Wolden.On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J].Appl.Phys.Lett.,2005,86(11):112112/1-112112/3.
    [13]L.G.Wang and A.Zunger.Cluster-Doping Approach for Wide-Gap Semiconductors:The Case of p-Type ZnO[J].Phys.Rev.Lett.,2003,90(25):256401/1-256401/4.
    [14]X.Li,B.Keyes,S.Asher,S.B.Zhang,S.-H.Wei,T.J.Courts,S.Limpijumnong,and C.G.Van de Walle.Hydrogen passivation effect in nitrogen-doped ZnO thin films[J].Appl.Phys.Lett.,2005,86(12):122107/1-122107/3.
    [15]Y.Yan,S.B.Zhang,and S.T.Pantelides.Control of Doping by Impurity Chemical Potentials:Predictions for p-Type ZnO[J].Phys.Rev.Lett.,2001,86(25):5723-5726.
    [16]P.Fons,H.Tampo,A.V.Kolobov,M.Ohkubo,S.Niki,J.Tominaga,R.Carboni,F.Boscherini,and S.Friedrich.Direct Observation of Nitrogen Location in Molecular Beam Epitaxy Grown Nitrogen-Doped ZnO[J].Phys.Rev.Lett.,96(4):045504/1-045504/4.
    [17]Y.Marfaing,and A.Lusson.Doping engineering of p-type ZnO[J].Superlattices and Microstructures,2005,38:385-396.
    [18]E.Lee,Y.-S.Kim,Y.-G.Jin,and K.J.Chang.First-principles study of the compensation mechanism in N-doped ZnO[J].Physica B,2001,308-310:912-915.
    [19]T.Yamamoto and H.Katayama-Yoshida.Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO[J].Jpn.J.Appl.Phys.,1999,38(2B):L166-L169.
    [20]M.Joseph,H.Tabata,and T.Kawai.p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping[J].Jpn.J.Appl.Phys.,1999,38(11A):L1205-L1207.
    [21]K.Nakahara,H.Takasu,P.Fons,A.Yamada,K.Iwata,K.Matsubara,R.Hunger,and S.Niki.Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy[J].Appl.Phys.Lett.,2001,79(25):4139-4141.
    [1]A.Tsukazaki,A.Ohtomo,T.Onuma,M.Ohtani,T.Makino,M.Sumiya,K.Ohtani,S.F.Chichibu,S.Fuke,Y.Segawa,H.Ohno,H.Koinuma,and M.Kawasaki.Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J].Nat.Mater.,2005,4(1):42-46.
    [2]A.Tsukazaki,A.Ohtomo,T.Kita,Y.Ohno,H.Ohno,and M.Kawasaki.Quantum Hall Effect in Polar Oxide Heterostructures[J].Scinece,2007,315(5817):1388-1391.
    [3]T.Becker,M.Kunat,C.Boas,U.Burghaus,and C.Woll.Adsorption dynamics of CO on the polar surfaces of ZnO[J].J.Chem.Phys.,2000,113(15):6334-6343.
    [4]A.N.Mariano and R.E.Hanneman.Cystallographic Polarity of ZnO Crystals [J].J.Appl.Phys.,1963,34(2):384-388.
    [5]J.M.Vohs and M.A.Barteau.Dehydration and dehydrogenation of ethanol and 1-propanol on the polar surfaces of zinc oxide[J].Surf.Sci.,1989,221(3):590-608.
    [6]J.M.Vohs and M.A.Barteau.Conversion of methanol,formaldedyde and formic acid on the polar faces of zinc oxide[J].Surf.Sce.,1986,176(1-2):91-114.
    [7]T.Becher,C.Boas,U.Burghaus,and C.Woll.Adsorption probabilities of CO on O-ZnO:A molecular beam study[J].J.Vac.Sci.Technol.A,2000,18(4):1089-1092.
    [8]T.Becher,C.Boas,U.Burghaus,and C.Woll.Adsorption probabilities of CO on a metal oxide:The case of oxygen-terminated ZnO and the influence of defects[J].Phys.Rev.B,2000,61(7):4538-4541.
    [9]M.Kunat,St.G.Girol,Th.Becker,U.Burghaus,and Ch.Woll.Stability of the polar surfaces of ZnO:A reinvestigation using He-atom scattering[J].Phys.Rev.B,2002,66(8):081402/1-081402/3.
