子午岭次生林区土壤物理特征对植被恢复的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子午岭林区是黄土高原保存最完整的天然次生林区。该区北部目前还保存有空间上完整的植被正向演替系列,即弃耕地先锋群落→草本群落(白羊草Bothriochloaischemum、茭蒿Artenmisia giradii +长芒草Stipa bungeana、铁杆蒿Artenmisia sacrorum、大油芒Spodiopogen sibiricus +苦参Sophora flavecens、黄菅草Themeda japonica或野古草Arundinella anomala)→灌丛群落(沙棘Hippophae rhamnoides、狼牙刺Sophora viciifdia、虎榛子Ostryopsis davidiam)→早期森林群落(乔灌群聚、山杨Populus davidiana、白桦Betula platyphylla、侧柏Platycladus orientalis、油松Pinus tabulaeformis)→辽东栎群落(Quercus liaotungensis)。山杨(Populus davidiana)、白桦(Betula platyphylla)和侧柏(Platycladus orientalis)为演替的过程时期,气候的演替顶级为辽东栎林(Quercus liaotungensis)。
     通过分析各个群落(弃耕地、先锋草地、草本群落(白羊草)、灌丛群落(沙棘、狼牙刺)、早期森林群落(山杨、白桦、山辽混交)、辽东栎群落0-100 cm内土壤容重、结构、水分常数、入渗性能、水分环境的变化规律及相互关系,初步探讨了植被正向演替过程中土壤物理特征变化的趋势和影响土壤水分环境变化的机理。主要结论如下: (1)植被恢复改善了土壤结构和孔隙状况。
     植被恢复降低了土壤0-5 cm、5-10 cm、10-30 cm土层的土壤容重。植被恢复到灌丛以后,其表层容重均小于1.0 g/cm3,山杨、辽东栎降低土壤容重的作用最为明显。土壤孔隙度的变化主要表现在通气孔隙度的增加和总孔隙度的增加,无效孔隙和毛管孔隙变化不大。
     按照由弃耕地、沙棘、白羊草、山杨到辽东栎的植被演替顺序,土壤孔隙分形维数在整个土壤剖面上都有所提高;而土壤水稳性团聚体分形维数依次降低。各个植被群落均能明显改善土壤结构,增强土壤结构的稳定性。而团聚体平均重量直径不能反映土壤结构在0-100 cm土层和植被恢复过程中的这种变化规律。土壤水稳性团聚体分维、孔隙分维均能作为评价土壤结构稳定性的指标;而团聚体平均重量直径仅可作为大团聚体含量的指标。土壤水稳性团聚体分维、孔隙分维比团聚体平均重量直径更适合作为描述植被恢复下土壤结构稳定性变化的指标。
     (2)植被恢复过程中土壤水分常数的变化
     植被演替过程中土壤持水力为:辽东栎>山杨>狼牙刺>白羊草>沙棘。除沙棘外,各植被土壤持水力和供水力随植被的正向演替而提高。土壤比水容量即释水能力表现为乔木林大于灌木林和草地。土壤有机碳含量与土壤持水性能有很好的相关性,相关系数达到0.8左右。提高土壤有机碳含量可以改善土壤的持水性能。
     (3)植被恢复提高了土壤的饱和导水率
     植被恢复有利于提高土壤0-60 cm土层的饱和导水率,土壤饱和导水率随着土层深度的增加而降低;随着植被恢复而提高。饱和导水率在剖面上的平均值以辽东栎顶级群落最高1.918 mm/min。土壤的容重、毛管孔隙度、>0.25 mm水稳性团聚体含量及粘粒含量直接影响土壤饱和导水率。
     有机质含量达到51.56 g/kg以前,饱和导水率随着有机质含量的提高而提高,可以认为是土壤饱和导水率提高的驱动因子;在高于51.56 g/kg时,土壤有机质含量的提高反而会降低土壤饱和导水率。这在黄土高原是极其少见的,需要进一步深入研究。
     (4)植被恢复过程中土壤水分环境的变化
     植被生长期间,植物群落的耗水趋势一致。相同气候条件下,0-5 m土层土壤储水量早期森林、草地最高,灌丛最低。土壤储水量恢复的差异主要表现在,辽东栎群落3 m以下土层土壤储水量高于灌丛群落,特别是4-5 m土层,不仅高于灌丛群落,而且已接近其他群落水平。说明子午岭次生辽东栎群落深层土壤储水量开始并已经得到恢复。土壤储水量在垂直方向上的变异,草地最小,并在2 m或3 m以下的土层达到相对稳定。早期森林、辽东栎3-4 m和4-5 m的变异仍未稳定,说明其植被耗水影响到了5 m以下土层。早期森林、辽东栎在降雨充足的年份,能够较其它群落使得更多水分入渗,这与其良好的土壤结构和高饱和导水率有关。
     植被恢复主要是降低了了0-30 cm土层的土壤容重,提高了0-30 cm总孔隙度、通气孔隙度,提高了0-60 cm土层的土壤饱和导水率,改善了土壤0-30 cm的结构,随着植被的不断恢复,向着高入渗率和好的保水性能方向发展。实际上植被恢复到灌丛阶段后,其结构就已经有了飞跃式的变化,之后随着恢复年限的增加变化速度减慢,早期森林阶段进一步变好,顶级群落时,形成与气候、植被相适应的“顶级土壤状态”。具有一定的保水、蓄水功能。
Ziwuling region has developed with various vegetations of secondary forest in Loess Plateau. In different phases of development, vegetation systems in this region have changed from pioneer herbage species initially recovering in abandoned cropping lands (Bothriochloaischemum, Artenmisia giradii + Stipa bungeana, Artenmisia sacrorum, Spodiopogen sibiricus +Sophora flavecens, Themeda japonica or Arundinella anomala) to secondary shrubs (Hippophae rhamnoides, Sophora viciifdia, Ostryopsis davidiam), early forest community (Populus davidiana, Betula platyphylla, Platycladus orientalis, Pinus tabulaeformis), and finally Quercus liaotungensis community as the climax forest. In this study, soil profiles (0-5 cm、5-10 cm、10-30 cm、30-60 cm、60-100 cm soil layers ) were selected from typical vegetation systems representing for vegetation successions in the region. From the analysis of the change of soil bulk density, soil structure, soil water constant, soil saturated hydraulic conductivity and soil water environment under different vegetations in soil profiles. The tendency of soil physical character change and the mechanism of soil water environment change in the course of vegetation succession were discussed. The main results are as follows:
