空间信息网安全组网关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间是继陆地、海洋和空中之后,人类又一新的活动与发展领域,在全球遥感、观测、信息传输和力量应用方面,具有巨大的社会、经济和军事价值,随着对空间资源的依赖性日益增加,世界各国都在积极发展自己的航天力量,谋求空间优势,空间信息网是连接陆海空天一体化信息系统的纽带,是一项战略性基础设施,它的建立和建成必将对我国综合国力的增强产生深远的影响。
     为适应我国航天事业在空间领域的发展,围绕建立高可靠空间安全信息网络体系的需求,立足于空间信息网自主运行和快速反应的特点,集中力量对空间信息网安全组网关键技术进行研究,并取得了如下创新性成果:
     (1)提出了空间信息网安全组网模型,针对MAC和路由两方面组网关键技术,通过对MAC层的攻击检测和通信行为监测进行节点的MAC层信誉评估,并以此为依据进行多令牌管理,实现安全、公平的介质访问控制;设计适合空间信息网特点的自适应、自配置、自管理、具有负载均衡能力的高效分布式路由协议,并为其建立基于信誉的主被动相结合的安全保障机制;充分挖掘网络层和MAC层的相关性,进行跨层联合优化,实现空间与临近空间协同组网及网络安全防护,使空间信息系统可以高效、安全的互联互通。
     (2)提出了空间信息网动态路由协议。依据空间信息网特点,充分利用卫星、空间站等航天器运行的规律性和可预知性,合理地划分时间周期,将空间信息网动态拓扑结构规约成按时间段分隔的一系列连续的相对静态拓扑,从而简化路由控制过程;采用静态配置与动态调整相结合的策略,以较低的开销实现适合空间信息网拓扑高动态变化、资源受限特点的自适应、自配置、自管理、具有负载均衡能力的高效分布式路由协议。
     使用网络模拟软件NS2在SUN工作站上搭建空间信息网仿真平台,对所提出的路由协议进行了仿真测试,结果表明:动态路由协议具有良好的负载均衡能力,有效地提高了重负载情况下的网络性能;具有良好的扩展性和鲁棒性,当网络规模增加和拓扑变化时,路由收敛迅速,开销增加不明显,网络平均吞吐率下降较小,有效地提高了网络的抗毁性和健壮性,具有良好的路由性能。
     (3)提出了基于信誉度的主被动相结合的路由安全保障机制。分析路由协议面临的安全威胁,研究纵深保护的安全配置,以信息的保护、监测、反应和恢复四个方面对路由安全实施动态保障。针对网络的脆弱性,建立空间节点信誉量化、计算、评估和交换机制,实现网络成员信誉的准确定义和精确量化;建立分布式入侵检测系统,通过移动代理进行网络联合检测提高检测的正确率并有效防止恶意节点的诬陷行为;建立重构自恢复机制,进行入侵反应,通过孤立、隔离、路由重构等手段消除入侵根源;建立安全机制分级运行模式,根据网络安全状况和安全要求,采用不同等级的安全策略,节省全网的计算与通信资源。
     对路由安全机制的仿真表明:安全保障机制能够提高空间信息网路由安全性,使其具有对特定攻击的免疫性及对各种攻击的快速检测、诊断、反应能力,具有良好安全防护性能,当遭到攻击时,重构自恢复机制能够迅速恢复网络性能,提高网络抗毁生存能力。
     (4)提出了具有安全性保障的介质访问控制协议。通过对MAC层的攻击检测和通信行为监测进行节点的信誉评估,并以此为依据进行多令牌管理,多个持有令牌的节点采用IEEE802.11 DCF方式共享信道,从而实现安全、公平的介质访问控制。
     对具有安全性保障的介质访问控制协议仿真表明:协议能够发现MAC层恶意行为并进行有效反制,促使网络节点遵守协议规则,提高了网络MAC层安全性,与路由安全机制一起提高了网络安全防护能力。
     (5)设计开发了具有自主知识产权的空间信息网安全组网原型实验系统。原型实验系统搭建在局域网之上,由控制中心和终端节点组成,通过在每个节点设置网络过滤器,利用控制中心的拓扑信息,有选择地控制数据包的接收、转发,强制两个原本直接通信的网络节点必须经过其它节点的路由才能进行通信,并仿真节点移动性,将单跳共享网络模拟成空间高动态多跳网络,建立空间信息网拓扑,实现对安全组网关键技术的演示验证。
     上述成果的取得,对于保证空间信息网的安全性、可靠性、抗毁性与健壮性具有重要意义。
Space, together with land, ocean and air, is another field for human's activities and development. Space is of great social, economic and military value in global remote sensing, observation, information transmission and power application. With the dependence on space resources increases, countries all over the world take active part in expanding their spaceflight force in order to gain the upper hand in space. The space information networks is a vital nexus between the integrated information systems of land, ocean, air and sky; it is a strategic infrastructure. The foundation and establishment of the space information networks must profoundly impact the comprehensive national strength of our country.
