非集中式空间服务管理与组合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着Internet技术和Web技术的发展和大规模普及应用,地理信息系统(Geographic Information System,GIS)网络化逐渐成为一种发展趋势,各种空间信息设施逐渐成为现代社会重要的基础设施,越来越多的空间数据资源、空间计算资源以及空间应用资源依托互联网已经成为公共获取和访问的网络资源,推动传统意义下的空间信息发布逐渐转移到基于Internet的开放性分布式计算基础设施。近年来,随着Web服务技术的出现与推广,面向服务架构的空间信息共享逐渐成为主流范型。空间服务相关技术在国内外得到很多研究团体的关注,从空间服务的创建到空间服务的使用已经积累了大量成熟经验、技术乃至标准和规范。随着相关研究技术的不断深入,能否在面向空间服务的应用体系下进一步增强空间服务使用效率和空间服务管理扩展性成为了当前空间服务技术的一个研究热点。
     直接将空间服务部署在互联网的方式存在空间服务宿主服务器之间缺少主动协同能力的缺点,因而在空间服务管理(如空间服务的部署、发布、发现以及选择等)上缺少可扩展性,在空间服务组合上缺少提升组合系统性能的能力。随着空间服务实例的增多,上述问题将面临更为巨大的挑战。本文主要针对上述空间服务管理和组合面临的问题进行研究,提出了将空间服务部署到一种基于对等网络的Geo-P2P重叠网络上进行非集中式管理和组合的研究思路。首先提出并研究一种适合于空间服务管理与组合的Geo-P2P网络基础设施,其后针对Geo-P2P网络中的空间服务发现和空间服务组合开展研究。在此过程里,着重研究了Geo-P2P上的网络拓扑、空间服务查询模式、空间服务查询实现、空间服务组合建模以及空间服务组合执行等关键技术。其中,Geo-P2P网络拓扑用来提供空间服务的非集中式高效查询能力并增强整个Geo-P2P的扩展性;空间服务查询模式用来降低查询交互的复杂性;空间服务查询实现主要解决非集中式空间服务查询的具体实现;空间服务组合建模用来解决如何表达非集中式空间服务组合过程;空间服务组合执行则用来解决集中式组合模型的分解以及非集中式组合模型的执行等问题。本文主要工作包括:
     1.非集中式空间服务的管理与组合框架研究:基于P2P技术提出了一种Geo-P2P网络,通过设计满足空间服务消费者、空间服务提供者、空间服务查询者以及空间服务组合者等多种角色的对等网络节点Geo-Peer来增强空间服务支持环境扩展性和组合性能的能力。从系统结构、管理模型以及组合模型等不同方面研究Geo-P2P网络,为开展非集中式空间服务管理与组合技术研究提供基础性设施支撑。
     2. Geo-P2P网络拓扑结构研究:通过改进超级节点的网络拓扑结构提出一种基于多层稀疏拓扑的混合网络拓扑作为Geo-P2P的拓扑基础模型。对空间服务查询过程分析后建立了查询代价计算模型,从一般意义上研究了超级节点与普通节点之间的最佳比率,并提出了一种Geo-P2P网络拓扑模型的动态维护策略,实验验证了Geo-P2P网络拓扑结构及其动态维护策略的有效性。
     3. Geo-P2P网络上的空间服务查询模式研究:提出一种基于信息检索模型的空间服务查询模式,通过将空间服务元数据分离为非空间属性和空间属性来分别建立相似性度量,其中,在非空间属性的相似性度量中,沿用了信息检索技术中矢量模型的相似性度量;在空间属性的相似性度量中,则提出一种包含拓扑、距离以及方向的相似性度量;并用两者之间的加权计算空间服务查询条件和空间服务实体之间的匹配关系。
     4. Geo-P2P网络上的空间服务查询实现研究:提出一种在对等节点间聚簇成组的空间服务查询和一种基于分布式CAN-QTree索引的空间服务查询。前者基于传统P2P网络的内容聚合优化策略,根据每个对等节点上的空间服务相关性维护一种有利于指导查询的空间服务语义组;后者能够提供有保障的空间服务查询性能,它通过在对等节点之间维护结构化的P2P网络拓扑结构CAN,用QuadTree技术来索引空间服务的地理范围,并用CAN的逻辑空间和地理范围的坐标空间之间逻辑映射形成分布式索引CAN-QTree。CAN-QTree能够提供O(n1/2)的空间服务查询性能。上述两种不同的空间服务查询实现在Geo-P2P网络上的有效性均通过实验得到验证。
     5.非集中式空间服务组合建模技术研究:针对空间服务组合行为中的全局流程规约、局部流程规约以及全局流程规约与局部流程规约之间的关系,分别提出了全局流程模型、局部流程模型以及子流程模型。在全局流程模型里,分别用活动、控制流和数据流对空间服务组合的步骤、活动之间次序以及活动之间的消息流量和流向进行建模,并通过关键路径概念来定量评价全局流程模型的优劣。在局部流程模型里,增加了协同活动来建模控制流和数据流在多个子流程模型间的跨越边界行为。
     6. Geo-P2P网络上的空间服务组合执行技术研究:提出一种全局流程模型的间接分解算法,首先将全局流程模型转化为关键路径最短的流程模型,然后再基于消息传输代价最小原则对全局流程模型进行分解。实验表明,与传统的直接分解算法相比,在不同规模的组合消息流量和网络带宽情况下,间接分解算法均优于直接分解算法;而在消息流量规模大或网络带宽有限的情况下,基于Geo-P2P网络的空间服务组合执行明显优于集中式组合机制。
     7.基于论文研究成果构建了Geo-P2P实验原型系统,重点通过对网络节点Geo-Peer的接口设计,使其能够充当空间服务消费者、空间服务提供者、空间服务查询者以及空间服务组合者等多种角色,并基于上述接口的APIs实现了对前面章节研究成果的综合应用与验证,验证了论文工作的有效性和正确性。