     (1) Soil structure and porosity condition were improved in the course of vegetation succession
     Vegetation restoration reduced soil bulk density in 0-5 cm, 5-10 cm and 10-30 cm layers. In the stage of shrub, soil bulk density was less than 1.0 g/cm3. Soil bulk density was significantly lessed in Populus davidiana and Quercus liaotungensis. Soil total porosity and macropore were increased significantly,but capillary pore has no big change.
     Soil aggregate fractal dimension, pore fractal dimension and the aggregate MWD ( mean weight diameter ) can reflect soil structure stability in different approaches. The aggregate fractal dimension and soil pore fractal dimension are both extremely correlative to the content of >0.25 mm aggregate, the content of soil organic carbon and soil bulk density. So they can be used as the indexes to evaluate soil structure stability. MWD has no significant correlation with the content of soil organic carbon,soil bulk density. There is a positive correlation between MWD and the content of >5 mm soil water atable aggregate. It only can be used as the index to evaluate the content of big soil aggregate. Compared with abandon farmland, the soil structure was improved under the other four vegetations.
     (2) The change of soil moisture constant in the course of vegetation restoration Among the five communities the soil water holding capacity had the following order: Quercus liaotungensis > Populus davidiana> Sophora viciifolia> Bothriochloa ischaemum> Seabuckthorn. Soil water holding capacity improved with vegetation succession except for Seabuckthorn.
     The specific water capacity(water release capacity)shown as forest> shrub, grassland. The parameter A, the soil available water and unavailable water all had a good correlation to the content of soil organic carbon (g / kg), and the correlation coefficient up to 0.83, 0.80 and 0.79 respectively.
     (3) Saturated Hydraulic Conductivity was increased in the course of vegetation restoration
     Values of soil saturated hydraulic conductivity quickly reduced with depth under different communities. Values of soil saturated hydraulic conductivity were significantly improved in 0-60 cm layer in the course of vegetation restoration. The average soil saturated hydraulic conductivity for each soil layer progressively declined from that for Quercus liaotungensis to early forest, to shrub, to Pioneer grassland and to farmland abandoned to Bothriochloa ischaemum, respectively. Quercus liaotungensis supported the highest values under the nine stands, with vegetative restoration notability improving Ks. Soil saturated hydraulic conductivity was directly affected by soil bulk density, capillary porosity, > 0.25 mm aggregate content and clay content. Soil physical properties such as soil bulk density, capillary porosity and aggregate content were all improved by soil organic matter content.