     In order to adapt the development of our country's spaceflight cause to space, the technology of safely organizing network in the space information networks was focused on. The research, based on the demand of building the space information networks with high credibility and security, considering its characteristics of autonomous management and rapid reaction, has acquired the following innovative results.
     (1) Construction of a model for safely organizing network in space information networks. The model, combining key techniques in MAC and routing layers, assesses nodes' reputation through attack detection and monitoring of communication in MAC layer, and the assessed reputation is a basis for multi-token management so that secure and fair media accessing control can be achieved. And then an efficient distributed routing protocol was designed to accommodate the characteristics of space information networks. This proposed routing protocol is self-adapted, self-configured, self-managed and is able to balance load. And also a security mechanism based on reputation combining active and passive method was designed for the routing protocol. Further more after fully taping the network layer and MAC layer's correlation, a joint cross-layer optimization was done to realize cooperated network organization in space and near space so that the space information system can interconnect efficiently and safely.
     (2) Design of a dynamic routing protocol for space information networks. By make full use of feature that in space information networks the operations of satellites, space stations and other spacecraft are regular and predictable, a reasonable division of cycle time separated dynamic topology into a series of consecutive relatively static topology by the time in order to simplify the process of routing control. A policy that combines static configuration and dynamic adjustment was proposed to achieve the efficient distributed routing protocol with the abilities of self-adapting, self-configuring, self-managing and load balancing. The routing protocol can be implemented with comparably low cost and is suitable for space information networks features that topology is highly dynamically changed and resource is constrained.
     The software NS2 for network simulation built on SUN workstation was used as space information networks simulation platform to simulate the proposed routing protocol. The results show that the dynamic routing protocol can well balance load and effectively improve network performance under heavy traffic, at the same time, it is also scalable and robust because when the size of the network is enlarged or topology is changed, the routing protocol can rapid convergence while neither increase cost nor decrease throughput. The routing performance is outstanding, which enhance resistance and robustness of the network.
     (3) Design of a secure mechanism based on reputation combining active and passive method. Based on the analysis of security threats faced by routing protocol and research on security configuration with deep protection, the mechanism dynamically safeguards the security of routing protocol in each of the four aspects including information protecting, monitoring, reacting and resuming. Afterwards against the vulnerability of the network, a scheme for quantifying, computing, evaluating and exchanging reputation between spatial nodes was proposed to achieve accurate definition and precise quantization of reputation for nodes in network; A distributed intrusion detection system was constructed, in which mobile agents were used to increase the correct rate and prevent malicious acts of nodes through combined detection; A reconstruction and self-healing mechanism was proposed, which reacted to the invasion and eliminate the invasion root in the way of isolating and insulating the malicious nodes and reconstructing routing path; A security mechanism grading operation mode was established, which chose different levels of security strategy according to network security state and safety requirements so that the network could save its computation and communication resources.
     The simulation results of the proposed security mechanism for routing protocol show that it can enhance security of routing protocol of space information networks and make network immune to special attacks and enable network good safety performance with rapid detecting, diagnosing and reacting to various invasions. The experimental results also indicate that the reconstruction and self-healing mechanism can rapid restore the network performance and enhance resistance of network simultaneously.