With large-scale applications of Internet technology and Web technology, Geographical information system network has become an inevitable trend of development. Various kinds of geospatial information system have gradually become important fundamental infrastructures. More and more geospatial data resources, geospatial computing resources and geospatial applications relying on the Internet have become public accessible network resources. All these have promoted the traditional sense of released geospatial information to shift to the open Internet-based distributed computing infrastructure gradually. In recent years, with the maturation of Web services technology and their promotion, service-oriented architecture for geospatial information sharing has become a mainstream paradigm. Geospatial services have been concerned by many domestic and international research groups. From the creation of geospatial services to the use of geospatial services, we have accumulated a lot of mature experience, technology, standards and norms. As technology continues to be studied in depth, we need to further consolidate and promote geospatial service technology by enhancing the efficient use of geospatial service.
     Hosts of geospatial services can not collaborate actively with each other if we deploy these services directly on the Internet. Such direct deployment also makes geospatial service management (such as geospatial service deployment, publish, discovery and selection) less scalability and depresses the ability of composition system to improve performance. With more and more geospatial services deployed, such questions will be faced with more challenge. In this dissertation, we present a different idea which uses a decentralized geo-p2p overlap network to manage and compose geospatial services. In our methods, we first bring forward a decentralized network infrastructure based on p2p technologies, and then focus on the management and composition for geospatial services with this infrastructure. During our studies, we investigate the technologies of the geo-p2p network topology, geospatial service query model and its implementation on the geo-p2p, modeling and execution of geospatial service composition. Our main contributions are:
     1. We have presented a decentralized framework for management and composition of geospatial services. In our framework, we bring forward a geo-p2p network based on the traditional p2p technology. We also design geo-peers to construct such decentralized network. All these geo-peers can act as geospatial service consumers, providers, discoverers and composers synchronously. With these active geo-peers, we can enhance the scalability and composition performance of geo-p2p networks. We study different levels of geo-p2p networks from system architecture, geospatial service management model and geospatial service composition model to support further research.
