宁南山区植被恢复的土壤碳库特征及固碳机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被恢复是宁南山区治理土壤退化及保持水土的主要措施,这个地区的植被恢复措施主要分为天然草地封育、牧荒坡短期封禁草地和人工柠条的种植。本研究针对宁南黄土丘陵区植被恢复措施的现状,选取植被恢复过程中典型样点进行试验,揭示了研究区植被恢复过程中土壤有机碳库特征、碳汇效应及团聚体的物理保护机制。
     1.植被恢复措施能显著提高土壤的总有机碳含量和有机碳密度,表现为封育草地>牧荒坡短期封禁草地>人工柠条。植被演替的影响在演替初期(坡耕地至百里香群落)主要表现在0~100 cm土层,演替后期(百里香群落至大针茅群落)在0~20 cm土层有机碳表聚作用更为明显。
     2.植被恢复措施对土壤活性有机碳组分(易氧化有机碳、颗粒有机碳和轻组有机碳)含量均有显著提高,封育草地效果最好,显著高于牧荒坡短期封禁草地和人工柠条,并随植被恢复演替而增加。演替初期的影响表现在整个测定剖面,演替后期土壤易氧化有机碳、颗粒有机碳和轻组有机碳含量的表聚作用更加明显,分别为0~20 cm、0~40 cm和5~10 cm土层。
     3.植被恢复措施对土壤稳定性有机碳(惰性有机碳、重组有机碳和矿物结合态有机碳)含量均有显著改善,封育草地效果最好,牧荒坡短期封禁草地和人工柠条次之,并随植被恢复演替过程而增加。植被恢复的影响在演替初期表现在整个剖面,演替后期土壤重组有机碳和惰性有机碳含量表聚作用更加明显,分别为0~5 cm和0~10 cm土层。
     4.土壤水稳性团聚体形成过程表现为:在坡耕地阶段的基础上,随植被演替逐步由微团聚体(<0.25 mm)向大团聚体转移,最终形成>5 mm粒径团聚体,并形成以>5 mm和<0.25 mm粒径团聚体为主的分布格局。
     5.植被恢复措施对土壤团聚体有机碳及其活性有机碳组分的改善效果均表现为封育草地>牧荒坡短期封禁草地>人工柠条。植被演替对团聚体有机碳的影响在演替初期和后期分别表现在0~70 cm和0~40 cm土层,主要分布在1~0.25 mm粒径。植被恢复促进了0.5~0.25 mm粒径易氧化有机碳、>5 mm粒径轻组有机碳、2~0.5 mm粒径颗粒有机碳含量的增加。
     6.植被恢复措施能显著提高土壤团聚体稳定性有机碳组分含量,封育草地效果最好,牧荒坡短期封禁草地和人工柠条次之,表明植被的天然恢复更有利于提高稳定性有机碳库容。草地土壤固碳机制表现为:植被演替初期,稳定性有机碳主要固定在<0.25 mm粒径中,演替后期主要固定在>5 mm粒径中。
Vegetation restoration is a main measure to controll soil degradation and conserve soil water in Southern Mountainous Areas of Ningxia. The mearsures of vegetation restoration include natural restored grassland,short-term non-grazing on pasture and wastelandand planting caragana. We seleceted the typical samples of defferent vegetation restoration and researched characteristics and carbon sink of organic carbon in soil and aggregates. Furthmore,the study was conducted to discuss the carbon sequestration mechanism of glassland. The main results and conclusions were presented as follows:
     1. Different vegetation restoration measures(natural restored grassland,short-term non-grazing on pasture and wastelandand caragana) could significantly improve both the content and density of SOC,which followed the order natural restored grassland> short-term restored after grazing glassland> caragana. Effects of SOC on soil depths were 0~100 cm in early succession (slope land - Thymus mongolicus) while the depths of 0~20 cm of SOC was higher than other in later succession(Thymus mongolicus- Stipa grandis).
     2.Soil active organic carbon(AOC) (including labile organic carbon(LOC),particulate organic carbon(POC) and light fraction organic carbon(LFC))had also been significantly improved under the three measures. Moreover,the improvement effect of natural restored grassland was more significant than short-term non-grazing on pasture and wastelandand caragana. Effects of AOC on soil depths were 0~100 cm in early succession. LOC,POC and LFC were higher in 0~20 cm, 0~40 cm and 5~10 cm.
