空调配管系统的减振研究与阻尼优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配管是空调器的重要部件,也是空调器中最薄弱、最容易损坏的结构件之一,一直以来配管都是空调器结构开发过程中的一个难点。仿真设计是空调设计方法的发展趋势,对配管系统进行仿真设计,可以减少不必要的物理样机的制作,降低设计成本,缩短设计周期,加快新产品推向市场的速度,从而增强企业产品的竞争能力。
     论文受日本Daikin空调“空调配管系统的动力特性试验分析与有限元模拟”和“空调配管系统的减振设计研究”两期项目资助。提出在配管表面局部环绕粘弹性阻尼层吸收配管的振动;对配管系统仿真研究的关键技术——配管系统的建模和阻尼层位置及形状优化进行了研究,并通过了大量的试验和有限元对比验证了模型的正确性。论文是开发空调配管系统虚拟设计、性能评估以及结构优化平台的重要组成部分,该研究从根本上改变了传统设计思路,使得现行的设计方案在设计进行的同时就能对空调压缩机匹配的振动性能进行仿真评估。
     以环绕粘弹性阻尼层的空调配管为研究对象,开展了粘弹性复合结构动力特性计算方法和基于代理模型的复合结构动力特性优化等研究工作。论文从一类沥青型粘弹性材料力学特性研究入手,开展了材料力学特性的试验研究,粘弹性本构方程参数优化以及模型参数验证等工作;进而在已知材料力学参数的基础上,对周向环绕阻尼层的U型管和多种型号的配管系统进行了动力特性试验研究和有限元建模工作;最后依据试验设计方案,对配管系统建立了三种近似模型,并以结构质量最小和结构阻尼比最大为优化目标,利用遗传算法开展了基于近似模型的多目标结构优化研究。
     论文首先利用机械动态热分析仪对试验中所用的沥青阻尼片进行材料力学性能分析,测试结果表明,这种沥青阻尼片具有粘弹性材料的特点,材料的弹性模量,损耗模量和损耗因子随着频率的增加呈递增趋势,但增长速度逐渐下降;当温度增加时,弹性模量,损耗模量和损耗因子都迅速下降,且损耗因子β不存在明显的峰值。基于材料的测试数据,提出采用GA-BFGS混合算法对多目标多参数的粘弹性模型进行参数优化。该算法对初始参数取值无限制,收敛速度快,具有全局收敛性,适合多参数多峰值优化问题。文章对常用的STD模型、GHM模型和ADF模型进行参数优化,综合分析认为,ADF模型更适合作为此类沥青阻尼片的本构关系模型。
     为验证优化所得到的ADF模型参数的有效性,采用粘贴自由层阻尼片的悬臂梁进行振动测试和有限元建模研究。悬臂梁试验与有限元计算表明,采用ADF模型的计算结果与试验结果吻合较好,ADF模型可以较精确的描述该类阻尼材料的本构关系。
     由于粘弹性材料力学特性随频率的变化而变化,动力特性分析时难以考虑结构的频变特性,为此,提出采用频率迭代-模态应变能-振型叠加相结合的方法计算粘弹性结构固有频率、阻尼比和动力响应,即采用迭代法计算复合结构的固有频率;进而基于模态应变能法,求得模态阻尼比;最后在模态特性分析和阻尼特性分析的基础上,采用模态叠加方法计算结构的位移响应。通过对3种不同型号的U型管以及12种不同型号尺寸的空调配管系统的试验和有限元分析,研究了各种空调配管的固有特性,同时验证了所提出的有限元计算方法的适用性和可靠性。
     针对结构动力特性计算过程复杂耗时的特点,建立了空调配管系统的二次多项式响应面、高次多项式响应面、Kriging最优内插法和BP神经网络等四种近似模型,编制了相应的通用程序,并首次采用正交试验设计和均匀试验设计相结合的试验设计模式训练近似模型。训练结果表明后三种近似模型都有较高的近似精度,泛化能力也很强,其中,BP神经网络模型和Kriging模型的近似结果稍好于高次多项式响应面模型的近似结果,可以在优化计算中代替复杂耗时的有限元计算。
     在配管系统的结构优化设计中,结构阻尼比是评价结构减振性能的一个重要指标,在其它性能参数都相同的情况下,阻尼比越大则说明结构的减振性能越好。同时配管周向环绕阻尼层后大大增加了结构的重量,也提高了设计成本。以环绕粘弹性阻尼层的空调配管系统质量最小,结构阻尼比最大为优化目标,采用改进的多目标遗传算法NSGA-Ⅱ对高次多项式响应面、Kriging最优内插法和BP神经网络近似模型进行优化分析。从结构阻尼比和结构质量之间的Pareto曲线中可以看出,随着阻尼层用量增加,结构的阻尼比不断增大,当宽度和大于58mm时,阻尼比增加速度非常小,综合考虑阻尼比和阻尼层用量,阻尼层质量应选取在140 g~160 g之间,此时结构质量增加为13.4%~29.5%,结构一阶阻尼比在7.5%~10.8%。依据最优方案的试验验证,环绕阻尼层后,配管系统的振动位移衰减可达19.8dB,加速度衰减达26dB。
     本文的研究工作,是空调配管仿真设计的一个重要组成部分,为配管系统的仿真建立了精确的有限元模型和简单可行的有限元计算方案,同时也为空调配管的减振提供了一种新的方法和切实可行的优化计算方案,并对类似复合结构的动力特性试验、有限元建模以及复杂结构的多目标优化分析均具有一定的参考价值。
Pipe system is an important part of air conditioner, and it is also the insubstantial and fragile unit for a long time, the improvement of pipe system is a difficult design process of air conditioner. Visiul design is becoming the trend of the design and developmeng of air conditioner. Simulation design for pipe system can replace the examination of model macnine, decrease the cost and shorten the design time. Meantime, the productive tempo will be cuttingdown greatly, which will strengthen the competitive power for company.