     2. We have studied geo-p2p network topology and present a hybrid network topology based on the multi-layer sparse topology as well as its dynamic maintenance algorithm. We first establish a geospatial service query cost model by modeling the service discovery process, and then compute an optimal ratio between super geo-peers and basic geo-peers from a general sense of geospatial service discovery. Finally, we give a dynamic maintenance algorithm for the geo-p2p network topology. Experimental results support well with our theoretical conclusions.
     3. We have probed into query models for geospatial services on geo-p2p networks and present a new query model based on information retrieval technology. In the query model, we propose a non-spatial similarity function and a spatial similarity function to evaluate the degree similarity between a query and a geospatial service partially. In the non-spatial similarity function, both a geospatial service and a query are represented as vectors as those in information retrieval. The vector model proposed can evaluate the degree of similarity of a service and a query as the correlation between those two vectors non-spatially. In the spatial similarity function, both a geospatial service and a query are represented as rectangles. The topology measure, distance measure and direction measure between those two rectangles can be used to evaluate the degree of similarity between the service and the query spatially. Therefore, we can use the two weighted functions ultimately to compute the degree of similarity between each geospatial services stored in the geo-p2p networks and the user query.
     4. We have implemented two kinds of geospatial service query on geo-p2p networks. The first implementation is to cluster geo-peers into different geospatial semantic groups according to the correlation between geo-peers. This idea is coming from an optimization mechanism called contents aggregation for shared-resources discovery over traditional p2p networks. The query can walk between those groups biasedly, so it can get a better performance in those heuristic groups. The other implementation is to maintain a distributed index called CAN-QTree for geospatial service query over geo-p2p networks. In such method, all geo-peers to be queried interrelate with each other using a structured topological network called CAN, and the metadata of their geospatial services are indexed by a Quadtree data structure. With a deliberate mapping between the zones of the CAN and the underlying space of the Quadtree, we can maintain a distributed index call CAN-QTree on geo-p2p networks to provide a O(n1/2) search performance. All those two methods are verified by our experiments in this dissertation.
     5. We have explored modeling decentralized geospatial service composition and present global process model, local process model and sub-process model to represent overall geospatial service composition, corresponding geospatial service composition of each geo-peer on geo-p2p network and their relationship. In the global process model, we use activities, control-flows and data-flows to model steps of geospatial service composition, sequences between all activities and messages. We also evaluate quantitatively those global process models through a critical path concept. In local process model, we add collaborative activities to model the control-flows or data-flows which span different local processes.
     6. We have investigated decentralized executions for geospatial service composition on geo-p2p networks. We present an indirect algorithm for decomposing a global process into different local processes based on best process concept. In the algorithm, we first turn a global process into a best process without losing any functions, and then decompose the best process into several local processes on the principle of minimizing messages transmission between those local processes after decomposition. Our simulations show that the algorithm is better than the traditional direct decomposition algorithm and it is also superior to the implementations of centralized execution for geospatial service composition in the circumstances with large messages or limited network bandwidth.
     7. We finally design and implement an experimental prototype system according to the research presented above. In our system, we design different interfaces for geo-peers to act as geospatial service consumers, geospatial service providers, geospatial service discoverers and geospatial service composers synchronously. Our experimental prototype system shows that our achievements are effective and practical.
引文
[1]宋亚超,闾国年,张宏.基于Web Service的Internet GIS集成与应用,地球信息科学, 2004, 06(01).
    [2]龚健雅,贾文珏,陈玉敏,谢吉波.从平台GIS到跨平台互操作GIS的发展,武汉大学学报:信息科学版, 2004, 29(11).
    [3]鲍虎军等,我国GIS技术与应用的现状和对策, www.gissky.net, 2006
    [4] McDonnel Rachael. International GIS Dictionary. Cambridge: Geoinformation International, 1995
    [5]陈述彭,鲁学军,周成虎.地理信息系统导论.北京:科学出版社, 1999
    [6] Eric Newcomer, Greg Lomow. Understanding SOA with Web Services. www.broadview.com.cn
    [7] World Wide Web Consortium.Extensible Markup Language (XML) 1.0 (Second Edition).http://www.w3.org/TR/REC-xml, 2000
    [8] Google Earth Blog (2005) Hurricane Katrina Archives. Available: http://www.gearthblog.com/blog/archives/hurricane_katrina/2. March 2007.