     3. Soil stable organic carbon (including inactive organic carbon(IOC), heavy fraction organic carbon(HFC) and mineral organic carbon(MOC))had also been significantly improved under the three measures. Moreover,the improvement effect of natural restored grassland was more significant than short-term non-grazing on pasture and wastelandand caragana. Effects of stable organic carbon on soil depths were 0~100 cm in early succession. HFC and IOC were higher in 0~5 cm and 0~10 cm.
     4. Formation of soil aggregates in grassland showed that it firstly formad micro-aggregates(<0.25 mm) in slope land. With the vegetation succession,micro-aggregates gradually formed larger size of aggregates. >5 mm particle size of aggregates ultimately formed.
     5. Different vegetation restoration measures could all significantly improve the content of SOC and AOC in aggregates, which followed the order natural restored grassland> short-term restored after grazing glassland> caragana. Effects on SOC in aggregates was 0~70 cm in early succession and 0~40 cm in later succession. Content of SOC in aggregates mainly inhanced in the particle size of 1-0.25 mm. In the process of glassland vegeration restoration,content of LOC reached maximum in the size of 0.5-0.25 mm,the size of >5 mm was highest for LFC as well as 2-0.5 mm for POC.
     6. Different vegetation restoration measures could significantly improve the contents of stable components of organic carbon in aggregates. Moreover,the improvement effect of natural restored grassland was more significant than short-term non-grazing on pasture and wastelandand caragana,which showed that natural restored grassland was more conductive to improving stable organic carbon in aggregates. Soil carbon sequestration mechanism in glassland showed the following changes. Stable organic carbon in aggregates maily fixed in the size of <0.25 mm in early succession while in >5 mm in later succession.
引文
[1] Lal R.World soils and greenhouse effect[J].IGBP Global Change Newsletter,1999,37: 4-5.
    [2]彭少麟,李跃林,等.全球变化条件下的土壤呼吸效应[J].地球科学进展,2002,17 (5):705-713.
    [3] Lal R, Kimble J M,Follett R F.The Potential of US Cropland to Sequester C and Mitigate the Greenhouse Effect[M].Chelsea, MI:Ann Arbor Press,1998.
    [4]姬博文,黄泽云.宁南山区退耕还林成效显著[J].统计与经济,2007,4: 33-34.
    [5] Post W M, Peng T H,Emanuel W R.The global carbon cycle[J].American Scientist,1990,78: 310-326.
    [6] Davidson E A, Trumbore S E,Amundson R.Soil warming and organic carbon content[J].Nature,2000,408: 789-790.
    [7] Raich J W,Potter C S.Global patterns of carbon dioxide emissions from soils[J].Global Biogeochemical Cycles,1995,9: 23-36.
    [8] Prentice I C, Farquhar G D,Fasham M J R. The carbon cucle and atmospheric CO2. The Third Assessment Report of Intergovernmental Panel on Climate Change(IPCC). New York: Cambridge University Press, 2001.
    [9] Zhou C H, Zhou Q M,Wang S Q.Estimating and analyzing the spatial distribution of soil organic carbon in China[J].Ambio,2003,32 (1):6-12.
    [10] Wang S H, Tian H Q,Liu J Y.Pattern and change of soil organic carbon storage. In China:1960s-1980s[J].Tellus,2003,55B: 416-427.
    [11]王发刚,王启基,王文颖,等.土壤有机碳研究进展[J].草业科学,2008,25 (2):48-54.
    [12] Eswaran H, Van der Berg E,Reich P.Organic carbon in soils of the world[J].Soil.Sci.Soc.Am.J.,1993,57: 192-194.
    [13] Davidson E A,AckemanI K.Changes in carbon inventories following cultivation of previously untilled soil[J].Biogeochemistry,1993,20: 161-193.
    [14] Bouwman A F.Global distribution of the major soils and land cover types[M].New York:John Wiley and Sons,1990.
    [15] Powers J S.Changes in soil carbon and nitrogen after contrasting land-use transitions in northeastern Costa Rica[J].Ecosystems,2004,7: 134-146.
    [16]王艳芬,陈佐忠,Tieszen L T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22: 545-551.
    [17]陈国潮,何振立.红壤不同利用方式下微生物量的研究[J].土壤通报,1998,29: 276-278.
    [18]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15 (4):593-599.
    [19]王小利,郭胜利,马玉红.黄土丘陵区小流域土地利用对土壤有机碳和全氮的影响[J].应用生态学报,2007,18 (6):1281-1285.
