空芯光纤的传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着红外激光技术的发展,出现了各种各样用来传输激光能量的空芯光纤。虽然这些光纤已经被广泛用于在较低损耗下传输红外激光能量,但是现有的关于空芯光纤的传输理论还不能很好地解释空芯光纤中的损耗与模式特性。现有应用较广的M-S理论和Miyagi公式只能适用于特定类型的光纤,而且这两种理论的预测值与实验结果存在一定的偏差。为了能更好地对这一类型的光纤进行分析,就需要有新的理论对空芯光纤的传输特性进行解释。在本文中,我们将通过电磁场的推导并结合介质膜特性,提出一种全新的空芯光纤传输理论。
     首先,论文结合实验,对现有空芯光纤传输理论进行了分析。通过比较实验中取得的结果和应用现有空芯光纤传输理论预测的空芯光纤中传输特性的差异,我们找到了现有空芯光纤传输理论预测与实验结果存在误差的原因。
     其次,我们通过对Maxwell方程的推导,提出了空芯光纤中各向电磁场分量的解,在此基础上我们得到了空芯光纤的特征方程。同时我们还使用数值方法求得了空芯光纤中的特征参数并通过引入玻印亭矢量独立求得了空芯光纤中各模式的径向能量分布。
     我们还在对空芯光纤中径向能量分布和介质表面反射特性研究的基础上,给出了介质膜与常规界面的反射特性的差异。通过二者的对比,我们得到了介质膜ATR(Attenuation total reflectance)光纤传输特性优于常规ATR空芯光纤的原因。
     论文的最后,我们提出了一个关于空芯光纤传输特性新的理论体系。在这一理论体系中,我们得到了空芯光纤的输入特性和光纤直线状态下与弯曲状态下的损耗公式。最后我们比较了使用这一理论的数值解法求得的预测值与实验结果的关系。通过比较,我们发现使用这一理论可以得到与实验结果符合得较好的结果。
With the development of IR laser technology, many kinds of hollow waveguide were made to deliver IR light. Those kinds of waveguide have got the ability that could be used to deliver high energy IR light with low attenuation. But these attenuation phenomena can't be explained by current theory about character in hollow waveguide. So that it is impossible to look for some new theory to explain the character about energy deliver in hollow waveguide. In this paper, we concentrate on new theory about energy deliver in hollow waveguide.
    Firstly analyses of the energy delivering character are given by compared current theory about character in hollow waveguide to the result got by experiment. Through this way, we got the causation why current theory forecast mistake result.
    Secondly we get the electromagnetic distributions in hollow waveguide by doing some operations on Maxwell formula. We also get the characteristic formula in hollow waveguide. The characteristic parameter about hollow waveguide is gained by using numerical method and the energy distribution model is made by using vector.
    Thirdly we discuss the Z-direction energy distribution in hollow waveguide and reflecting character on interface. By giving analyses of this, we compare the normal ATR hollow waveguide to the medium layer ATR hollow waveguide and get the reason why the medium layer ATR (Attenuation total reflectance) hollow waveguide have an advanced delivering character.
    Finally a new theory about energy delivering in hollow waveguide is given. In this theory the input attenuation in both straight and bent hollow waveguide. We also use numerical method to solve this theory and the result got by this theory is given too.