    [9] Google Maps: http://Maps.google.com, 2007
    [10] Liping Di, Aijun Chen, Yaxing Wei, Yang Liu, and Wenli Yang. The Development of a Geospatial Grid by Integrating OGC Web Services with Globus-based Grid Technology. http://www.crisisgrid.org/GISWorkshop/documents/Di-GGF15-1.pdf. 2005.04
    [11] Liping Di. A Framework for Intelligent Geospatial Knowldge Discovery at Web Service Environment. In Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2004), Anchorage, AK. September 2004.
    [12] The OpenGIS Abstract Specification, Topic 7: The Earth Imagery Case, Version 5, 2004, http://www.opengis.org
    [13] WS-ReliableMessaging: ftp://www6.software.ibm.com/software/developer/library/ ws-reliable-messaging200403.pdf
    [14] Mark Hapner, Rich Burridge, Rahul Sharma. Java Message Service: JMS is an APIs for Accessing enterprise Messaging Systems from Java Programs, http://dlc.sun.com/pdf/816-5904-10/816-5904-10.pdf
    [15] BEA White Paper. BEA AquaLogic Service Bus and WebSphere MQ in Service-Oriented Architectures. http://www.bea.com/content/news_events/white_ papers/BEA_AQL_ServiceBus_MQ_SOA_wp.pdf. 2006
    [16] World Wide Web Consortium. Simple Object Access Protocol (SOAP) 1.1. http:// www .w3.org/TR/SOAP, 2000
    [17] WS-Addressing: http://www.w3.org/Submission/ws-addressing/
    [18] WS-MessageDelivery: http://www.w3.org/Submission/ws-messagedelivery/
    [19] Web Service Policy Framework (WS-Policy): ftp://www6.software.ibm.com /software/developer /library/ws-policy.pdf
    [20] Web Services Choreography Description Language(WS-CDL): http://www.w3.org/ 2002 /ws/ chor/#published
    [21] WS-Reliability: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev= wsrm
    [22] WS-Security: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
    [23] WS-Eventing: http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
    [24] WS-Notification: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
    [25] Darren Jefford, Kevin B. Smith, Ewan Fairweather. Professional BizTalk Server 2006. Wiley Publishing, Inc. 2007
    [26] Active Endpoints: About WS-Human Task and ActiveBPEL for People. http://www.activebpel.org/infocenter/ActiveBPEL/v41/topic/com.activee.workflowep.customization.doc/WSHT_Adapter.pdf.
    [27] C. Yang et al., Performance-Improving Techniques in Web-Based GIS, Geographical Information Science, vol. 19, no. 3, 2005, pp. 319–342.
    [28] ISO19119/OGC Topic12.The OpenGIS Service Architecture.Version 4.3,2002
    [29] World Wide Web Consortium.Extensible Markup Language (XML) 1.0 (Second Edition).http://www.w3.org/TR/REC-xml, 2000
    [30] OGC 03-025. OpenGIS Web Services Architecture. http://www.opengis.org/docs /03-025.pdf, 2003
    [31] Open Geospatial Consortium. Web Map Service Implementation Specification, Version 1.1.1, OGC 01-068r3, 2002, http://www.opengis.org/techno/specs/ 01-068r3.pdf
    [32] Vretanos P. A. (Ed.) Web Feature Service Implementation Specification, Version 1.0.0 OGC 02-058, 2002, http://www.opengis.org/techno/specs/02-058.pdf
    [33] Open Geospatial Consortium.Web Coverage Service (WCS) 1.0, 2003, http:// www.opengeospatial.org/ docs/03-065r6.pdf
    [34] D. Booth et al., eds., Web Services Architecture, W3C Working Group note, Feb. 2004.