    [20] Post W M,Kwon K C.Soil carbon sequestration and land use change:processes and potential[J].Global Change Biology,2000,6: 317-327.
    [21] Richter D D, Markewitz D,Trumbore S E.Rapid accumulation and turnover of soil carbon in a re-establishing forest [J].Nature,1999,400: 56-58.
    [22]王堃,吕进英.退耕地的自然演替与人工恢复[J].中国农业资源与区划,2000,21 (04):51-55.
    [23] Nabuurs G J, Dolman A J,Verkaik E.Consequences for industrialized countries’commitment,the monitoring needs,and possible side effects[J].Environ. Sci. Policy,2000,3: 123-134.
    [24] Laclau P.Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in forests in northwest Patagonia [J].For. Ecol. Man.,2003,180: 317-333.
    [25] Groenendilk F M, Condron L M,Rijkse W C. Effects of afforestation on organic carbon, nitrogen and sulfur concentrations in New Zealand hill country soils[J].Geoderma,2002,108: 91-100.
    [26]李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20 (05):548-552.
    [27] Dixon P K, Solomon S,Brown S.Carbon pools and flux of global forest ecosystems[J].science,1994,263 (5144):185-190.
    [28]方运霆,莫江明.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报,2004,1: 135-142.
    [29]潘根兴,曹建华.土壤碳及其在地球表层系统碳循环中的意义第四纪研究[J].第四纪研究,2000,4: 325-334.
    [30] Post W M,Kwon K C.Soil carbon sequestration and land-use change:processes and prtential[J].Global Change Biology,2000,6 (3):317-327.
    [31]沈宏,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000, 2:166-173.
    [32] Blair G J,Lefroy R D.Soil carbon fractions based on their degreeof oxidation,and the developments of a carbon management index for agricultural systems[J].Australian Journal of Agricultural Research,1995,46: 1456 - 1466.
    [33]胡斌,张世彪.植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002,4 604-608.
    [34] Lefroy R D B, Blair G J,M, Strong W.Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J].Plant and Soil,1993,155/156 (1):399-402.
    [35]王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25 (3):513-519.
    [36] Biederbeck B O,Zentner R P. Labile soil organic matter as influenced by cropping practices in an ared environment[J].Soil Biology and Biochemistry,1994 ,26 (12):1647 - 1656.
    [37]沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,02: 166-173.
    [38]沈宏,曹志洪.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18 (3):32-38.
    [39]张甲珅,陶澍,曹军.土壤中水溶性有机碳测定中的样品保存与前处理方法[J].土壤通报,2000,(04):174-176.
    [40] Whitbread A M, Lefoy R D B,Blair G J.A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J].Australian Journal of Soil Research ,1998,36: 669-681.
    [41] Johns M M ,Skogley E O.Application of carbonaceous resin capsules to soil organic matter testing and labile C identification[J].Soil Science Society of America Journal,1994, 58 (3):751-757.
    [42] Needelman B A, Wander M M,Bollero GA.Interaction of tillage and soil texture:biologically active soilorganic matter in Illinois[J].Soil Science Society of America Journal,1999,63: 1326-1334.
    [43] Quideau S A,Bockheim J G.Biogeochemical cycling following planting to red pine on a sandy prairie soilJ[J].Environment Quality,1997,(26):1167-1175.
    [44] Collier K J , Jackson R J ,Winterbourn M J.Dissolved organic carbon dynamics of developedand undeveloped catchments in Westland,New Zealand[J].Arch Hydrobiol. ,1989,(17):21-38.
    [45]徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究[J].水土保持学报,2003,17 (4):15-17,21.
    [46]姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报,2003,20 (1):8-11.
    [47]张金波,宋长春,杨文燕.土地利用方式对土壤水溶性有机碳的影响[J].中国环境科学,2005,25 (3):343-347.
    [48] Ghiorse W,Cand Wilson J T.Microbial ecology of the terrestrial subsurface[J].Advances in Applied Microbiology,1988,(33):107-172.
    [49]曹建华,潘根兴,袁道先,等.岩溶地区土壤溶解有机碳的季节动态及环境效应[J].生态环境,2005,14 (2):224-229.
    [50] Mcdowell W H. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soil[J].Water Air and Soil Pollution,1998,105 (1/2):175-182.
    [51]于荣,徐明岗,王伯仁.土壤活性有机质测定方法的比较[J].土壤肥料,2005,02: 49-52.
    [52] Loginow W, Wisniewski W,Gonet S.Fractionation of organic carbon based on susceptibility to oxidation[J].Polish Journal of Soil Science,1987,20: 47-52.