     (4) Design of MAC protocol with protection of security. The assessing of nodes' reputation is accomplished through attack detection and monitoring of communication in MAC layer, and the assessed reputation is used as a basis for multi-token management. A node possessed with several tokens can share the channel in the way as IEEE802.11 DCF, so that secure and fair media accessing control can be achieved.
     The simulation results show that the MAC protocol with protection of security can detect malicious behaviors in MAC layer and take effective counter accordingly. The proposed MAC protocol makes nodes comply with the rule so that it can improve the security in MAC layer and enhance the ability of network protection along with routing security mechanism.
     (5) Design and development of a prototype of safely organized space information networks system with independent intellectual property rights. The prototype experimental system is built on LAN, composed with a central controller and terminal nodes. Every node configured a net filter using topology information from central controller receives and relays data packets selectively. Two nodes which are able to directly connect can be forced to communicate through another node. In the simulation of mobility of nodes, the single-hop sharing network was treated as a highly dynamic spatial multi-hop network. A topology of space information networks was constructed and security networking key technologies were verified.
     Accordingly, it has a very important meaning of ensuring the security, dependability, destruction-resistance, and robust of the space information networks.
引文
1. E. Falletti et al. Integrated services from high-altitude platforms:a flexible communication system[J], IEEE Commun. Mag.,2006,44(2):85-94.
    2.王彦广,李健全,李勇等,近空间飞行器的特点及其应用前景[J],航天器工程,2007,1,16(1):50-57
    3. Grace D, Likitthanasate P. A business modeling approach for broadhand services from high altitude platforms[A]. Invited paper for the International Conference on Telecommunications (ICT)[C]. Madeira, Portugal,2006,5
    4.尹志忠,李强,近空间飞行器及其军事应用分析[J],装备指挥技术学院学报,2006,10,17(5):64-68
    5. Ibnkahla M, Ralman Q M, SuIyman A I, et al, High-Speed Satellite Mobile Communications Technologies and Challenges[J]. Proc of the IEEE,2004,92(2):312-339.
    6.0. Korgak and F. Alagoz, "Priority-based Adaptive Shortest Path Routing in IP over LEO Satellite Networks"[A],23rd ALAA International Communications Satellite Systems Conference (ICSSC'05)[C], Rome,Italy, Sept.2005.
    7. Office of the Secretary of Defense. Unmanned aircraft systems roadmap 2005-2030[M].USA:Office of the Secretary of Defense,2005:32-36.
    8.曾斌,李之棠,王威等,面向天基实时系统的QoS监控算法研究[J],计算机科学,2007,34(1):74-77
    9.谢春燕,曾风,李为民,天基支援下区域反导组网作战链路规划[J],火力与指挥控制,2007,4,32(4):21-25
    10.Zygmunt J. Haas, Joseph Y. Halpern, and Li Li. Gossip-based ad hoc routing [J]. IEEE/ACM Transactions on Networking (TON).2006,14(3):479-485.
    11. C. Murthy and B. Manoj, Ad Hoc Wireless Networks:Architectures and Protocols[M], Prentice Hall PTR,2005:55-77.
    12. C. Drula, C. Amza, F. Rousseau, A. Duda. Adaptive energy conserving algorithms for neighbor discovery in opportunistic Bluetooth networks [J]. IEEE Journal on Communications.2007,25(1):96-107
    13. A. Kumar. Analysis and optimization of IEEE 802.11 wireless local area networks [A]. Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks [C]. Trentino: IEEE,2005,151-169
    14. Sheng Zhong, Li Erran Li, Yanbin Grace Liu and Yang Richard. On designing incentive-compatible routing and forwarding protocols in wireless ad-hoc networks [J]. Wireless Networks.2007,13(6):799-816
    15. Y Li, A. Ephremides. On designing incentive-compatible routing and forwarding protocols in wireless ad-hoc networks [J]. Ad Hoc Networks.2007,5(7):959-973.
    16.苑品,张军,柳重堪,移动卫星网星际路由协议及算法的现状分析[J],2006,3,27(2):7-13.