     This dissertation was supported by Daikin Co. A new vibration attenuation method was suggested in this paper, with partly circling damping layer on the pipe to absorb the vibration, and strengthen the reliability. Finite element (FE) modeling and damping optimization of pipe system were researched in this paper. Examination and FE verfivation were carried out in gross for pipe system with different type and size. It is the key technique for the simulation of air conditioner system. This research will change the traditional design concept, and the design process and performance evaluation can carry out in the same time.
     The main research work involves calculation method of dynamic property for viscoelastic compound structure, and optimization design of dynamic property parameters based on approximate model. Begin with the experimental study of viscoelastic material; the parameters’optimization and verification are carried out according to the test result. Vibration test and finite element modeling on U-shaped pipe and pipe system with this kind of viscoelastic material are performed carefully. At last, three kinds of approximate model about the viscoelastic damping position and shape parameters vs. dynamic response parameters are trained according to experiment design result. A multi-objective optimization model is established, which defines mass and modal damping as optimal objective. And the improved Non-dominated Sorting Genetic Algorithm (NSGA-Ⅱ) is employed as optimal method.
     The mechanical properties experiment was carried out in Dynamic Mechanical Thermal Analyzer (DMTA). The frequency sweeping result shows both storage modulus and loss modulus increase with the activating frequency, and ascends at a higher rate. And the loss factor has not an obvious peak in 1-200 Hz range. An approach based on GA-BFGS hybrid algorithm is introduced to determine the parameters in a constitutive relation for viscoelastic materials according to the experimentally obtained material mechanical properties. This hybrid algorithm can reduce the iteration times greatly and the results are more exact than single GA algorithm, meantime, the initial values of the design variables are free without limits, which is very important for multi-variable optimization. STD model, GHM model and ADF model were analized and compared from the complexity and computer speed in the sedond chapter. And the ADF model was chosen as the optimum constitutive model for this kind of viscoelastic asphalt material.
     In order to validate the parameter estimation results, dynamic response analysis of free layer damping (FLD) cantilever beam was performed using experimental and numerical simulation approach. The numerical simulation results have good agreements with experimental results which verified the effectiveness of this method. In view of the virtues of completely compatible with finite element method (FEM), the ADF model is suitable to analyze complicated structure.
     In view of the frequency dependence of viscoelastic damping material, a suggest method of frequency iterative--modal strain energy--modal superposition was used to calculate the frequency, damping ratio and displacement response. Firstly, considering the frequency dependency property of viscoelastic material, FE iterative and modal strain energy method is adopted to solve the modal frequencies and loss factors. And modal mode and corresponding load are extracted from each modal. Moreover, the displacement response of node at each modal frequency was calculated directly. The displacement response in some points of viscoelastic compound structure can be solved by mode superposition. The comparison of numerical simulations with experiment results indicates that the proposed method is effective for analyzing the viscoelastic material with frequency dependency property. This method can be preformed easily using FE software and a simple program. Therefore it has the potential capability to deal with actual structures with a more complex geometry or boundary conditions.