    [53]杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报,2004,35 (4):502-506.
    [54]倪进治,徐建民,谢正苗.土壤轻组有机质[J].环境污染治理技术与设备,2004,1 (2):58-65.
    [55]谢锦升,杨玉盛,解明曙,等.土壤轻组有机质研究进展[J].福建林学院学报,2006,26 (3):281-288.
    [56] Christensen B T.Physical fractionation of soil and organic matter in primary particle size and density separates[J].Advance in Soil Science,1992,20: 2-90.
    [57]倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究[J].植物营养与肥料学报,2001,7 (1):56-63.
    [58]武天云, Jeff J, Schoenau,et al.耕作对黄土高原和北美大草原三种典型农业土壤有机碳的影响[J].应用生态学报,2003,14 (12):2213-2221.
    [59] Turchenek L W,Oades J M.Fractionation of organomineral complexes by sedimentation and density techniques[J].Geoderma,1979,(21):311-343.
    [60] Spycher G P, Sollins,Rose S.Carbon and nitrogen in the light fraction of a forest soil: verticaldistribution and seasonal patterns[J].Soil Science,1993,135: 79-87.
    [61] Skjemstad J O, Dalal R C,Barro P F.Spectroscopic Investigations of Cultivation Effects on Organic Matter of Vertisols[J].Soil Sci .Soc. Am. J .,1986,50: 354-359.
    [62] Golchin A, Oades J M,Skjemstd J O.Study of free and occluded particulate organic matter in soils by solid-state 13C CP /MAS NMR Spectroscopy and Scanning Electron Microscopy[J].Australian Journal of Soil Research,1994,32: 285-309.
    [63] Dalal R C,Mayer R J.Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern queensland vi loss of total nitrogen from different particle-size and density fractions[J].Australian Journal of Soil Research,1987,25: 83-93.
    [64] Conteh A, Blair G J ,Macleod D A Soil organic carbon changes in cracking clay soils under cotton production as studied by carbon fractionation[J].AustralianJournal of Agricultural Research,1997,48: 1049-1058.
    [65] Skjemstd J O, Taylor J A, Janik L J,et al.Soil organic carbon dynamics under longterm sugarcane monoculture[J].Australian Journal of Soil Research,1999,37: 151-164.
    [66] Garten jr C T, Post W M,Hanson PJ.Forest soil carbon inventories and dynamics along an elevation gradient in the southern appellation mountains[J].Biogeochemistry,1999,45: 115-145.
    [67]杨长明,欧阳竹,杨林章,等.农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响[J].生态学报,2006,26 (12):139-147.
    [68]吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38 (04):146-157.
    [69] Dalal R C,Mayer R J.Long-term trends in fertility of soil under continuous cultivation and cereal cropping in southern queensland,VI:Loss of total nitrogen from different particle size and density fractions[J].Australia Journal of soil Research,1987,25: 83-93.
    [70] Bremer E, Janzen H H,Johnston A M.Sensitivity of total, light and mineralizable organic matter to management practices in a Lethbridge soil[J].Canadian Journalof Soil Science,1994,74: 131-138.
    [71] Sollins P, Spycher G,Glassman C A.Net nitrogen mineralization from light and heavy-fraction forest soil organic matter [J].Soil Biology and Biochemistry,1984,16: 31-37.
    [72]杨玉盛,刘艳丽,陈光水.格氏栲天然林与人工林土壤非保护性有机碳研究[J].生态学报,2004,24 (1):1-8.
    [73] Golchin A, Oades J M,Skjemstd J O.Soil structure and carbon cycling[J].Australian Journalof Soil Research,1994,32: 1043-1068.
    [74] Carter M R. Analysis of soil organic matter storage in agroecosystems. In: CarterM R, Stewart B A, editors. Soil Science: Structure and Organic Matter storage in Agricultural soils. London: CRC Lewis, 1996. p.3-11.
    [75] Chan K Y, Heenan D P,A, Oates.Soil carbon fractions and relationship to soil quality under different tillage and stubble management[J]. Soil & Tillage Research,2002,63: 133-139.
    [76] Swift R S.Sequestration of carbon by soil [J].Soil Science,2002,166: 858-871.
    [77] Besnard E, Chenu C,Balesdent J.Fate of particulate organic matter in soil aggregates during cultivation[J].European Journal of Soil Science,1996,47: 495-503.