    17. Dormer, R. Zamorano, M. Costache. Maximum Persistence Routing in Satellite Constellation Networks[A], In Proceedings of AIAA 22nd International Communication Satellite Systems Conference and Exhibit (ICSSC 2004)[C], Monterey, CA, May,2004: 3167-3178
    18. A. Dormer, M. Berioli, M, Werner. MPLS-based satellite constellation networks[J], IEEE Journal on Selected areas in Communications, March,2004:438-448
    19. Q. J. Huang, B. S. Yeo, P. Y Kong; An enhanced QoS routing algorithm for provision of end-to-end delay guarantee in low earth orbit satellite networks[A], In Proceedings of IEEE Wireless and Communications and Networking Conference (WCNC 2005)[C], March,2005:1485-1490.
    20.白建军,卢锡城,彭伟,LEO卫星网络中一种简洁的星上分布式路由协议[J],软件学报,2005,16(12):2139-2149
    21. K. D. Wang. B. Tiara, K. Ch. Yi. Packet Routing algorithm for LEO satellite constellation network[J], Journal of Electronics (China), January,2005:77-84.
    22.FATIH ALAGOZ AND OMER KORCAK, Exploring the Routing Strategies in Next-Generation Satellite Networks[J], IEEE Wireless Communications, June 2007,79-88
    23. H. Tsunoda, K. Ohta, N. Kato, and Y. Nemoto, "Avoiding TCP false retransmission in LEO satellite network using TTL information"[J], Electronics and Communications in Japan,2005,88(1), pp.64-71
    24.Ferreira A., Caltier J., Penna P. Topological design, routing and hand-over in satellite networks[A]. In:Stojmenovic I. ed. Handbook of Wireless Networks and Mobile Computing[C]. New York:John Wiley and Sons,2002,473-507
    25.孙利民,卢泽新,吴志美,LEO卫星网络的路由技术[J],计算机学报,2004,27(5):659-667
    26.任洪波,LEO卫星网络中的一种分布式路由算法[J],计算机学报,2007,34(4):49-52
    27. T. Taleb, A. Jamalipour, N. Kato, and Y. Nemoto, "IP Traffic Load Distribution in NGEO Broadband Satellite Networks"[A], Proc. of 20th Int. Sym. on Comp.& Inf Sciences(ISCIS)[C], Istanbul, Turkey, Oct.2005.
    28.张涛,张军,一种新的星间链路切换保护算法[J],航空学报,2007,7,28(4):922-929
    29. Fotini Niovi Pavlidou, Evangelos Papapetrou. Analytic Study of Doppler-Based Handover Management in LEO Satellite Systems[J], IEEE Transactions on Aerospace and Electronic Systems,2005,41(3):830-839.
    30. Chao Chen, Eylem Ekici, A Routing Protocol for Hierarchical LEO/MEO Satellite IP Networks, Wireless Networks[J],2005,11(4):507-521.
    31.罗有平,LEO&MEO双层卫星网络路由技术研究[J],无线电通信技术,2006,32(1):1-3
    32. Wu Di, Li Qing, A New Routing Algorithm of Two-tier LEO/MEO Mobile Satellite Communication Systems[A],2005 Asia-Pacific Conference on Communications[C], Perth, Western Australia,3-5 October 2005.111-115
    33. Y. H. Zhou, F. C. Sun, B. Zhang, A Hierarchical and Distributed QoS Routing Protocol for Two-layered Satellite Networks[A], MACS Multiconference on "Computational Engineering in Systems Applications"(CESA)[C], October 4-6,2006, Beijing, China.739-745
    34.洪志国,吴凤鸽,范植华等,基于PETRI网模型的LEO/MEO/GEO三层卫星网络的性能分析[J],电子学报,January,2005:354-357
    35.Pasquale Pace and Gianluca Aloi, Effective Routing Algorithm for Multilayered Terrestrial-HAP-Satellite Networks[J], IEEE COMMUNICATIONS LETTERS, JUNE 2007,11(6):510-512
    36.吴凤鸽,孙富春,孙增沂等,LEO/MEO双层卫星网络的性能分析[J],计算机研究与发展[J],January,2005:259-265
    37.高丽娟,赵洪利,蒋太杰,空间信息网络多层路由算法研究[J],计算机工程,2007,7,33(14):82-85
    38. H Tsunoda, K Ohta, N Kato, et al. Supporting IP/LEO Satellite Networks by Handover-Independent IP Mobility Management[J]. IEEE Journal on Selected Areas in Communications,2004,22(2):300-307.