     Finite element analysis are often time consuming and costly, especially in structure optimization. Therefore, there is necessary to use approximate model, derived from small numbers of computer runs, to replace additional FE tests during optimization. In this work, an optimization framework is proposed to combine experimental design, approximate model and genetic algorithm to form a computationally efficient global optimization method. Firstly, FE calculation is preformed according to experimental design to create a data set of optimization parameters and corresponding model responses. This data set is then used to train the metamodel to receive model optimization parameters as input and an approximation to the response of the numerical as output. An approximation to the solution is then obtained with the metamodel used in place of the expensive numerical model in optimization algorithm. The approximate model used in this paper includes response surface method, Kriging and neural network. At last, dynamic response calculation is carried out to demonstrate the quality of the approximation optimization models.
     Damping is an important valuation index of vibration attenuation property. With the same parameters values, the bigger the damping value is, the better the vibration attenuation property is. But, damping layer on the pipe system will add the mass greatly, which increase the design cost. Therefore, the minimun mass and the maximum damping were defined as the optimal objective. And NSGA-Ⅱalgorithm is employed as optimal method. From the Pareto curves between mass and damping, we can see the damping of the pipe structure is growing with the increase of width of the damping layer. But when the width is more than 58mm, the rise rate of the damping is very slow. So, we can choose the mass range is 140 g~160 g as the optimal design range, and the mass ratio range is 13.4%~29.5%, the damping ratio is 7.5%~10.8%. The test result shows with optimal damping layer, the vibration displacement reduced 19.8dB, accelerate reduced 26dB.
     It is an important part of virtual design of air conditioner’s pipe system. A precise FE model and a simple, feasible calculation method were established in this paper for pipe system. Meantime, new vibration attenuation way was suggested and the corresponding optimal algorithm was given. The results of this thesis may have some guideline value to similar dynamic character analysis of viscoleastic material, and to test, modeling and optimization dynamic response of compound structure.
引文
[1]杨靖.空调器配管的有限元分析.流体机械,2002,30(11):61-64
    [2]李树森等.空调器压缩机选频隔振减振降噪研究.噪声与振动控制,2003,23(3):27-30
    [3] Kim S G, Cho K L, Cho Y S, Chang S K. Reduction of the vibration of a home air conditioner by finite element analysis and homogenization method,Proceedings of the International Modal Analysis Conference–IMAC, 1997, 2: 1739-1743
    [4] Okutsu, Naohiro. Study on the vibration and stress of copper tubes in refrigerators and air conditioners,Transactions Of the Japan Society of Mechanical Engineers, Part C, 1997, 63 (11): 2201-2205.
    [5] Koo G H, Peak Y S. Vibration Reduction by Using Periodic Supports in a Piping System,Journal Of Sound and Vibration, 1998, 210(l): 53-58
    [6]郭红旗,王太勇,孟长虹.空调压缩机阻尼减振降噪研究.河北工业大学学报,1999,28(l):89-93
    [7]周红,王开和,许玮等.阻尼技术在窗式空调器减振降噪中的应用.噪声与振动控制,2000,20(6):45-48
    [8]李玉斌,罗献忠.家用空调器压缩机噪声控制基础.电机电器技术,2003,3:23-25
    [9]刘璨,邵汝春,缪秀娥.窗式空调器减振降噪研究.华南理工大学学报,1998,26(l):116-119
    [10]沈学明,谈全彬,郑智丹.空调设备的减振.噪声与振动控制,2002,22(6):35-38
    [11] Lee Hojung, Kim, Kwang-Joon. Multi-dimensional vibration Power flow analysis of compressor system mounted in outdoor unit of an air conditioner. Journal of Sound and Vibration. 2004, 272(3-5): 607-625
    [12]庄表中.适宜于家用电器的减振降噪垫块.振动与冲击,1997,16(4):83-84
    [13] Brozym Jim X. Acoustical design guidelines for rooftop unit air conditioners,Sound and Vibration, 1991, 25(10): 16-22
    [14]张景绘,张宁等.一体化振动控制.北京:科学出版社, 2005
    [15] Bagley R L, Torvik P J. Fractional calculus-a different approach to analysis of viscoelastically damped structures. AIAA . 1983, 21: 741~748
    [16] Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically dampedstructures. AIAA . 1985, 23: 201~210
    [17] Lesieutre, G. A. and Lee, U. A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastic. Journal of Smart Materials and Structures. 1996, 5: 615~627.