    [78] Six J, Elliott E T,Paustian K.Aggregation and soil organic matter accumulation in cultivation sequence[J].Soil Science Society of America Journal,1998,63: 1367-1377.
    [79] Chan K Y.Consequences of changes in particulate organic carbon in Vertisols under pasture and cropping[J].Soil Science Society of America Journal,1997,61: 1376-1382.
    [80] Franzluebbers A J,Arshad M A.Particulate organic carbon content and potential minerlization as affected by tillage and texture[J].Soil Science Society of America Journal ,1997,61: 1382-1386.
    [81] Six J, Elliott E T,Paustian K.Aggregate and soil organic matter dynamics under conventional and no - tillage systems[J].Soil Society Science of American,1999,63: 1350-1358.
    [82] Jastrow J D.Soil aggregate formation and the accrual of particulate and mineral - associated organic matter[J].soil Biology and Biochemistry,1996,38 (4-5):665-676.
    [83]李阳兵,杨霞,宋晓利,等.岩溶生态系统土壤非保护性有机碳含量研究[J].农业环境科学学报,2006,25 (02):402-406.
    [84]张金波,宋长春,杨文燕.三江平原沼泽湿地开垦对表土有机碳组分的影响[J].土壤学报,2005,42 (05):857-859.
    [85] Yang C M, Yang L Z,Ouyang Z.Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes[J].Geoderma,2005,124:133-142.
    [86]周萍,潘根兴.长期不同施肥对黄泥土水稳性团聚体颗粒态有机碳的影响[J].土壤通报,2007,38 (02):256-260.
    [87]魏朝富陈世正.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报,1995,32 (2):159-166.
    [88] Lal R, Follett R F, Kimble J,et al.Managing U. S. cropland to sequester carbon in soil[J].SoilWater Conserve,1999, 54:374-381.
    [89] Vanden Bygaart A J, Gregorich E G,AngersD A.Influence of agricultural management on soil organic carbon: A compendium and assessment of Canadian studies[J].Canadian Journal of Soil Science,2003, 83:363-380.
    [90] Smith P, Milne R,Powlson D S.Revised estimates of the carbon mitigation potential of UK agricultural land[J].Soil Use Manage,2000, 16:293-295.
    [91]吴庆标,王效科,段晓男,等.中国森林生态系统植被固碳现状和潜力[J].生态学报,2008,28 (2):517-524.
    [92]郭然,王效科,逯非,等.中国草地土壤生态系统固碳现状和潜力[J].生态学报,2008,28 (2):862-867.
    [93]段晓男,王效科,逯非,等.中国湿地生态系统固碳现状和潜力[J].生态学报,2008,28 (2):463-469.
    [94]韩冰王效科逯非段晓男欧阳志云.中国农田土壤生态系统固碳现状和潜力[J].生态学报,2008,28 (2):612-619.
    [95] Eve M D, Spemw M ,Howerton K.Predicted impact of management chan ges on soil carbon storagefor each croplandregion of the conterminous[J].United States of Soil and Water Conserv.,2002,57 (4):1-17.
    [96] Hassink J.Effect of soll texture on the size of the microbial biomass and on the amount of C and N mi neralized per unit of microbial biomass in Dutch grassland soils[J].Soil Biology and Biochemistry,1994,26 (11):1573-1581.
    [97] Huntington T.Carbon sequestration in an aggrading forest ecosystem in theSouthern USA[J].Soil Science Society of America Journal,1995,59:1459-1467.
    [98] Kaiser K, Guggenberger G,Derenne S.The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J].Organic Geochemistry,2000, 31:711-725.
    [99] Six J, Conant R T,Paul E A.Stabilization mechanisma of soil organic matter: Implications for C-saturation of soils[J].Plant and Soil,2002,241: 155-176.
    [100] Wiseman C L S,Puttmarm W Soil organic carbon and its sorptive preservation in central Germany[J].European Journal ofSoil Science,2005, 56:65-76.
    [101] Eusterhues K, Rumpel C,Kogel-Knabner I.Organo-mineral associations in sandy acid forest soils:importance of specific surface area,iron oxides and micropores[J].European Journal of Soil Science,2005, 56:753-763.
    [102] Basile, Doelsch I,Amundson R Stone W E E.Mineralogical control of organ ic carbon dynamics in a volcanic ash soil on LaRtunion[J].European Journal of Soil Science,2005,(56):689-703.
    [103] Hassink J.The capacity of soils to preserve organic C and N by their association with clay and silt particles[J].Plant and Soil,1997, 191:77-87.