    [35] World Wide Web Consortium. Web Service Decription Language (WSDL) 1.1. http://www.w3.org/ TR/wsdl, 2001
    [36] UDDI.org UDDI Technical White paper. http://www.uddi.org, 2001
    [37] Open Geospatial Consortium. OpenGIS Web Processing Service, Version: 1.0.0, 2007, http://www.opengeospatial.org/ docs/05-007r7.pdf
    [38] Norman Wlesh. http://norman.walsh.name/2005/02/24/wsdl
    [39] Fielding R T. Architectural Styles and the Design of Network-based Software Architecture. Doctoral Dissertation,Dept. of Computer Scicence, Univ. of California, Irvine, 2000
    [40] Brian Delacey bdelacey, Web 2.0 and GIS-From Ptolemy to Tufte and Beyond, Philly Emerging Tech Conference, http://www.phillyemergingtech.com/, March, 2008
    [41] The GeoWeb: Spatially Enabling the Next-Generation Web. An ESRI White Paper, April 2006.
    [42] Brian J. Delacey, Web 2.0 abd GIS, Philly Emerging Tech Conference, http://www.phillyemergingtech.com/, March 2008
    [43] Google (2007) Hurricane Katrina Imagery. Available: http://earth.google.com/ katrina.html2 March 2007.
    [44] ESRI Geography Network (Web Service). http://www.amergeog.org/ geographynetwork.htm
    [45] ESRI.An Overview of ArcWeb Services. http://www.esri.com/library/whitepapers/ pdfs/ arcweb-services.pdf, 2004
    [46] Tom Barclay,et al.TerraService.NET:An Introduction to Web Services.2002,http:// www.ec-gis.org/ docs/F5130/WEBSERVICES.PDF
    [47] MapPoint.http://www.microsoft.com/mappoint/products/webservice/default.mspx, 2005
    [48] MSN Maps: http://Maps.msn.com, 2006
    [49] http://local.yahooapis.com/MapsService/V1/geocode
    [50] Yahoo! Maps: http://Maps.yahoo.com, 2006
    [51] PRWeb eBooks: LightPole Announces Integration with Yahoo! Fire Eagle Geo-location Platform: Mobile Posting and My Channels Features among Other New LightPole Enhancements. http://mediaserver.prweb.com/pdfdownload/886214/ 6/pr.pdf.
    [52] Yahoo FireEagle-A Platform Service for Geo Information, November 2007. http://www.techcrunch.com/2007/11/04/yahoo-fireeagle-a-platform-service-for-geo-information/
    [53] http://www.earthtools.org/webservices.htm
    [54] http://wms.jpl.nasa.gov/
    [55] OpenLayer Project: http://www.openlayers.org/, 2006
    [56] Sogou地图: http://www.go2map.com/down/freemap/, 2008
    [57] Scott Pezanowski, Brian Tomaszewski, Alan M. MacEachren, An Open GeoSpatial Standards-Enabled Google Earth Application to Support Crisis Management, 2007
    [58] ZoneTag: ZoneTag.Research.Yahoo.com, 2006
    [59]张登荣.地理空间信息共享与服务技术研究,空间信息网格(SIG)项目技术报告,浙江大学, 2006
    [60] Jia Wenjue, Gong Jianya, Li Bin, GIS Integration and Interoperability Based On GIS Service Chain, 2005
    [61] Tsou M.H. and Buttenfield, B.P. A Dynamic Architecture for Distributed Geographic Information Services. Transactions in GIS, 6(4):355-381, 2002
    [62] Bernard L., Einspanier U., Lutz M.,et al. Interoperability in GI Service Chains the way Forward. Proceedings of the 6th AGILE conference on Geographic Information Science, pp179-188, 2003
    [63] Di Liping, GeoBrain-A Web Services based Geospatial Knowledge Building System, 2006
    [64] Deng Meixia, Di Liping,Utilization of Latest Geospatial Web Service Technologies for Remote Sensing Education Through GeoBrain System
    [65] Web Services Business Process Execution Language(WS-BPEL): http://www.oasis -open.org/ committees/tc_home.php?wg_abbrev=wsbpel