     Before the soil organic matter content up to 51.56 g/kg, it is the driving facter of soil saturated hydraulic conductivity. But after the soil organic matter content up to 51.56 g/kg, the value of soil saturated hydraulic conductivity would be decreased with SOM increasing. This is extremely rare in the Loess Plateau, its need further study.
     (4) Soil moisture environment changes in the course of vegetation restoration
     The different communities had the same trend of water consuomption. Either in different year or month, soil water storage under shrub is all the lowest, early forest and grassland are the highest. Deep soil water storage under early forest is higher than Quercus liaotungensis, which favorable for its succession to Quercus liaotungensis. Soil water storage under Quercus liaotungensis is higher than shrub when the depth larger than 3 m, 4-5m. Deep soil water was recovered.
     Soil bulk density in 0-30 cm layer is decreased, and total porosity in 0-30 cm layer is increased, soil saturated hydraulic conductivity in 0-60 cm layer was raised, soil structure in 0-30 cm layer was improved with vegetation restoration. With the vegetation recovery, soil became more and more high infiltration rate and water holding capacity. In fact, vegetation restoration to shrub stage, its structure has been a leap of change. The rate of change slow-down with the restoration year increased, Soil was further improved under early forest. When the vegetation restored to Quercus liaotungensis community, the soil became the climax soil which adapt to the vegetation and the climate. The climax soil has some water holding features.
引文
[1]张全发,郑重,金义兴.植物群落演替与土壤发展之间的关系[J].武汉植物学研究, 1990,8(4): 325-334
    [2] West D C, Forest succession concept and applications[M]. Springer-Verlag. 1981
    [3]韩兴国,黄建辉,娄治平.关键种概念在生物多样性保护中的意义与存在的问题[J].植物学通报,1995(2):168-184
    [4] Wallace A. Soil organic matter must be restored to near original levels[J]. Commun. Soil Sci. Plant Anal, 1994. 25(1&2): 29-35
    [5]余存祖.黄土高原地区土壤养分资源与分区[A.王恒俊,张淑光.黄土高原地区土壤资源及其合理利用[C.北京:中国科学技术出版社,1991, 155-204
    [6]胡建忠.西部地区植被建设的主要途径探讨[J].水土保持学报,2003,17(3):121-123
    [7]邹厚远,刘国彬,王晗生.子午岭林区北部近50年植被的变化发展[J].西北植物学报,2002,22(1): 1-8
    [8]邹厚远,关秀琦,张信.云雾山草原自然保护区的管理途径探讨[J].草业科学, 1997. 14(1): 3-4
    [9]张信宝,奇永青.非干旱造林困难地区植被恢复的科学检讨及建议[J].中国水土保持, 2004(10): 5-8
    [10]陈云明,梁一民,程积民.黄土高原林草植被建设的地带性特征[J].植物生态学报,2002,26(3):339-345
    [11]张信宝.黄土高原植被建设的科学检讨和建议[J].中国水土保持, 2003(1): 17,32
    [12]侯庆春,韩蕊莲.黄土高原植被建设中的有关问题[J].水土保持通报, 2000: 53-56
    [13]黄志霖,傅伯杰,陈利顶.恢复生态学与黄土高原生态系统的恢复与重建问题[J].水土保持学报, 2002,16(3):122-125
    [14]康跃虎,王凤新,刘士平.滴灌调控土壤水分对马铃薯生长的影响[J].农业工程学报, 2004,20(2): 66-72
    [15]姜培昆,周国模,钱新标.侵蚀型红壤植被恢复后土壤养分含量与物理性质的变化[J].水土保持学报, 2004,18(1)
    [16]周金星,漆良华,张旭东.不同植被恢复模式土壤结构特征与健康评价[J].中南林学院学报, 2006,26(6): 32-37
    [17]王利民,寸玉康,陈奇伯.滇西北高原水土保持生态修复措施的土壤理化效应.[J].西北林学院学报, 2006,21(1): 7-11
    [18]常庆瑞,安韶山,刘京,等.黄土高原恢复植被防止土地退化效益研究[J].土壤侵蚀与水土保持学报, 1999,5(4): 6-10
    [19]王凯博,陈美玲,秦娟.子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系[J].西北植物学报, 2007,27(10): 2089-2096