    [104] Paul E A, CoHins H P,Leavitt S W.Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance[J].Geoderma,2001, 104:239-256.
    [105] Percival H J, Parfitt R L,Scott N A.Factors controlling soil carbon levels in New Zealand grasslands:is clay content important?[J].Soil Science Society of America Journal,2000, 64:1623-1630.
    [106] Denef K,Six J.Clay mineralogy determ ines the importance of biologyca1 versus abiotic processes for macroaggregate formation and stabilization[J].European Journal of Soil Science,2005,(56):469-479.
    [107] Liltzow M V, Kogel-Knabner I,Ekschmitt K.Stabilization of organic matter in temperate soils:mechanisms an d their relevance under different soil conditions-a review[J].European Journal of Soil Science,2006,57:426-445.
    [108] Mikutta R, Kleber M ,Torn M S.Stabilization of soil organic matter:association with minerals or chemical recalcitrance?[J].Biogeochemistry,2006, 77:25-56.
    [109] Six J, Elliott ET,Paustian K.Soil macroaggrcgate turnover and macroaggrcgate formation: A mechan ism for C sequestration under no-tillage agriculture[J].Soil Biology& Biochemistry,2000, 32:2099-2103.
    [110] Carter M R.Soil quality for sustainable land management:organic matter and aggregation interactions that maitain soil function[J].Agronomy Journal,2002,94: 38-47.
    [111] Amclung W,Zech W.Organic species in ped surface and core fractions along a climosequence in the prairic,North America[J].Geoderma,1996,74: 193-206.
    [112] Beare M H, Cabrera M L, Hendrix PF,et al.Aggregate-protected and unprotected organic matter pools in convertional and no-tillage soils[J].Soil Science Society of America Journal,1994,58: 787-795.
    [113] Sohi S P N, Mahieu J R M, Arah D S,et al.A procedure for isolating soil organic matter fractions suitable for modeling[J].Soil Science Society of America Journal,2001,65: 1121-1128.
    [114] Six J, Bossuyt H, Degryze S,et al.A history of research on the link between (micro)aggregates,soil biota, and soil organic matter dynamica[J].Soil and Tillage Research,2004,79: 7-31.
    [115] Liang B C, Wang X L,L. Ma B.Maize root-induced change in soil organic carbon pools[J].Soil Science Society of America Journal,2002, 66:845-847.
    [116] Janssans A, Lankreijer H,Matteucci G.Productivity overshadows temperature in determining soil an d ecosystem respiration across European forests[J].Global Change Biology,2001,7 (3):269-278.
    [117] Franzluebbers A J,Stuedema皿J A.Pattieulate and non-particulate fractions ofsoil organic carbon under pastures in the So uthem Piedmont USA[J].Environmental Pollution,2002,116:53-62.
    [118] Caravaca F, Alguacil M M,Azeon R.Formation of stable aggragates in rhizospheresoil of Juniperus oxycedrus:Effect of AM fungi and organic amendments[J].Applied Soil Ecology,2005, 891:1-5.
    [119] Spaccini R, Piccolo A,Haberhan er G.Transformation of organic matter from maize residues into lab ile an d humic fractions of three European soils as revealed by distribution and CPMAS-NMR spectra[J].European Journal of Soil Science,2000, 51:583-594.
    [120] Dijkstra F A, Hobbie S E,Knops J M H.Nitrogen deposition and plant species interact to influence soil carbon stabilization[J].Ecology Letters,2004,7 (12):1192-1198.
    [121] Rangel-Castro J I, Prosser J I,Scrimgeour C M.Carbon flow in an upland grassland:Effect oflimi ng ontheflux of recently photosynthesized carbon to rhizosphere soil[J].Global Change Biology,2004,10 (1/2):2100-2110.
    [122] Puget P, Angers D A,Chenu C.Nature of carbo hydrates associated with water-stable aggregates of two cultivated soils[J].Soil Biology& Biochemistry,1999, 31:55-63.
    [123]安婷婷,汪景宽,李双异,等.施用有机肥对黑土团聚体有机碳的影响[J].应用生态学报,2008,19 (2):369-373.