    [66]吴焕萍.地理信息Web服务集成关键技术研究.北京大学博士学位论文, 2005.6
    [67]杨霞.地理信息服务组合与空间分析服务研究.武汉大学博士学位论文, 2004.11
    [68]王方雄.基于原子服务的网格空间信息服务互操作研究.武汉大学博士学位论文, 2005.4
    [69]唐宇.空间信息栅格(SIG)系统框架、服务体系与服务聚合技术研究.国防科技大学博士学位论文, 2004.10
    [70]陈荦.分布式地理空间数据服务集成技术研究.国防科技大学博士论文, 2005.10
    [71]刘书雷.基于工作流的空间信息服务聚合技术研究.国防科学技术大学博士学位论文, 2006.10
    [72] SR Ponnekanti and A Fox, SWORD: A Developer Toolkit for Web Service Composition, the Eleventh International World Wide Web, Honolulu, Hawaii, May 2002
    [73] Abhijit Patil, Swapna Oundhakar, Amit Sheth, and Kunal Verma, METEOR-S Web Service Annotation Framework, the 13th International World Wide Web Conference, New York, USA:533-562
    [74] ActiveBPEL Development Server User’s Guide, Version 3.0, Novermber 2006
    [75] Active Enpoints: http://active-endpoints.com, 2007
    [76]杨艳萍.自动Web服务组合关键技术研究.国防科学技术大学博士学位论文, 2007.4
    [77]杜宗霞,怀进鹏,王勇,张煜,组合Web Service支撑系统的研究与实现,北京航空航天大学学报, 2003, 29(10): 889-892
    [78] Jun Yan, Yun Yang, Gitesh K. Raikundalia, SwinDeW—A p2p-Based Decentralized Workflow Management System, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 5, SEPTEMBER 2006
    [79] Jun Shen, Jun Yan1, Yun Yang, SwinDeW-S: Extending P2P Workflow Systems for Adaptive Composite Web Services, Proceedings of the 2006 Australian Software Engineering Conference, 2006
    [80] Boualem Benatallah, Marlon Dumas, Quan Z.Sheng, and Anne H.H.Ngu, Declarative Composition and Peer-to-Peer Provisioning of Dynamic Web Services, the 18th International Conference on Data Engineering (ICDE02), San Jose, California, pp: 253-260, 2002
    [81] Boualem Benatallah, Marlon Dumas, and Quan Z.Sheng, Facilitating the Rapid Development and Scalable Orchestration of Composite Web Services, Distributed and Parallel Databases, pp: 17:5-37, 2005
    [82] Girish Chafle, Sunil Chandra, and Vijay Mann, Decentralized Orchestration of Composite Web Services, the 13th international World Wide Web conference, New York: 134-143
    [83] M.G.Nanda and N.Karnik, Synchronization Analysis for Decentralizing Composite Web Services, the ACM Symposium on Applied Computing (SAC 2003), Melbourne:407-414
    [84] Christoph Schuler, Roger Weber, Heiko Schuldt, Hans-J. Schek. Peer-to-Peer Process Execution with OSIRIS. 1st International Conf. on Service-Oriented Computing, Page 483-498, 2003
    [85] Roger Weber, Christoph Schuler, Patrick Neukomm, Heiko Schuldt. Web Service Composition with O’GRAPE and OSIRIS, 29th International Conf. on VLDB, 2003
    [86] Christoph Schuler, Roger Weber, Heiko Schuldt, Hans-J. Schek, Scalable Peer-to-Peer Process Management -The OSIRIS Approach, Proceedings of the IEEE International Conference on Web Services (ICWS'04), 2004
    [87] Andrew Harrison, Dr Ian J. Taylor, WSPeer-An Inerface to Web Service Hosting and Invocation, Proceeding of the 19th IEEE International Paralledl and Distributed Processing Symposium (IPDPS'05)
    [88] WSPeer Project: http://www.wspeer.org, 2007
    [89] Geospatial Service-Oriented Architecture, An ESRI White Paper, June, 2007
    [90] Chonggang Wang, Bo Li. Peer-to-Peer Overlay Networks: A Survey. April 20, 2003
    [91] D. Harel. State Charts: A Visual Formalism for Complex Systems, Science of Computer Programming, 8: 231–274, 1987
    [92] R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes, part I/II. Journal of Information and Computation. 1992, 100(1): 1-77.