    [20]段文霞,朱波,卢静惠.人工柳杉林碳蓄积量及土壤性质的动态变化[J].应用与环境生物学报, 2007,13(6): 777-781
    [21]庞学勇,刘庆,刘世全,等.川西亚高山云杉人工林土壤质量性状演变[J].生态学报, 2004,24(2): 261-267
    [22]庞学勇,胡泓,乔永康,等.川西亚高山云杉人工林和天然林养分分布和生物循环比较[J].应用与环境生物学报, 2002,8(1): 1-7
    [23]张社奇,王国栋,刘建军.黄土高原刺槐林地土壤水分物理性质研究[J].西北林学院学报, 2004,19(3): 11-14
    [24]王占军,蒋齐,刘华.宁夏干旱风沙区林药间作生态恢复措施[J].水土保持学报, 2007,21(4): 90-93
    [25]朱祖祥.土壤学[M].北京:农业出版社,1982
    [26]彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报, 2003,23(10): 2176-2183
    [27] Yoder R E, A direct method of aggregate analysis of soils and a study of the physical nature of erosion loess[J]. Journal of the American Society of Agronomy, 1936. 28: 337-351
    [28]朱祖祥,余震豫,周铭铮.土壤学[M].北京:高等教育出版社,1956
    [29] Van Bavel C H, Mean weight-diameter of soil aggregate as a statistical index of aggregation[J]. Soil Science Society of America Journal, 1949. 14: 20-23
    [30] Falconer KJ. Fractal geometry[M], ed. John wiley,sons. 1989, Chichester. 89-159
    [31] Arya LM,ParisJF. A physicoempirical model to predict the soil moisture characteristic from particlesize distribution and bulkdensity data[J]. Soil Science Society of America Journal, 1981. 45(1): 1023-1031
    [32] Tyler S W,Wheatcraft S W. Fractal scaling of soil particle size distributions:analysis and limitations[J]. Soil Science Society of America Journal, 1992(56): 362-369
    [33] Alexandra K,Zhang RD. Estimation the soil water retention from particlesize distribution:a fractal approach[J]. Soil Science Society of America Journa, 1998. 62(3): 171-179
    [34] Friesen J P. Fractal space and rock permeability implication[J]. Physical Review B-Condensed Matter, 1987(38): 2635-2638
    [35] Pachepsky Y A, Shcherbakov R A,Korsunskaya L P. Scaling of soil water retention using a fractal model[J]. Soil Science Society of America Journa, 1995(159): 99-104
    [36] Bird N R H, Bartoli F,Dexter A R. Water retention models for fractal soil structures[J]. European Journal of Soil Science, 1996(47): 1-6
    [37]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报, 1993,38(20): 1896-1899
    [38]黄冠华,詹卫华.土壤水分特性曲线的分形模拟[J].水科学进展, 2002,13(1): 55-60
    [39]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报, 1999,36(2): 162-167.
    [40]骆东奇,侯春霞,魏朝富.旱地紫色土团聚体特征的指标比较[J].山地学报, 2003,21(3): 348-353
    [41]王玉杰,王云琦,夏一平.重庆缙云山典型林分土壤结构分形特征[J].中国水土保持科学, 2006,4(4): 39-46
    [42]丁文峰,丁登山.黄土高原植被破坏前后土壤团粒结构分形特征[J].地理研究, 2002,21(6): 700-706
    [43]史衍玺.人为开垦加速侵蚀下土壤质量演变及其机理研究.博士学位论文,中国科学院、水利部水土保持研究所,1998
    [44]苏静,赵世伟.植被恢复对土壤团聚体分布及有机碳、全氮含量的影响[J].水土保持研究, 2005,12(3): 44-46
    [45]杨建国,安韶山,郑粉莉.宁南山区植被自然恢复中土壤团聚体特征及其与土壤性质关系[J].水土保持学报, 2006,20(1): 72-76
    [46]王国梁,刘国彬.黄土丘陵沟壑区植被恢复的土壤水稳性团聚体效应[J].水土保持学报, 2002,16(1): 48-50
    [47]韩永伟,韩建国,张蕴薇.农牧交错带退耕还草对土壤物理性状的影响[J].草地学报, 2002,10(2): 100-105
    [48]马祥华,焦菊英,白文娟.黄土丘陵沟壑区退耕植被恢复地土壤水稳性团聚体的变化特征[J].干旱地区农业研究, 2005,23(3): 69-74
    [49]邱扬,傅伯杰,王勇.土壤侵蚀时空变异及其与环境因子的时空关系[J].水土保持学报, 2002,16(1): 108-111
    [50]赵广琪,杜增平.陕北西阳湾植被恢复的特点初探[J].西北林学院学报, 2002,17(2): 10~13.