引文
1 Y.Hiratani, M.Miyagi and S.Nishida. Power Handling Capability of Dielectric Coat Metallic, Hollow Waveguide for CO_2 Laser Light. Optic and Laser Technology, 1985:135-138
    2 Hongo, M.Miyagi, K.Sakamoto, S.Karasawa, S.Nishida. Excitation Dependent Losses and Temperature Increase in Various Hollow Waveguides at 10.6 μm. Optic and Laser Technology, 1987, 19(4):214-216
    3 Daoning Su, Suripon Somkuarnpanit, Denis R.Hall and Julian D.C.Jones. Thermal Effects in a Hollow Waveguide Beam Launch for CO_2 Laser Power Delivery. Applied Optics, 1996, 35(24):4787-4789
    4 Hongo, Kenichi Morosawa, and T.Shiota. Transmission of 1 Kw-Class CO_2 Laser Light through Circular Hollow Waveguides for Material Processing. Appl.Phys.Lett., 1991, 58(15): 1582-1584
    5 R.K.Nubling, J.A.Harrington. Hollow-Waveguide Delivery Systems for High-Power, Industrial CO_2, Lasers. Applied Optics, 1996, 34(3): 372-380
    6 Thyagarajan, Supriya Diggavi, A.K.Ghatak, W.Johnstone, G.Stewart, B.Culshaw. Thin-Metal-Clad Waveguide Polarizers: Analysis and Comparison with Experiment. Optics Letters, 1990, 15(18): 1041-1043
    7 Richard Michael Jenkins, Robert W.J.Devereux. Transmission Characteristics of a Curved Hollow Silica Waveguide at 10.6 μm. IEEE Journal of Quantum Electronics, 1986,QE-22(5): 718-721
    8 Yuki Kato, M.Miyagi. Numerical Analysis of Mode Structures and Attenuations in Dielectric-Coated Circular Hollow Waveguides for the Infrared. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(12): 2336-2342
    9 R.Gerlach, Dianyuan Wei and Nabil M.Amer. Coupling Efficiency of Waveguide Laser Resonators Formed by Flat Mirrors: Analysis and Experiment. IEEE Journal of Quantum Electronics, 1984, QE-20(8): 948-963
    10 Elsa Garmire, T.McMahon and M.Bass. Flexible Infrared Waveguides for High-Power Transmission. IEEE Journal of Quantum Electronics, 1980, QE-16(1): 23-32
    11 K.Morishita. Hybrid Modes in Circular Cylindrical Optical Hollow Fibers. IEEE
    
    Transactions on Microwave Theory and Techniques, 1983, MTT-31 (4): 344-350
    12 S.J.Wilson, R.M.Jenkins and R.W.J.Devereux. Hollow-Core Silica Waveguides. IEEE Journal of Quantum Electronics, 1987,QE-23(1): 52-58
    13 S.J.Saggese, J.A.Harrington and G.H.Sigel. Attenuation of Incoherent Infrared Radiation in Hollow Sapphire and Silica Waveguides. Optics Letters, 1991, 16(1):27-29
    14 Arich Hongo, Ken-Ichi Morosawa, Tsuneo Shiota, Yuji Matsuura and M.Miyagi. Transmission Characteristics of Germanium Thin-Film-Coated Metallic Hollow Waveguides Design for High-Powered CO_2 Laser Light. IEEE Journal of Quantum Electronics, 1990, 26(9): 1510-1515
    15 Yuji Matsuura, M.Miyagi. Bending Losses and Beam Profiles of Zinc Selenide Coated Silver Waveguides for Carbon Dioxide Laser Light. Applied Optics, 1992, 31 (30): 6441-6445
    16 Lantian Hou, Yingzhi Sun and Bin Zhao. Study on the Mode Losses and Bending Losses of Hollow-core Fiber of GeO_2 and SiO_2 Bases for Transmitting CO_2 Laser Energy. Chinese Journal of Lasers, 1996, B5(1): 27-32
    17 Lantian Hou, Guiyao Zhou, Shumin Hart and Kuiyeng Li. Transmitting High Power Double-Layer Dielectric Hollow Optical Fiber. Proceedings of SPIE, 2001, 4271: 222-228
    18 James A.Harrington. A Review of IR Transmitting, Hollow Waveguides. Fiber and Integrated Optics, 2000, 19:211-217