    [93] R. Milner. Communication and Concurrency. Englewood Cliffs: Prentice-Hall, 1989
    [94] Tadao Murata, Petri Net: Properties, Analysis and Applications, Proceedings of the IEEE, 1989, 77(4): 541-580
    [95] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1997.
    [96] M. Faloutsos, P. Faloutsos, C. Faloutsos. On Power-Law Relationships of theInternet Topology. SIGCOMM, 1999.
    [97] Zhao, B. Y., et al. Tapestry: A Resilient Global-Scale Overlay for Service Deploymenta Super-Peer Network. IEEE JSAC, 2004
    [98] I.Stoica, R.Morris, D.Karger, F.Kaashoek, and H.Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet applications. In Proceedings of ACM SIGCOMM’2001, August 2001. [online]: http://www.pdos.lcs.mit.edu/chord/#pubs
    [99] A.Rowstron and P.Druschel. Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany, November 2001.
    [100] Simon Cox, Paul Daisey, etc. OpenGIS Geography Markup Language (GML) Implementation Specification, 2004
    [101] Kurt B, OpenGIS Reference Model, 2003, http://portal.opengeospatial.org/files/
    [102] OpenGIS Consortium, Implementation Specification: Simple Features Specification for CORBA, Version 1.0, 1998
    [103] OpenGIS Consortium, Implementation Specification: Simple Features Specification for OLE/COM, Version 1.1, 1999
    [104] OpenGIS Consortium, Implementation Specification: Simple Features Specification for SQL, Version 1.1, 1999
    [105] Menasce D A. QoS issues in Web Service. Internet Computing, 6(6):72~75, 2002
    [106] Yutu Liu, Anne H.H.Ngu, Liangzhao Zeng. QoS Computation and Policing in Dynamic Web Service Selection. In proceeding of WWW, New York, USA, 2004, 66~73
    [107] Gnutella: http://www.gnutella.com/, 2005
    [108] KaZaA: http://www.kazaa.com, 2006
    [109] eMule project: http://www.emule-project.net/, 2004
    [110]郑纬民,胡进锋,代亚非,袁泉,马永泉,宁宁,董海涛,洪春辉,张桦楠,对等计算研究概论,中国计算机学会通讯, http://www.ccf.org.cn/web.resource/newspic/2005/9/ 20/duideng.pdf, 2005
    [111] Ramesh Subramanian, Brian D. Goodman. Peer-to-Peer Computing: The Evolution of a Disruptive Technology. Idea Group Publishing. 2005
    [112] Panagiotis A. V. Web Feature Service Implementation Specification, 2005, http://portal.opengeo spatial.org/files/?artifact_id=7176
    [113] Ricardo Baeze-Yates, Berthier Ribeiro-Nero. Modern Information Retrieval. China Machine Press. 2004
    [114]左怀玉,吴京,唐宇,陈荦,一种新的空间数据服务发现模型及其在P2P网络上的实现,信号处理, Vol.25, No.6, 2009
    [115] G. Salton and M. E. Lesk, Computer Evaluation of Indexing and Text Processing. Journal of the ACM, 15(1):8-36, January 1968
    [116] G. Salton and C. Buckley. Term-Weighting Approaches in Automatic Retrieval. Information Processing and Management, 24(5):513-523, 1988
    [117] M. Andrea Rodriguez, Max J. Egenhofer, Comparing Geospatial Entity Classes: An Asymmetric and Context-Dependent Similarity Measure, International Journal of GeographicalInformation Science, 18(3): 229-256.