    [18] Golla D F and Hughes P C. Dynamics of viscoelastic structures—a time-domain, finite element formulation. Appl. Mech. 1985, 52: 897~906
    [19] Yiu Y C. Finite element analysis of structures with classical viscoelastic materials. Proc. 34th Structures, Structural Dynamics, and Materials Conference, La Jolla. 1993, 2110~2219
    [20] Miles R N. Beam Dampers for Skin Vibration and Noise Reduction in the 747. Vibration Damping 1984 Workshop Proceedings, Long Beach, California, 1-18
    [21] Parin M, Levraca V, Rogers L. An importance of add-on Damping Increscent for Life Extension of the F-15 Upper Eing Skin, Proceeding of Damping 1991,San Diego, California, 1-30
    [22] Barde-Alam A, Wang, K W, Gandhi F. Optimization of Enhanced active Constrained Layer Treatment on Helicopter Flexbeams for Aeromechanical Stability Augmentation. Smart Material and Structure. 1999, 8: 182-196
    [23]田晓耕,沈亚鹏,张元冲.主动约束层阻尼结构的数值分析方法.计算力学学报,1998,15(4):423-428
    [24]曹琦.阻尼结构阻尼测量的两种方法.结构强度研究.1998,1:44-48
    [25]陈前,朱德娥.粘弹结构动力学分析.振动工程学报.1989,2 (3):42-51.
    [26] Wang Y Z, Tsai T J. Static and Dynamic of a Viscoelastic Plate by the Finite Element Method. Appl. Acoust. 1988, 25: 77-94.
    [27]吴淇泰.粘弹性结构动力响应的一个计算方法.计算结构力学及其应用,1989,6(4):21-27
    [28]王本华.粘弹性结构动力响应的有限元分析.强度与环境,1993,(3):49-52
    [29] Enelund M, Josefson B L. Time-Domain Finite Element Analysis of Viscoelastic Structures with Fractional Derivatives Constitutive Relations. AIAA J 1997, 35: 1630-1637.
    [30] Parthasarthy G, Ganesan N, Reddy C V R. Study of Unconstrained Layer Damping Treatments Applied to Rectangular Plates Having Central Cutouts. Comput. Struct. 1986, 23: 433-443
    [31] Parthasarathy G, Reddy C V R, Ganesan, N. Partial Coverage of Rectangular Plates by Unconstrained Layer Damping Treatments. J. Sound Vib. 1985, 102: 203-216
    [32] Lu Y P, Everstine G C. More on Finite Element Modeling of Damped Composite Systems. J. Sound Vib. 1980, 69: 199-205
    [33] Lu Y P, Killian J W, Everstine G C. Vibrations of Three Layered Damped Sandwich Plate Composites Sound Vib. 1979, 4: 63-71
    [34] Mace M. Damping of a New of Beam Vibrations by Means of A Thin Constrained Viscoelastic Layer: Evaluation Theory. J. Sound Vib. 1994, 172: 577-591
    [35] Marcelin J-L, Trompette Ph, Smati A. Optimal Constrained Layer Damping with Partial Coverage. Finite Elements in Analysis and Design. 1992, 12 (3-4): 273-280
    [36] Rao V S, Sankar B V, Sun C T. Constrained layer damping of initially stressed composite beams using finite elements. J. Compos. Mater. 1992, 26: 1752-1766
    [37] Rikards Rolands. Finite element analysis of vibration and damping of laminated composites. Composite Struct. 1993, 24: 193-204
    [38] Johnson C D. Kienholz D A. Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers. AIAA J. 1982, 20: 1284-1290
    [39] Roy P K, Ganesan N. Vibration and Damping Analysis of Circular Plates with Constrained Damping Layer Treatment. Comput. Struct. 1993, 49: 269-274
    [40] Gupta B V R, Ganesan N, Narayanan S. Finite Element Free Vibration Analysis of Damped Stiffened Panels. Comput. Struct. 1986, 24: 485-489
    [41]胡选利,戴宗妙.阻尼夹层筋板结构有限元动力分析.应用力学学报,1998,5(1):10-15.