    19 M.Miyagi, A.Hongo and S.Kawakami. Transmission Characteristics of Dielectric-Coated Metallic Waveguide for Infrared Transmission Slab Waveguide Model. IEEE Journal of Quantum Electronics, 1983,QE-19(2):136-145
    20 Yuji Matsuura, M.Saito, and M.Miyagi. Loss Characteristics of Circular Hollow Waveguides for Incoherent Infrared Light. J.Opt.Soc.Am.A, 1989, 6(3):423-427
    21 M.Miyagi. Bending Losses in Hollow and Dielectric Tube Leaky Waveguides. Applied Optics, 1981, 20(7): 1221-1229
    22 M.Miyagi, S.Kawakami. Waveguide Loss Evaluation by the Ray-optics Method. J.Opt.Soc.Am.A, 1983, 73(4): 486-489
    23 Miyagi. Waveguide-Loss Evaluation in Circular Hollow Waveguides and Its Ray-Optical Treatment. Journal of Lightwave Technology, 1985, LT-3(2): 303-307
    24 J.A.Harrington, C.C.Gregory. Hollow Sapphire Fibers for the Delivery of CO_2 Laser Energy. Optics Letters, 1990, 15(10): 541-543
    
    
    25 T.Abel, J.A.Harrington. Optical Properties of Hollow Calcium Aluminate Glass Waveguides. Applied Optics, 1994, 33(18): 3919-3922
    26 Lantian Hou, Lianfu Fu, Ping Lü,Yuhua Hart, Qiugeng Li, Lixuan Xu and Tianzhu Li. Pure Germanium Dioxide Hollow-Core Fiber for Transmitting CO_2 Laser. Science in China,1995, 38(6): 749-756
    27 Yuji Matsuura and M.Miyagi. Low-Loss Metallic Hollow Waveguides Coated with Durable and Nontoxic ZnS. Appl.Phys.Lett., 1992, 61 (14): 1622-1623
    28 Yi-Wei Shi, Yukio Abe, Yuji Matsuura and M.Miyagi. Low Loss Smart Hollow Waveguides with New Polymer Coating Material. Optics & Laser Technology, 1999, 31:135-140
    29 T.K.Abel, J.G.Hirsch and J.A.Harrington. Hollow Glass Waveguides for Broadband Infrared Transmission. Optics Letters, 1994, 19(14): 1034-1036
    30 C.D.Rabii, J.A.Harrington. Mechanical Properties of Hollow Glass Waveguide. Opt.Eng., 1999, 38:1490-1499
    31 Y.Matsuura, M.Miyagi and A.Hongo. Loss Reduction of Dielectric-Coated Metallic Hollow Waveguide for CO_2 Laser Light Transmission. Optics & Laser Technology, 1990,22(2): 141-145
    32 Hongo,Kenichi Morosawa, K.Matsumoto, T.Shiota and T.Hashimoto. Transmission of Kilowatt-Coated Metallic Hollow Waveguides for Material Processing. Applied Optics, 1992, 31(24): 5114-5120
    33 Richard Michael Jenkins, Robert W.J.Devereux. Dispersion Phenomena in Hollow Alumina Waveguides. IEEE Journal of Quantum Electronics,1986,QE-21(10): 1722-1727
    34 Inberg, M.Oksman and N.Croitoru. Novel Copper Hollow Waveguides for IR Laser Radiation. SPIE, 2928:28-38
    35 N.Croitoru, J.Dror and I.Gannot. Characterization of Hollow Fibers for the Transmission of Infrared Radiation. Applied Optics, 1990, 29(12): 1805-1809
    36 M.Alaluf, J.Dror, R.Dahan and N.Croitoru. Plastic Hollow Fibers as a Selective Infrared Radiation Medium. J.Appl.Phys., 1992, 72(9): 3878-3883
    37 K.Matsuura, Yuji Matsuura and J.A.Harrington. Evaluation of Gold, Silver, and Dielectric-Coated Hollow Glass Waveguides. Opt.Eng., 1996, 35(12): 3418-3421
    38 C.D.Rabii, J.A.Harrington. Optical Properties of Dual-Core Hollow Waveguides. Applied Optics, 1996, 35(31): 6249-6252
    
    
    39 D.H.Jundt, M.M.Fejer and R.L.Byer. Characterization of Single-Crystal Sapphire Fibers for Optical Power Delivery Systems. Appl.Phys.Lett., 1989, 55(21): 2170-2172
    40 R.Foord, R.M.Jenkins, A.F.Blockley, J.Quarrell, R.W.J.Devereux and G.M.Miller. A Hollow Waveguide Integrated Optic System with an Integrated Laser Source. Proceedings of SPIE, 2000, 4035:346-353
    41 R.K.Nubling, J.A.Harrington. Launch Conditions and Mode Coupling in Hollow-Glass Waveguides. Opt.Eng., 1998, 37(9): 2454-2458