    [118] A. Tversky. Features of Similarity. Psychological Review, 84(4), 327-352, 1977
    [119] Caro G.D, Ducatelle F, Heegaard P, Jelasity M, Montemanni R, Montresor A. Evaluation of Basic Services in ahn, P2P and Grid Networks. 2005. http://www.cs.unibo.it/bison/deliverables /D07.pdf
    [120] Wu J. Handbook of Theoretical and Algorithmic Aspects of Ad Hoc, Sensor, andPeer-to-Peer Networks. New York: Auerbach, 2006. 617-642.
    [121] Zuo Huaiyu, Jing Ning, Deng Yadan, Chen Luo. CAN-QTree: A Distributed Spatial Index for Peer-to-Peer Networks. Proceeding of the 10th IEEE International Conference on High Performance Computing and Communications (HPCC-2008). Dalian, China. September, 2008.
    [122] S. Ratnasamy. A Scalable Content-Addressable Network. In Ph.D. Dissertation University of California Berkeley, 2002.
    [123] Kedem G., The quad-CIF tree: A Data Structure for Hierarchical Online Algorithms. In Proceedings of the 19th Design Automation Conference, pp.352-357. Las Vegas, 1982
    [124] Robert E. Tarjan, Amortized computational complexity. SIAM Journal on Algebraic and Discrete Methods, 6(2):306-318, 1985
    [125] Wanqian David Liu. A Distributed Data Flow Model for Composing Software Services. Ph.D. Dissertation of Stanford University, June 2003
    [126] Fabio Casati, Mehment Sayal, and Ming-Chien Shan, Developing e-services for composing e-services, the 13th International Conference on Advanced Information Systems Engineering(CAiSE 2001), Interlaken, Switzerland,2001, Lecture Notes in Computer Science, vol.2068: 171-186
    [127] Workflow Management Coalition. The Workflow Reference Model. WFMC TC00-1003, 1994
    [128]范玉顺.工作流管理技术基础[M].北京:清华大学出版社, 2001
    [129]左怀玉,吴京,薛丹,唐宇,陈荦.基于对等网络的空间服务组合执行技术研究,信号处理,已录用
    [130] Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar. Introduction to Parallel Computing. Second Edition. China Machine Press. 2005
    [131]刘必欣.动态Web服务组合关键技术研究.国防科学技术大学博士学位论文, 2005.10
    [132]刘必欣,王玉峰,贾焰,吴泉源.一种基于角色的分布式动态服务组合方法.软件学报. Vol.16, No.11. 2005
    [133] Xiaohui Gu, Klara Nahrstedt, Bin Yu. SpiderNet: An Integrated Peer-to-Peer Service Composition Framework. Proc. of IEEE International Symposium on High-Performance Distributed Computing (HPDC-13), Honolulu, Hawaii, 2004
    [134] Liu BiXin, Wang YuFeng, Jia Yan, Wu QuanYuan, A Role-Based Approach for Decentralized Dynamic Service Composition, Journal of Software, 2005, Vol.16, No.11
    [135] Liu ShuLei, Liu YunXiang, Zhang Fan, Tang GuiFen, Jing Ning. A Dynamic Web Services Selection Algorithm with QoS Global Optimal in Web Services Composition. Journal of Software, 2006
    [136] Mangala Gowri Nanda, Satish Chandra, Vivek Sarkar. Decentralizing Execution of Composite Web Service. OOPSLA’04, Oct.24-28,2004
    [137] Apache Web Services Project. http://ws.apache.org/axis, May, 2005
    [138]李善平,尹奇韦,胡玉杰,郭明,付相君.本体论研究综述.计算机研究与发展, 41(7):1041-1052, 2005
    [139] Harry Chen, Geospatial Semantic Web, An invited talk at UMBC, March 27, 2007
    [140] A. Rowstron and P. Druschel. Storage management and caching in PAST, a largescale, persistent peer-to-peer storage utility. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP’01), (Banff, Canada), pp. 188–201, Oct. 2001.
    [141]莫淘,全面接触WSE 3.0和Windows Communication Framework (Indigo),Developer and Platform Evangelism Microsoft Corporation. http://download. microsoft.com/download/4/8/3/483f1af8-f41d-4cca-9717-24adb79a87db/ARC300-motao.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700