    [10]G.Thornton,S.Crook,and Z.Chang.A HREELS study of the effect of Cu on the interaction of HCOOH with ZnO(000(?))-O[J].Surf.Sci.,1998,415(1-2):122-130.
    [11]N.Jedrecy,S.Gallini,M.Sauvage-Simkin,and R.Pinchaux.Copper growth on the O-terminated ZnO (0001) surface:Structure and morphology[J].Phys.Rev.B,2001,64(8):085424/1-085424/7.
    [12]O.Dulub,L.A.Boatner,and U.Diebold.STM study of the geometric and electronic structure of ZnO (0001)-Zn,(000(?))-O,(10(?)0) and (11(?)0) surfaces[J].Surf.Sci.,2002,519(3):210-217.
    [13]O.Dulub,U.Diebold,and G.Kresse.Novel stabilization mechanism on polar surfces:ZnO(0001)-Zn[J].Phys.Rev.Lett.,2003,90(1):016102/1-016102/4.
    [14]L.V.Koplitz,O.Dulub,and U.Diebold.STM study of copper growth on ZnO(0001)-Zn and ZnO(000(?))-O surfaces[J].J.Phys.Chem.B,2003,107(38):10583-10590.
    [15]G.Kresse,O.Dulub,and U.Diebold.Competing stabilization mechanism for the polar ZnO (0001)-Zn surface[J].Phys.Rev.B,2003,68(24):245409/1-245409/15.
    [16]U.Diebold,L.V.Koplitz,and O.Dulub.Atomic-scale properties of low-index ZnO surfaces[J].Appl.Surf.Sci.,2004,237(1-4):336-342.
    [17]O.Dulub,B.Meyer,and U.Diebold.Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface[J].Phys.Rev.Lett.,2005,95(13):136101/1-136101/4.
    [18]R.W.Nosker,P.Mark,and J.D.Levine.Polar surfaces of wurtzite and zincblende lattices[J].Surf.Sci.,1970,19(2):291-317.
    [19]S.H.Overbury,P.V.Radulovic,S.Thevuthasan,G.S.Herman,M.A.Henderson,and C.H.F.Peden.Ion scattering study of the Zn and oxygen-terminated basal plane surfaces of ZnO[J].Surf.Sci.,1998,410(1):106-122.
    [20]C.B.Duke and A.R.Lubinsky.Calculations of low-energy electron diffraction intensities from the polar faces of ZnO[J].Surf.Sci.,1975,50(2):605-614.
    [21]M.Sambi,G.Granozzi,G.A.Rizzi,M.Casarin,and E.Tondello.An angle-scanned photoelectron diffraction study on the surface relaxation of ZnO(0001)[J].Surf.Sci.,1994,319(1-2):149-156.
    [22]M.Galeotti,A.Atrei.U.Bardi,G.Rovida,M.Torrini,E.Zanazzi,A.Santucci,and A.Klimov.Structure of the ZnO(000(?))surface studied by X-ray photoelectron diffraction[J].Chem.Phys.Lett.,1994,222(4):349-352.
    [23]T.M.Parker,N.G.Condon,R.Lindsay,F.M.Leibsle,and G.Thornton.Imaging the polar(0001)and non-polar(10(?)0)surfaces of ZnO with STM [J].Surf.Sci.Lett.,1998,415(3):L1046-L1050.
    [24]A.Wander,F.Schedin,P.Steadman,A.Norris,R.McGrath,T.S.Turner,G.Thornton,and N.M.Harrison.Stability of Polar Oxide Surfaces[J].Phys.Rev.Lett.,2001,86(17):3811-3814.
    [25]A.Wander and N.M.Harrison.The stability of polar oxide surfaces:The interaction of H_2O with ZnO(0001)and ZnO(000(?))[J].J.Chem.Phys.,2001,115(5):2312-2316.
    [26]V.Staemmler,K.Fink,B.Meyer,D.Marx,M.Kunat,S.Gil Girol,U.Burghaus,and Ch.Woll.Stabilization of Polar ZnO Surfaces:Validating Microscopic Models by Using CO as a Probe Molecule[J].Phys.Rev.Lett.,2003,90(10):106102/1-106102/4.
    [27]B.Meyer.First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen andhydrogen[J].Phys.Rev.B,2004,69(10):045416/1-045416/10.
    [28]C.Noguera.Polar oxide surfaces[J].J.Phys.:Condens.Matter,2000,12(31):R367-R410.