    [42] Ramesh T C, Ganesan N. Vibration and damping analysis of cylindrical shells with constrained damping treatment a comparison of three theories. J. Vib Acoust., Trans. ASME 1995, 117: 213-219
    [43] Ramasamy R, Ganesan N. Vibration and Damping Analysis of Fluid Filled Orthotropic Cylindrical Shells with Constrained Viscoelastic Damping. Comput. Struct. 1999, 70: 363-376
    [44] Saravanan C, Ganesan N, Ramamurti V. Vibration and Damping Analysis of Multilayered Fluid Filled Cylindrical Shells with Constrained Viscoelastic Damping Using modal Strain Energy Method. Comput. Struct. 2000, 75: 395-417
    [45] Saravanan C, Ganesan N, Ramamurti V. Study on Energy Dissipation Pattern in Vibrating Fluid Filled Cylindrical Shells with Constrained Viscoelastic Layer. Comput. Struct. 2000, 75: 575-591
    [46] Gautham B P, Ganesan N. Vibration and Damping Characteristics of Spherical Shells with A Viscoelastic Core. J. Sound Vib. 1994, 170: 289-301
    [47] Ramasamy R, Ganesan N. Vibration and Damping Analysis of Fluid Filled Orthotropic Cylindrical Shells with Constrained Viscoelastic Damping. Comput. Struct. 1999, 70: 363-376
    [48] Cao Xisheng, Mlejnek Hans-Peter. Computational prediction and redesign for viscoelastically damped structures. Comput. Meth. Appl Mech Eng. 1995, 125(1-4 ): 1-16
    [49] Ma B-A, He J-F. A Finite Element Analysis of Viscoelastically Damped Sandwith Plates. J. Sound Vib. I 992, 152: 107-123
    [50] Bagley Ronald L, Torvik Peter J. Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures. AIAA J. 1985, 23: 918-925
    [51]陈国平,朱德懋.粘弹性阻尼结构系统振动特性的迭代分析.计算结构力学及其应用,1992,9(4):361-367
    [52] Ravi S S A, Kundra T K, Nakra B C. Response re-analysis of damped beams using eigenparameter perturbation. J. Sound Vib. 1995, 179: 399-412
    [53] Baber Thomas T, Maddox Richard. Finite Element Model for Harmonically Excited Viscoelastic Sandwich Beams. Comput. Struct. 1998, 66: 105-113
    [54] Mace M. Damping of Beam Vibrations by Means of A Thin Constrained Viscoelastic Layer: Evaluation of A New Theory. J. Sound Vib. 1994, 172: 577-591
    [55] Yi Sung, Ahmad M, Fouad, Hilton, H. H. Dynamic responses of plates with viscoelastic free layer damping treatment. J. Vib. Acoust,Trans. ASME. 1996, 118: 362-367
    [56] Ioannides E, Grootenhuis P, Finite Element Analysis of the Harmonic Response of Damped Three-Layer Plates. J. Sound Vib. 1979, 67: 203-218
    [57] Shin Y S, Maurer G J. Vibration Response of Constrained Viscoelastically Damped Plates. Analysis and Experiments. Finite Elements in Analysis and Design. 1991, 7 (4): 291-297
    [58] Lu Y P, Roscoe A J, Douglas B E. Analysis of the Response of Damped Cylindrical Shells Carrying Discontinuously Constrained Beam Elements J. Sound Vib. 1991,150: 395-403
    [59] Hu Y C, Huang S C. The Frequency Response and Damping Effect of Three-Layer Thin Shell with Viscoelastic Core. Comput. Struct. 2000, 76: 577-591.
    [60] Ramesh T C, Ganesan N. Influence of Constrained Damping Layer on the Resonant Response of Orthotropic Cylindrical Shells. J. Sound Vib. 1995,185: 483-500
    [61] Ramesh T C, Ganesan N. The Harmonic Response of Cylindrical Shell Constrained Damping Treatment. J. Sound Vib. 1995, 180: 745-756.
    [62] Ioannides E, Grootenhuis P. Finite Element Analysis of the Harmonic Response of Damped Five-Layer Plates. Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci. 1985, 199(C4): 311-317
    [63] Lu, V P, Cheung Y K, Lau S L. Non-Linear Vibration Analysis of Multilayer Beams byIncremental Finite Elements. Part I: Damping and Forced Vibrations. J. Sound Vib. 1985, 100: 373-382
    [64] Lee H-H. Non-Linear Vibration of A Multilayer Sandwich Beam with Viscoelastic Layers. J. Sound Vib. 1998, 216: 601-621
    [65] Xia Z Q, Lukasiewicz S. Non-linear, Free, Damped Vibrations of Sandwich Plates. J. Sound Vib. 1994, 175: 219-232.
    [66] NiordsonF .I., The optimum design of a vibrating beams, Quarterly of Applied Mathematics,1965, 23( 1), 47-53
    [67] E J豪格,JS阿罗拉.实用最优设计.北京:科学出版社,1985
    [68]林家浩.结构动力优化设计发展综述.力学进展,1983,13(4),423-431
    [69] Grandhi R. Structural optimization with frequency constraints are view. Journal AIAA, 1993, 31(12), 2296-2303
    [70]陈建军,车建文.结构动力优化进展述评与展望.力学进展,2001,31(2),181-192
    [71] BendsoeusM P, Kikuchi Noboru. Generating homogenization method. Computer optimal topologies in structural design Methods in Applied and Engineering,71
    [72]冯淼林,吴长春.基于三维均匀化方法的复合材料本构数值模拟.中国科学技术大学学报,2000,(30):692-699
    [73]董纪伟,孙良新等.基于均匀化方法的三维编织复合材料等效弹性性能预测.宇航学报,2005,(26):482-486
    [74] HASSANI B, HINTON E. A review of homogenization and topology optimizationⅠ-homogenization theory for media with periodic structure. Computers & Structures. 1998, 69(6): 707–717.