    42 You Wang, A.Hongo, Yuji Kato, Takehiro Shimomura and Daisuke Miura. Thickness and Uniformity of Fluorocarbon Polymer Film Dynamically Coated inside Silver Hollow Glass Waveguides. Applied Optics, 1997, 36(13): 2886-2892
    43 Yuji Matsuura, J.A.Harrington. Infrared Hollow Glass Waveguides Fabricated by Chemical Vapor Deposition. Optics Letters, 1995, 20(20): 2078-2080
    44 J.A.Harrington, C.C.Gregory. Hollow Sapphire Fibers for the Delivery of CO_2 Laser Energy. Optics Letters, 1990, 15(10): 541-543
    45 T.Abel, J.Hirsch and J.A.Harrington. Hollow Glass Waveguides for Broadband Infrared Transmission. Optics Letters, 1994, 19(14): 1034-1036
    46 E.A.J.Marcatili, R.A.Schmeltzer. Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers. The Tell System Technical Journal, 1964:1782-1809
    47 M.E.Marhic. Mode-Coupling Analysis of Bending Losses in IR Metallic Waveguides. Applied Optics, 1981, 20(19): 3436-3441
    48 M.E.Marhic, E.Garmire. Low-Order TE_(oq) Operation of a CO_2 Laser for Transmission Through Circular Metallic Waveguides. Appl.Phys.Lett., 1981, 38(10): 743-745
    49 M.Miyagi, S.Nishida. Transmission Characteristics of Dielectric Tube Leaky Waveguide. IEEE Transaction on Microwave Theory and Techniques, 1980, MTT-28(6): 536-541
    50 M.Miyagi, K.Harada and S.Kawakami. Wave Propagation and Attenuation in the General Class of Circular Hollow Waveguides with Uniform Curvature. IEEE Transactions on Microwave Theory and Techniques, 1984, MTT-32(5): 513-521
    51 M.Saito, Yuji Matsuura, Masashi Kawamura and M.Miyagi. Bending Losses of Incoherent Light in Circular Hollow Waveguides. J.Opt.Soc.Am.A, 1990, 7(11):
    
    2063-2068
    52 M.Miyagi, S.Karasawa. Waveguide Losses in Sharply Bent Circular Hollow Waveguides. Applied Optics, 1990, 29(3): 367-370
    53 Shin-ichi Abe, M.Miyagi. Transmission and Attenuation of the Dominant Mode in Uniformly Bent Circular Hollow Waveguides for the Infrared :Scalar Analysis. IEEE Transactions Theory and Techniques, 1991, 39(2): 230-238
    54 Shin-ichi Abe, M.Miyagi. Transmission and Attenuation of Vector Modes in Uniformly Bent Circular Hollow Waveguides for the Infrared. IEEE Transactions on Microwave Theory and Techniques, 1992, 40(5): 903-909
    55 T.Hidaka, T.Morikawa and J.Shimada. Hollow-Core Oxide-Glass Cladding Optical Fibers for Middle-Infrared Region. J.Appl.Phys, 1981, 52(8): 4467-4471,
    56 O.Danilov, M.Zintchenko,Y.Rubinov and E.Sosnov. Transmission Losses and Mode Selection Characteristics of a Curved Hollow Dielectric Waveguide with a Rough Surface. J.Opt.Soc.Am. 1990, B7:1785-1790
    57 廖延彪.光纤光学.北京:清华大学出版社,2000:11-17
    58 吴重庆.光波导理论.北京:清华大学出版社,2000:7-48
    59 麦伟麟.光学传递函数及数理基础.北京:国防工业出版社,1979:93-114
    60 刘式适,刘式达.特殊函数.北京:气象出版社,1988:403-500
    61 颜庆津.数值分析.北京:北京航空航天大学出版社,2000:112-115
    62 章志鸣,沈元华,陈惠芬.光学.北京:高等教育出版社,1995:129-145
    63 周桂耀,候峙云,候蓝田,何军,关兵.空芯光纤中沉积多晶态GeO_2薄膜的试验研究.材料科学与工艺,2001,9(1):52-55
    64 周桂耀,候峙云,候蓝田.纳米GeO_2在空芯光纤中的化学气相沉积.燕山大学学报,2001,25(2):131-134
    65 Lantian Hou, Guiyao Zhou, Shumin Han and Kuiyeng Li. Transmitting High Power Double-Layer Dielectric Hollow Optical Fiber. Proceedings of SPIE, 2001, 42(7): 222-228
    66 吕百达.激光光学.成都:四川大学出版社,1985:60-97
    67 李曙光,刘晓东,候蓝田.光子晶体光纤进展及其应用.科技前沿与学术评论,2001,23(6):7-11
    68 刘晓东,候蓝田.激光在光子局域化研究中的应用.激光技术,2002,26(1):29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700