    [51]孙阁.森林植被对河流泥沙和水质影响的综述[J].水土保持学报, 1988,2(3): 54-57
    [52]穆兴民,徐学选,王文龙.黄土高原人工林对区域深层土壤水环境的影响[J].土壤学报, 2003,40(2): 210-217
    [53]赵世伟,周印东,吴金水.子午岭北部不同植被类型土壤水分特征研究[J].水土保持学报, 2002,16(4): 119-122
    [54]赵世伟,周印东,吴金水.子午岭次生植被下土壤蓄水性能及有效性研究[J].西北植物学报, 2003,23(8): 1389-1392
    [55]蒋定生,黄国俊.黄土高原土壤入渗速率的研究[J].土壤学报, 1996,23(4): 299-305
    [56]卞相玲,仲崇谠,刘景涛.集中林分土壤入渗性能研究[J].山东林业科技, 2003(6): 15-16
    [57]谢文燕,樊贵盛.土壤结构对土壤入渗能力的影响[J].太原理工大学学报, 2004,35(4): 381-384
    [58]张振华,杨润亚,蔡焕杰,等.土壤质地、密度及供水方式对点源入渗特性的影响[J].农业系统科学与综合研究, 2004(2): 81~84
    [59] S.O.O jeniyi,A. R. Dexter.土壤结构对土壤水分状况的影响[J].农业科技情报(季刊)摘译自:Soil and Tillage Reaseach. 50(3): 371-379
    [60]刘东生.黄河中游黄土[M].北京:科学出版社,1964,:128,146-149
    [61]张平仓,郑粉丽.子午岭地区自然区域特征及其与土壤侵蚀的关系[J].中国科学院水利部水土保持研究所集刊,1993,17:11-16
    [62]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:30-34
    [63]刘国彬.黄土高原草地植被恢复与土壤抗冲性形成过程.Ⅲ.植被恢复对土壤腐殖质物质及水稳性团聚体的影响[J].水土保持研究, 1997,4(5): 122-128
    [64]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:19-24
    [65] Jary W A, Soil Physics[M]. Printed in the United States of America,1991: 61-64
    [66]史竹叶,赵世伟.黄土高原土壤持水曲线计算方法[J].西北农业学报, 1999,8(6): 44-47
    [67] Katz A J, Thompson A H. Fractal sandstone pores: implication for conductivity and pore formation[J]. Phys. Rev. Lett, 1985,54(12): 1325-1328
    [68]吕殿青,邵明安,王全九.土壤持水特征测定中的容重变化及其确定方法[J].水利学报, 2003(3): 110-115
    [69]唐启义,冯明光. DPS数据处理系统[M].北京:科学出版社,2006
    [70] Six J, Elliott E T,Paustian K. Soil structure and soil organic matter. II. A normalized stability index and the effect of mineralogy[J]. Soil Science Society of America Journal, 2000. 64: 1042-1049
    [71] Nimmo J R,Perkins K S. Aggregates stability and size distribution. In: Methods of Soil Analysis, Part 4-Physical Methods[J]. Soil Science Society of America, Inc. Madison, Wisconsin, USA, 2002: 317-328
    [72]孙长忠,黄宝龙,陈海滨,等.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报, 1998,20(3): 7-14
    [73]陈云明,刘国彬,侯喜录.黄土丘陵半干旱区人工沙棘林水土保持和土壤水分生态效益分析[J].应用生态学报, 2002,13(11): 1389-1393
    [74]王力,邵明安,侯庆春.土壤干层量化指标初探[J].水土保持学报, 2000,14(4): 87-90
    [75]焦菊英,焦锋,温仲明.黄土丘陵沟壑区不同恢复方式下植被群落的土壤水分和养分特征[J].植物营养与肥料学报, 2006,12(5): 667-674
    [76]沈思渊,席承藩.淮北主要土壤持水性能及其与颗粒组成的关系[J].土壤学报, 1990,27(1): 34-42