    [75] HASSANI B, HINTON E. A review of homogenization and topology optimizationⅡ—analytical and numerical solution of homogenization equations. Computers & Structures.1998, 69(6): 719–738.
    [76] Xie Y M, Steven G P. Evolutionary structural optimization with the 2nd Asian-Pacific Conference on computational Mechanics FEA. Proceedings of Part 1. 1993, 27-34
    [77] Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers & Structures. 1993, 49(5): 885-896
    [78] D.Nha Chu, Y.M.Xie, A.Hira, G.P.Steven. On various aspects of evolutionary structural optimization for problems with stiffness constraints. Finite Elements in Analysis and Design, 1997,24: 197-212
    [79] Chongbin Zhao,G.P.Steven,Y.M.Xie. Effect of initial nondesign domain on optimal topologies of structures during natural frequency optimization. Computers& Structures. 1997, 62(1): 119-131
    [80] Xie Y M, Steven G P. Evolutionary Structural Optimization, Springer, 1997
    [81] Xie Y M, Steven G P. Evolutionary structural optimization for dynamic problems Computers & Structures. 1996, 58(6): 1067-1073
    [82] Qing Li, G.P.Steven, O.M. Querin, Y.M.Steven. Stress based optimization of torsional shafts using an evolutionary procedure. International journal of solids and structures. 2001, 38: 5661-5677
    [83]荣见华,姜节胜,胡德文,颜东煌,付俊庆.基于应力及其灵敏度的结构拓扑渐进优化方法.力学学报,2003,35(5):584– 590
    [84] GOLOV IDOV, OL EG B, MA SON, et al. Response Surface Approximations for Aerodynamic Parameters in High Speed Civil Transport Optimization [A]. Technical Report, Computer Science [DB/OL], Virginia Polytechnic Institute and State University. http://historical. ncstrl. org /tr /ps /vatech cs/TR-97-15. p s
    [85] KNILLDL, GIUNTA A A, BA KER C A, et al. Response surface models combining linear and euler aerodynamics for supersonic transport design. J Aircraft, 1999, 36 (1): 75-86.
    [86] UNAL R, EPSCH R A, MCM ILL IN M. Response Surface Model Building and Multidisciplinary Optimization Using D-Optimal Designs. Collection of Technical Papers for 7th Annual AIAA/ NASA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization [C]. 1998, 405-411.
    [87] Simpson T W, Mauery T M, Korte J J, Mistree F. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization, 7th Symposium on Multidisciplinary Analysis and Optimization, St. Louis, NO, AIAA-98-4755. 1998, September 2-4
    [88] Giunta A A, Watson L T. A Comparison of Approximation Modeling Techniques:Polynomial versus Interpolating Models. 7th AIAA/USAFINASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization, St. Louis, MO, AIAA, Vol. 1, September 2-4, 1998, 392-404.
    [89] Sin R, Chen W, Simpson T W. Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria. Journal of Structural and Multidisciplinary Optimization. 2001, 23(1): 1-13
    [90] Simpson TW, Peplinski J, Koch P N, Allen J K. On the use of statistics in design and the implications for deterministic computer experiments. Design Theory and Methodology- DTM’97. Sacramento, CA, September 14–17, ASME, Paper No. DETC97/DTM-3881
    [91] Giunta A A. Aircraft multidisciplinary design optimization using design of experiments theory andresponse surface modeling. PhD Dissertation and MAD center report no. 97–05–01. Department of Aerospace and Ocean Engineering, Virginia Polytechnic and State University, Blacksburg, VA
    [92] Osio IG, Amon C H. An engineering design methodology with multistage Bayesian surrogates and optimal sampling. Research in Engineering Design.1996, 8(4): 198–206
    [93] Welch W J, Buck R J, Sacks J, Wynn H P, Mitchell T J, Morris M D. Screening, predicting, and computer experiments. Technometrics.1992, 34(1): 15–25
    [94] Booker A J. Case studies in design and analysis of computer experiments. Proceedings of the Section on Physical and Engineering Sciences, American Statistical Association. 1996
    [95] Trosset MW, Torczon V. Numerical optimization using computer experiments, Report no.Ttr97–02, Department of Computational and Applied Mathematics, Rice University, Houston, TX, 1997
    [96]王晓锋.基于三维粘性流场分析的离心压缩机叶轮近似模型优化设计.西安:西安交通大学能源与动力工程学院,2005.