    [29]W.G(o|¨)pel,J.Pollmann,I.Ivanov,and B.Reihl.Angle-rsolved photoemission from polar and nonpoalr zinc oxide surfaces[J].Phys.Rev.B,1982,26(6): 3144-3150.
    [30]R.T.Girard,O.Tjernberg,G.Chiaia,S.S(o|¨)derholm,U.O.Karlsson,C.Wigren,H.Nylen,and I.Lindau.Electronic structure of ZnO(0001)studied by angle-resolved photoelectron spectroscopy[J].Surf.Sci.,1996,373(2-3):409-417.
    [31]马丽颖.Fe原子在Pb/Si(111)表面扩及ZnO(000(?))表面结构的研究[D].北京:中国科学院物理 研究所,2006.
    [32]A.Urbieta,P.Fernandez,Ch.Hardalov,J.Piqueras,and T.Sekiguchi.Cathodoluminescence and scanning tunneling spectroscopy of ZnO single crystals[J].Mater.Sci.Eng.B,2002,91-92:345-348.
    [33]H.Maki,N.Ichinose,N.Ohashi,H.Haneda,and J.Tanaka.The lattice relaxation of ZnO single crystal(0001)surface[J].Surf.Sci.,2000,457(3):377-382.
    [34]N.Jedrecy,M.Sauvage-Simkin,and R.Pinchaux.The hexagonal polar ZnO(0001)-(1×1)surfaces:structural features as stemming from X-ray diffraction[J].Appl.Surf.Sci.,2000,162-163:69-73.
    [35]G.Henkelman,A.Arnaldsson,and H.Jonsson.A fast and robust algorithm for Bader decomposition of charge density[J].Comput.Mater.Sci.,2006,36(3):354-360.
    [36]E.Sanville,S.D.Kenny,R.Smith,and G.Henkelman.Improved grid-based algorithm for Bader charge allocation[J].J.Comput.Chem.,2007,28(5):899-908.
    [37]P.W.Tasker.The stability of ionic crystal surfaces[J].J.Phys.C:Solid State Phys.,1979,12:4977-4984.
    [38]Q.-K.Xue,Q.Z.Xue,R.Z.Bakhtizin,Y.Hasegawa,I.S.T.Tsong,T.Sakurai,and T.Ohno.Structures of GaN(0001)-(2×2),-(4×4),and -(5×5)Surface Reconstructions[J].Phys.Rev.Lett.,1999,82(15):3074-3077.
    [1]S.Sun,C.B.Murray,D.Weller,L.Folks,and A.Moser.Monodisperse FePt Nanoparticles and Feromagnetic FePt Nanocrystal Superlattices[J].Science,2000,287(5460):1989-1992.
    [2]H.Brune,M.Giovannini,K.Bromann,and K.Kern.Self-organized growth of nanostructure arrays on strain-relief patterns[J].Nature,1998,394(6692):451-453.
    [3]Y.Gao,Y.Bao,M.Beerman,A.Yasuhara,D.Shindo,and K.M.Krishnan.Superstructures of self-assembled cobalt nanocrystals[J].Appl.Phys.Lett.,2004,84(17):3361-3363.
    [4]T.Xie,A.Kimura,S.Qiao,T.Moko,T.Muro,M.Taniguchi,M.-H.Pan,J.-F.Jia,and Q.-K.Xue.X-ray magnetic circular dichroism at L_(23)edge of Co nanoclusters on Si(111)surface[J].J.Phys.:Condens.Matter,2004,16(48):S5783-S5786.
    [5]L.Vitali,M.G.Ramsey,and F.P.Netzer.Nanodot formation on the Si(111)-(7×7)surface by adatom trapping[J].Phys.Rev.Lett.,1999,83(2):316-319.
    [6]J.-L.Li,J.-F.Jia,X.-J.Liang,X.Liu,J.-Z.Wang,Q.-K.Xue,Z.-Q.Li,J.S.Tse,Z.Zhang,and S.B.Zhang.Spontaneous Assembly of Perfectly Ordered Identical-Size Nanocluster Arrays[J].Phys.Rev.Lett.,2002,88(6):066101/1-066101/4.
    [7]R.Plass,J.A.Last,N.C.Bartelt,and G.L.Kellogg.Nanostructures-Self-assembled domain patterns[J].Nature,2001,412(6850):875-875.