    [77]王孟本,柴宝峰,李宏建,等.黄土区人工林的土壤持水力与有效水状况[J].林业科学, 1999,35(2): 7-14
    [78]张小泉,张清华,毕树峰.太行山北部中山幼林地土壤水分的研究[J].林业科学, 1994,30(3): 193-200
    [79] Burdine NT. Relative permeability calculations from pore size distribution data[M]. Tran AIME. 1953:71-77
    [80] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resour. Res, 1976(12): 593-622
    [81] Van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci Soc Am J, 1980. 44: 892-898
    [82] Broadbridge P,White I. Constant rate rainfall infiltration: a versatile nonlinear model 1. analytic solution[J]. Water Resour. Res, 1988. 24(1): 145-154
    [83]郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J].水土保持学报, 2004,18(3): 53-56
    [84]李保国,胡克林,陈德立.农田土壤表层饱和导水率的条件模拟[J].水利学报, 2002(2): 36-40,46
    [85]胡克林,李保国,陈研.表层土壤饱和导水率的空间变异对农田水分渗漏的影响[J].水利学报, 2006,37(10): 1217-1223
    [86]吕殿青,邵明安,刘春平.容重对土壤饱和水分运动参数的影响[J].水土保持学报, 2006,20(3): 154-157
    [87]张鼎华,翟明普,贾黎明,等.沙地土壤有机质与土壤水动力学参数的关系[J].中国生态农业学报, 2003,11(1): 74-77
    [88]马履一,翟明普,王勇.京西山地棕壤和林溶褐土饱和导水率分析[J].林业科学, 1999,35(3): 109-112
    [89]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J].生态学报, 2006,26(11): 3685-3695
    [90]华孟,王坚.土壤物理学[M].北京:北京农业大学出版社,1993
    [91]黄昌勇.土壤学[M].北京:中国农业出版社,2000:92
    [92]将定生.黄土高原土壤入渗能力分区,见黄土高原土壤与农业.北京,农业出版社,1989
    [93]单秀枝,魏由庆,严惠峻,等.土壤有机质含量对土壤水动力学参数的影响[J].土壤学报, 1998,35(1): 1-9
    [94]贺康宁.水土保持林地土壤水分物理性质的研究[J].北京林业大学学报, 1995,17(3): 44-50.
    [95]陈效民,潘根兴,王德建,等.太湖地区农田生态环境中土壤饱和导水率研究[J].水土保持通报, 2000,20(5): 11-13
    [96]黄承标,梁宏温,广西不同地理区域森林土壤水文物理性质研究[J].土壤与环境, 1999,8(2): 96-100
    [97]刘娜娜,赵世伟,杨永辉,等.云雾山封育草原对表土持水性的影响[J].草地学报, 2006,14(6): 338-342
    [98]中国科学院南京土壤研究所主编.中国土壤.北京:科学出版社,1978:45-47
    [99] Wallis M G,Home D J. Soil water repellency[J]. Adv. Soil Sci., 1992: 92-146
    [100]焦峰,温仲明,焦菊英.黄土丘陵区人工小叶杨生长空间差异及其土壤水分效应.[J].两北植物学报, 2005,25(7): 1303-1308
    [101]贾海坤,刘颖慧,徐霞.皇甫川流域柠条林地水分动态模拟----坡度、坡向、植被密度与土壤水分的关系[J].植物生态学报, 2005,29(6): 910-917
    [102]王志强,刘宝元,王晓兰.黄土高原半干旱区天然锦鸡儿灌丛对土壤水分的影响[J].地理研究, 2005,24(1): 113-120
    [103]卜崇峰,蔡强国,崔琰.黄土丘陵沟壑区狼牙刺灌木林地的土壤水分动态[J].自然资源学报, 2004,19(3): 379-395
    [104]秦娟,上官周平.子午岭林区山杨-辽东栎混交林的生理生态效应[J].应用生态学报, 2006,17(6): 972-976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700