    [97]席光,王志恒,王尚锦.叶轮机械气动优化设计中的近似模型方法及其应用.西安交通大学学报,2007,41(2)
    [98]陆金桂,余俊,王浩,陈新度,周济,肖世德.基于人工神经网络的结构近似分析方法的研究.中国科学(A辑),1994,24(6)
    [99]陈新,王德石,陆金桂,周济,余俊.基于人工神经网络的结构振动系统重分析模型.非线性动力学学报,1995,2(2)
    [100] Alam, Fasihul M., McNaught, Ken R., Ringrose, Trevor J.A. Comparison of experimental designs in the development of a neural network simulation metamodel. Simul. Model. Pract. Theory. 2004, 3(7-8): 559-578
    [101] Vosniakos, George-Christopher, Tsifakis, Alexander, Benardos, Panorios. Neural network simulation metamodels and genetic algorithms in analysis and design of manufacturing cells. International Journal of Advanced Manufacturing Technology. 2006, 29(5), 541-550
    [102] Yang, Taho, Lin etc. Metamodeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms: A case study Robotics and Computer Integrated Manufacturing. 2006,22(4): 322-331
    [103]陈格娟,张京军,梁宾桥.基于神经网络的结构近似分析.建筑技术开发,2004,31(8)
    [104]李文勇,李泉永.利用神经网络进行近似分析的结构优化设计.广西科学,2001,8(2):86-89
    [105]管琪明,尹健,罗延科等.基于神经网络和遗传算法的结构动力特性优化设计.机械科学与技术,2005,24(1):35-37
    [106] Beeson R M, Meisel W S. The optimization of complex systems with respect to multiple criteria. IEEE Systems,Man and Cybernetics Group Annual Symposium,1971:144-149
    [107] Rosenberg R S.Simulation of Genetic Populations with Biochemical Properties. University of Michigan,1-7
    [108] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. Proc. of 1st Int. Conf. on Genetic Algorithms and Their Application, Lawrence Erlbaum Associates, 1985: 93-100
    [109] Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989, 148-217
    [110] Fonseca C M, Fleming P J. Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization. In S.Forrest(Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, 1993:416-423
    [111] Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multi-objective optimization. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Computation, Piscataway, NJ, 1994, 1: 82-87
    [112] Srinivas N, Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221-248
    [113] Osyczka A, Kundu S. A new method to solve generalized multi-criteria optimization problems using the simple genetic algorithm. Structural Optimization, 1995, 10(2): 94-99
    [114] Kita H, Yabumoto Y, Mori N, et al. Multi-objective optimization by means of thermo dynamical genetic algorithm. Proceedings of Parallel Problem Solving from NatureⅣ(PPSN-Ⅳ), 1996: 504-512
    [115] Veldhuizen D V. Multi-objective evolutionary algorithms: classifications, analyses, and new innovations: Air Force Institute of Technology Air University Ph.D. Dayton, OH: Air Force Institute of Technology Air University, 1999, 95-113
    [116] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGAⅡ.IEEE Transactions on Evolutionary Computation,2002,6(2): 182-197
    [117] Zitzler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999 ,3(4): 257-271
    [118] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithmfor multi-objective optimization. EUROGEN 2001-Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems.