    [8]P.Venezuela,J.Tersoff,J.A.Floro,E.Chason,D.M.Follstaedt,F.Liu,and M.G.Lagally.Self-organized growth of alloy superlattices[J].Nature,1999,397(6721):678-681.
    [9]E.Vaso.Metal-cluster nanoarrays on Si(111)7×7:Rate equations and kinetic Monte Carlo simulations[J].Phys.Rev.B,2004,69(7):075412/1-075412/5.
    [10]E.Vaso.Theoretical optimization of the self-organized growth of nanoscale arrays through a figure of merit[J].Appl.Phys.Lett.,2004,85(17):3714-3716.
    [11]E.Vaso,C.Polop,and E.Rodriguez-Ca(?)as.Aggregation mechanisms in the adsorption of metals on Si(111)7×7[J].Phys.Rev.B,2003,67(23):235412/1-235412/9.
    [12]J.Dabrowski and H.-J.M(?)ssig.Silicon Surface and Formation of Interfaces [M].Singapore:World scientific,2000.
    [13]V.G.Kotlyar,A.V.Zotov,A.A.Saranin,T.V.Kasyanova,M.A.Cherevik,I.V.Pisarenko,and V.G.Lifshits.Formation of the ordered arrays of Al magic clusters on Si(111)7×7[J].Phys.Rev.Lett.,66(16):165401/1-165401/4.
    [14]J.Jia,J.-Z.Wang,X.Liu,Q.-K.Xue,Z.-Q.Li,Y.Kawazoe,and S.B.Zhang.Artificial nanocluster crystal:Lattice of indentical Al clusters[J].Appl.Phys.Lett.,80(17):3186-3188.
    [15]M.Y.Lai and Y.L.Wang.Self-organized two-dimentsional lattice of magic clusters[J].Phys.Rev.B,2001,64(24):211404/1-241404/4.
    [16]J.-F.Jia,X.Liu,J.-Z.Wang,J.-L.Li,X.S.Wang,Q.-K.Xue,Z.-Q.Li,Z.Zhang,and S.B.Zhang.Fabrication and structural analysis of Al,Ga,and In nanocluster crystals[J].Phys.Rev.B,2002,66(16):165412/1-165412/10.
    [17]S.-C.Li,J.-F.Jia,R.-F.Dou,Q.-K.Xue,I.G.Batyrev,and S.B.Zhang.Borderline Magic Clustering:The Fabrication of Tetravalent Pb Cluster Arrays on Si(111)-(7×7)Surfaces[J].Phys.Rev.Lett.,2004,93(11):116103/1-116103/4.
    [18]M.A.K.Zilani,Y.Y.Sun,H.Xu,L.Liu,Y.P.Feng,X.-S.Wang,and A.T.S.Wee.Reactive Co magic cluster formation on Si(111)-(7×7)[J].Phys.Rev.B,2005,72(19):193402/1-193402/4.
    [19]M.A.K.Zilani,H.Xu.T.Liu,Y.Y.Sun,Y.P.Feng,X.-S.Wang,and A.T.S.Wee.Electronic structure of Co-induced magic clusters grown on Si(111)-(7×7):Scanning tunneling microscopy and spectroscopy and real-space multiple-scattering calculations[J].Phys.Rev.B,2006,73(19):195415/1-195415/5.
    [20]M.A.K.Zilani,Y.Y.Sun,H.Xu.G.W.Peng,Y.P.Feng,X.-S.Wang,and A.T.S.Wee.Formation and stabilization of Fe-induced magic clusters on Si(111)-(7×7)template[J].Surf.Sci.2007,601(12):2486-2490.
    [21]Y.P.Zhang,L.Yang,Y.H.Lai,G.Q.Xu,and X.S.Wang.Formation of ordered two-dimensional nanostructures of Cu on the Si(111)-(7×7)surface[J].Surf.Sci.2003,531(3):L378-L382.
    [22]J.Myslivecek,P.Sobot(?)k,I.O(?)t'(?)dal,T.Jarol(?)mek,and P.(?)milauer.Unconventional features of Ag epitaxy on the Si(111)7×7 surface[J].Phys.Rev.B,2001,63(4):045403/1-045403/5.
    [23]I.Chizhov,G.Lee,and R.F.Willis.Initial stages of Au adsorption on the Si(111)-(7×7)surface studied by scanning tunneling microscopy[J].Phys.Rev.B,1997,56(19):12316-12320.