    [124]袁颖红,李辉信,黄欠如,等.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-3965
    [125]杨长明,欧阳竹,董玉红.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响[J].生态学杂志,2005,24(08):887-892
    [126]李江涛,张斌,彭新华,等.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报,2004,41(06):912-916
    [127]史奕,张璐,陈欣,等.不同经营方式对黑土水稳性团聚体组成及微粒有机质积累分布的影响[J].中国生态农业学报,2005,13(02):122-124
    [128]方华军,杨学明,张晓平,等.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布[J].生态学报,2006,26(09):2847-2853
    [129] Camberdella C A,Elliott E T.Particulate soil organic matter changes across a grassland cultivation sequence[J].Soil Science Society of America Journal,1992,56: 777-783.
    [130]邹厚远,程积民.黄土高原草原植被的自然恢复演替及调节[J].水土保持研究,1998,5 (1):126-138.
    [131]刘娜娜,赵世伟,杨永辉,等.云雾山封育草原对表土持水性的影响[J].草地学报,2006,14 (4):338-342.
    [132]宁夏云雾山草原自然保护区管理处编.宁夏云雾山自然保护区科学考察与管理文集.银川:宁夏人民出版社, 2001. p.1-131.
    [133]宁夏固原试区高效农业生态建设与农目潜势开发研究专辑[J].水土保持研究,1996,3 (1)
    [134]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社, 1978.
    [135]中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法.北京:科学出版社, 1978. p.77-88.
    [136]吴建国,张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较[J].植物生态学报,2004,28 (5):657-664.
    [137] Janzen H H, Campbell CA,Brandt SA.Light-fration organic matter in soils from long-term crop rotations[J].Soil Science Society of America Journal,1992,56: 1799-1806.
    [138]周广胜,王玉辉.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26 (2):250-254.
    [139]彭少麟,李跃林,任海.全球变化条件下的土壤呼吸效应[J].地球科学进展,2002,17 (5):705-712.
    [140] Lai R.World soils and the greenhouse effect[J].Global Change Newsletter,1999,37: 4-5.
    [141]张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境,2003,12 (4):500-504.
    [142]张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J].生态学杂志,2001,20 (2):16-19.
    [143]赵世伟,卢璐,刘娜娜,等.子午岭林区生态系统转换对土壤有机碳特征的影响[J].西北植物学报,2006,26 (5):1030-1035.
    [144]马玉红,郭胜利,杨雨林,等l.植被类型对黄土丘陵区流域土壤有机碳氮的影响[J].自然资源学报,2007,22 (1):97-105.
    [145]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,15 (12):2292-2296.
    [146]吕成文,崔淑卿,赵来.基于Hnsoter的海南岛土壤有机碳储量及空间分布特征分析[J].应用生态学报,2006,17 (6):1014-1018.
    [147]赵劲松,袁星,张旭东.土壤溶解性有机质的特性与环境意义[J].应用生态学报,2003,14 (1):126-130.
    [148]王晶,解宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,2003,22 (6):109-112.
    [149] Blair G J, Lefroy R D B,Lisle L.Labile soil carbon f ractions based on the degree of oxidation and the development of a carbon management index for agricultural systems[J].A us. J .A gric. Res . Ecol . ,1995,46: 1459-1466.
    [150] Anderson T H,Domsch K H.Application of eco-physiological quotients ( qCO2 and qD) on microbial biomasses from soils of different cropping histories[J].Soil Biol . Biochem.,1990,22: 251-255.
    [151]苏永中,赵哈林.农田沙漠化过程中土壤有机碳和氮的衰减及其机理研究[J].中国农业科学,2003,36 (8):928-934.
    [152] Ghani A, Dexter M,Perrott K W.Hot-water ext ractable carbon in soils : A sensitive measurement for determining impacts of fertilization , grazing and cultivation [J]. Soil Biol .Biochem.,2003,35: 1231-1243.
    [153]王淑平,周广胜,高素华,等.中国东北样带土壤活性有机碳的分布及其对气候变化的响应[J].植物生态学报,2003,27 (6):780-785.
    [154]邬奇峰,姜培坤,王纪杰,等.板栗林集约经营过程中土壤活性碳演变规律研究[J].浙江林业科技,2005,25 (5):7-9,16.
    [155]罗友进,王子芳,高明,等.不同耕作制度对紫色水稻土活性有机质及碳库管理指数的影响[J].水土保持学报,2007,21 (5):55-58,81.
    [156]姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,41 (1):10-13.
    [157]朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较[J].林业科学研究,2006,19 (4):523-526.
    [158]徐侠,陈月琴,汪家社,等.武夷山不同海拔高度土壤活性有机碳变化[J].应用生态学报,2008,19 (3):539-544.