    [119] Knowles J D, Corne D W. Approximation the non-dominated front using the Pareto archived evolution strategy. Evolutionary Computation Journal, 2000, 8(2): 149-172
    [120] Carlos A C, Gregorio T P. Multi-objective optimization using a micro-genetic algorithm. Proceedings of the Genetic and Evolutionary Computation Conference(GECCO’2001).San Francisco,California,2001,274-282
    [121] Gregorio T P and Carlos A. The micro genetic algorithm 2: towards on-line adaptation in evolutionary multi-objective optimization. Evolutionary Multi-Criterion Optimization Second International Conference(EMO 2003).Faro, Portugal,2003,252-266
    [122] Makinen R, Neittaanmaki P, Periaux J, et al. Parallel genetic solution for multi-objective. Parallel CFD’96 Conference. Elsevier, 1996, 352–359
    [123] Horii H, Miki M, Koizumi T, et al. Asynchronous migration of island parallel GA for multi-objective optimization problem. Asia-Pacific Conference on Simulated Evolution and Learning. Nanyang Technical University, Singapore, 2002,86-90
    [124] Branke J, Schmeck H,Deb K, et al. Parallelizing Multi-Objective Evolutionary Algorithms: Cone Separation. KanGAL Report Number 2004017
    [125] Wilson B,Cappelleri DJ,Simpson T W, et al. Efficient Pareto frontier exploration using surrogate approximations.In:8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach,CA,2000
    [126] Nain P K S, Deb K. A computationally effective multi-objective search and optimization technique using coarse-to-fine grain modeling. IITK, Kanpur,I ndia, Tech. Rep. Kangal Rep.2002005, 2002
    [127] Cunha A G, Vieira A. A multi-objective evolutionary algorithm using approximate fitness evaluation. Proc. Int. Congr. Evol. Methods for Design, Optimization and Control With Applications to Industrial Problems EUROGEN, 2003
    [128] Cunha A G, Vieira A S. A hybrid multi-objective evolutionary algorithm using an inverse neural network. Proc. Hybrid Metaheuristics (HM 2004) Workshop at ECAI 2004. Valencia, Spain, 2004, 25-30
    [129] Yang BS, Yeun YS, Ruy WS. Managing approximation models in multi-objective optimization. Structural and Multidisciplinary Optimization, 2002,2 4(2): 141-156
    [130] Farina M.A neural network based generalized response surface multi-objective evolutionary algorithm. Proceedings of the 2002 Congress on Evolutionary Computation (CEC’02). Honolulu, HI, USA, 2002
    [131] Knowles J. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multi-objective optimization problems. IEEE Transactions on Evolutionary Computation, 2005 ,10 (1): 50-66
    [132]刘棣华.粘弹阻尼减振降噪应用技术.北京:宇航出版社,1990.
    [133] Nakra B C. Vibration Control with Viscoelastic Materials. Shock Vib. Dig. 1976,8(6): 3-12
    [134] Nakra B C. Vibration Control with Viscoelastic Materials II .Shock Vib. Dig. 1981,13(1): 1720
    [135] Nakra B C. Vibration Control with Viscoelastic Materials III. Shock Vib. Dig. 1984,16(5): 1722
    [136] Rao M D. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. Journal of Sound and Vibration, 2003,262(3):457-474.
    [137] Dynamic Mechanical Thermal Analyzer MarkⅣHardware Manual [M]. Rheometric Scientific. Inc. 1996
    [138]张景绘,张宁,李新民.一体化振动控制.北京:科学出版社,2005:71-85.
    [139]陈前,朱德懋.关于复合结构振动分析中粘弹性材料本构方程的形式.应用力学学报,1987,4(1):39~51
    [140] Enelund M, Lesieutre G A. Time domain modeling of damping using anelastic displacement fields and fractional calculus. International Journal of Solids and Structures,1999,36(29):4447-4472.
    [141] S.W. Park. Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control. Journal of solids and Structures. 2001: 8065~8092
    [142] Zadeh L. Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control,1963, 8(59): 59-60
    [143] Lesieutre G A,Bianchini E. Time-domain modeling of linear viscoelasticity using anelastic displacement fields. Journal of Vibration Acoustics,1995,117(4):424-430.
    [144]石银明,华宏星,傅志方.粘弹性材料的微振子模型研究.振动工程学报.2001,14(1):100~104
    [145]任建亭,邱阳.粘弹性复合结构特征值问题的迭代算法.计算力学学报.1997,14(3):353~359
    [146]李云雁,胡传荣.实验设计与数据处理.北京:化学工业出版社,2006
    [147] Tang N C. Plastic-deformation analysis in tube bending. International Journal of Pressure Vessels and Piping, 2000, 77 (12):751~759
    [148]段传学.空调管路系统振动建模与分析.上海:上海交通大学,2006
    [149] Shaohui Zhang, Hualing Chen. A study on the damping characteristics of laminated composites with integral viscoelastic layers. Composite Structures, 2006 74 (1):63~69
    [150]崔嵩.轨道车辆动态特性分析研究与优化.上海:同济大学,2004
    [151]李一瑗.建筑楼面空调机组隔振支座的工程设计及数值计算.大连:大连理工大学,2000
    [152]傅志方,华宏星.模态分析理论与应用.上海:上海交通大学出版社,2000
    [153] Slater J C, Belvin W K, Inman D J. Survey of modern methods for modeling frequency dependent damping in finite element models. Proceedings of SPIE- the international society for optical engineering. Kissimmee, FL, USA. Society for Experimental Mechanics. 1993: 1508-1520
    [154]赵选民.实验设计方法.北京:科学出版社,2005
    [155]玄光男,于歆贵.遗传算法与工程优化.北京:清华大学出版社,2004
    [156] Deb K. Srinivas N. Multi-objective Function Optimization Using Non-dominated Sorting Genetic Algorithms. Evolutionary Computation, 1995, 3(2): 221-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700