    [24]M.Yoon,X.F.Lin,I.Chizhov,H.Mai,and R.F.Willis.Self-assembled nanodot arrays on Si(111)-(7×7)surfaces[J].Phys.Rev.B,2001,64(8):085321/1-085321/5.
    [25]X.F.Lin,H.A.Mai,I.Chizhov,and R.F.Willis.Initial states of In adsorption on Si(111)7×7[J].J.Vac.See.Technol.B,1996,14(2):995-999.
    [26]K.Wu,Y.Fujikawa,T.Nagao,Y.Hasegawa,K.S.Nakayama,Q.K.Xue,E.G.Wang,T.Briere,V.Kumar,Y.Kawazoe,S.B.Zhang,and T.Sakurai.Na Adsorption on the Si(111)-(7×7)surface:From Two-Dimensional Gas to Nanocluster Array[J].Phys.Rev.Lett.,2003,91(12):126101/1-126101/4.
    [27]J.R.Ahn,K.Yoo,J.T.Seo,J.H.Byun,and H.W.Yeom.Electronic states of two-dimensional adatom gas and nanocluster array:Na on Si(111)7×7[J].Phys.Rev.B,2005,72(11):113309/1-113309/4.
    [28]K.Takayanagi,Y.Tanishiro,M.Takahashi,and S.Takahashi.Structure-analysis of Si(111)-(7×7)reconstructed surface by transmission electron-diffraction[J].Surf.Sci.,1985,164:367.K.Takayanagi,Y.Tanishiro,M.Takahashi,and S.Takahashi.Structrual analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy[J].J.Vac.Sci.Technol.A,1985,3(3):1502-1506.
    [29]陈成钧著,华中一,朱昂如,金晓峰译.扫描隧道显微学引论[M].北京:中国轻工业出版社,1996.
    [30]E.R.Jette and F.Foote.Precision Determination of Lattice Constants[J].J.Chem.Phys.,1935,3(10):605-616.
    [31]J.Tersoff and D.R.Hamann.Theory of the scanning tunneling microscope[J].Phys.Rev.B,1985,31(2):805-813.
    [32]G.Lee,C.G.Hwang,N.D.Kim,J.Chung,J.S.Kim,and S.Lee.Ab initio study of thallium nanoclusters on Si(111)-7×7[J].Phys.Rev.B,2007,76(24):245409/1-245409/9.
    [33]Z.-X.Xie,K.Iwase,T.Egawa,and K.Tanaka.Formation of a suprahoneycomb compound of Zn_3 cluster on a Si(111)-(7×7)surface[J].Phys.Rev.B,2002,66(12):121304/1-121304/4.
    [34]R.M.Feenstra.Tunneling spectroscopy of the(110)surface of direct-gap Ⅲ-V semiconductors[J].Phys.Rev.B,1994,50(7):4561-4570.
    [35]M.Prietsch,A.Samsavar,and R.Ludeke.Structural and electronic properties of the Bi/Gap(110)interface[J].Phys.Rev.B,1991,43(14):11850-11856.
    [36]R.J.Hamers,R.M.Tromp,and J.E.Demuth.Surface Electronic Structure of Si(111)-(7×7)Resolved in Real Space[J].Phys.Rev.Lett.,1986,56(18):1972-1975.
    [37]郑伟涛.薄膜材料与薄膜技术[M].北京化学工业出版社,2007.
    [38]S.Ino.Some New Techniques in Reflection High Energy Electron Diffraction (RHEED)Application to Surface Structure Studies[J].Jpn.J.Appl.Phys.,1977,16(6):891-908.
    [39]Z.-C.Wu and L.J.Schowalter.Reflection high-energy electron diffraction pattern calculations for Si(111)-7×7 surface[J].J.Vac.Sci.Technol.B,1988,6(4):1457-1461.
    [40]Y.Ma,S.Lordi,J.A.Eades,and S.Ino.Reflection high-energy electron-diffraction analysis of the Si(111)-(7×7)reconstruction[J].Phys.Rev. B,1994,49(24):17448-17451.
    [41]H.H.Chang,M.Y.Lai,J.H.Wei,C.M.Wei,and Y.L Wang.Structure Determination of Surface Magic Clusters[J].Phys.Rev.Lett.,92(6):066103/1-066103/4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700