    [159]王晶,朱平,张男.施肥对黑土活性有机碳和碳库管理指数的影响[J].土壤通报,2003,34 (5):394-397.
    [160] Camberdella C A,Elliott E T.Carbon and nitrogen dynamicsof some fractionfrom cultivated grassland soils[J].Soil Science Society of America Journal ,1994,58: 123-130.
    [161] Bernoux M, Arrouays D, Cerrir C C,et al.Modeling vertical distribution of carbon in oxisols of the western Brazilian amazon rondonia[J].Soil Science Society of America Journal,1998,163: 941-951.
    [162] Wang Y,Ronald A.The impactsof land use change on C turnover in soils[J].Global Biogeochemical Cycles,1999,131: 47-57.
    [163] Solomond D, Lehmann J,Zech W L.Land use effects on soil organic matter properties of chromic luvisolsin semiarid northern Tanzania: carbon, nitrogen, lignin and carbohydrates[J].Agriculture , Ecosystems and Environment ,2000,78: 203-213.
    [164] Motavalli P, Discekici P H,J. Kuhn.The impact of land clearing and agricultural practiceson soil organic C fractions and CO2 effluxin the Northern Guam aquife[J].Agriculture , Ecosystems and Environment,2000,79: 17-27.
    [165]张有实.关于黄土高原水土保持理论基础及方略的探讨[J].中国水土保持,2000, 03:10-13.
    [166]郭彦军,韩建国.农牧交错带退耕还草对土壤化学性质的影响[J].草地学报,2008,04: 782-787.
    [167]许明祥,刘国彬,赵允格.黄土丘陵区土壤质量评价指标研究[J].应用生态学报,2005,16 (10):1843-1848.
    [168]王清奎,汪思龙,高洪,等.杉木人工林土壤活性有机质变化特征[J].应用生态学报,2005,16 (7):1270-1274.
    [169] Ding Y X,Chen J L.Effect of continuous plantation of Chinese fir on soil fertility[J].Pedosphere,1995,5 (1):57-66.
    [170] Falloon P D,Smith P.Modelling refractory soil organic matter[J].Biology and Fertility of Soils,2000,30: 388-398.
    [171]何云峰,徐建民.有机无机复合作用对红壤团聚体组成及腐殖质氧化稳定性的影响[J].浙江农业学报,1998,10 (4):197-200.
    [172] Tisdall J M.Organic matter and water-stable aggregates in soils[J].Journal of Soil Science,1982,33: 141-163.
    [173] Waters A G,Oades J M.Organic matter in water-stable aggregates[J].Advance in Soil Organic Matter Research,1991,163-174.
    [174] Tisdall J M, Smith S E,Rengasamy P.Aggregation of soil by fungal byphae[J].Australian Journal of Soil Research,1997,35: 55-60.
    [175] Christensen B T.Physical fractionation of soil and structural and functional complexity in organic matter turnover[J].European Journal of Soil Science,2001,52: 345-353.
    [176] Six J P, Elliott E T,Combrink C.Soil structure and organic matter:I.Distribution of aggregate-size classes and aggregate-associated carbon[J].Soil Science Society of America Journal,2000c,64: 681-689.
    [177] Baldock J A, Oades J M, Waters A G,et al.Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy[J].Biogeochemistry,1992,15: 1-42.
    [178]安韶山,黄懿梅,李壁成,等.黄土丘陵区植被恢复中土壤团聚体演变及其与土壤性质的关系[J].土壤通报,2006,37(01):45-49
    [179]邓万刚,吴蔚东,罗微,等.土地利用变化对海南热带土壤团聚体的影响[J].中国农学通报,2008,24 (2):242-245.
    [180]范春梅,廖超英,孙长忠,等.黄土高原丘陵沟壑区放牧林草地团聚体水稳性的研究[J].中国农学通报,2005,21(11):399-401
    [181] Conteh A,Blair B J.The distribution and relative losse of soil organic carbon fraction in aggregate size fractions from cracking clay soils(vertisols) under cotton production[J].Australian Journal of Soil Research,1998,36: 257-271.
    [182] Dalal R C,Chan K Y.Soil organic matter in rainfed cropping systems of the Australian cereal belt[J].Australian Journal of Soil Research,2001,39: 435-464.
    [183]文启孝.土壤有机质研究方法[M].北京:北京农业出版社,1984.
    [184] Puget P, Chenu C,J Balesdent.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J].European Journal of Soil Science,2000,51: 595-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700