    39. Zhenyong Wang, Xuemai Gu, Qing Guo, A Congestion Avoidance Routing Algorithm Based on Ant-algorithm in Satellite Ip Networks[A]. In Proceedings of Proceedings of the Fifth International Conference on Machine Learning and Cybernetics[C], Dalian,13-16 August 2006,198-202
    40.王平,顾学迈,基于ACO的LEO卫星网络路由研究[J],南京理工大学学报,2007,6,31(3):364-369
    41. G. Kandus A. Kos M. Pustisek J. Bester A. Svigelj, M. Mohorcic. Routing in ISL Networks Considering Empirical IP Traffic[J]. IEEE Journal On Selected Areas In Communiications, Feb 2004,22(2):261-272.
    42. Taleb T, Kato N, Nemoto Y. REFWA:An Efficient and Fair Congestion Control Scheme for LEO Satellite Networks[J], IEEE/ACM Transactions on Networking,2006,14 (5): 1031-1044.
    43.翁耀,刘立祥,基于低轨卫星网络的按需局部拓扑路由算法[J],计算机工程与应用,2007,43(14):148-154
    44.许辉,吴诗其,LEO卫星网络中基于蚂蚁算法的分布式QoS路由[J],计算机学报,2007,3,30(3):361-367
    45. T. Taleb et al., ELB:An Explicit Load Balancing Routing Protocol for Multi-Hop NGEO Satellite Constellations[A], In Proceedings of GLOBECOM'06[C], San Francisco, CA, Nov.2006.
    46. P. Pace and G. Aloi, Effective admission policy for multimedia traffic connections over satellite DVB-RCS network[J], ETRI J. Electron. Telecommun. Research Institute, Oct. 2006,28(5):593-606.
    47.Fei Long, Fuchun Sun, An Improved Ant Colony Algorithm and Its Application In Routing Computation of Satellite Networks[A]. IMACS Multi conference on "Computational Engineering in Systems Applications"(CESA)[C], Beijing, China, October 4-6,2006,1567-1573
    48. Wang bin. The research of QoS routing algorithm in dual layer satellite network [J]. Wireless communication technology,2005,(2):21-25.
    49. J. Kong, P. Zerfos. Providing Robust and Ubiquitous Security Support for Mobile Ad-Hoc Networks[A]. In Proceeding of 10th International Conference on Network Protocols[C], 2006,579-592
    50. H. Yang, X. Meng, S. Lu. Self-Organized Network-Layer Security in Mobile Ad Hoc Networks[J], IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,2006, 24(2):261-273
    51. H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, Security in Mobile Ad Hoc Networks: Challenges and Solutions[J]. IEEE Wireless Communications,2004,38-47.
    52. V. Balakrishnan, V. Varadharajan and U. K. Tupakula, Fellowship:Defense against Flooding and Packet Drop Attacks in MANET[A]. In Proceedings of 10th IEEE/IFIP Network Operations and Management Symposium[C], Vancouver, Canada,2006,1-4
    53.谢寿吾,移动Ad Hoc网络安全策略研究[D],武汉,武汉理工大学,2007
    54.冯军,陈允锋,Ad hoc网络安全与攻击探讨[J],通信对抗,2007,1:59-64
    55. G. Noubir, G. Lin. Low-power DoS attacks in data wireless LANs and counter measures [J], ACM MOBIHOC,2003,26(12):62-69
    56.王昌达,鞠时光,无线组网技术中的安个问题[J],计算机科学,2006,33(7):121-126.
    57.刘志远,张曼曼,Ad hoc网络安全策略[J],网络安全技术与应用,2006(7):93-95.
    58.马春娥,移动自组网安全技术研究[D],西安:西北工业大学,2007
    59.刘志远,杨植超,Ad hoc网络及其安全性分析[J],计算机技术与发展,2006,16(1):231-233.
    60. P. Michiardi and R Molva, Game theoretic analysis of security in mobile Ad Hoc networks, IEEE Transactions Communications, Apr.2002,9(2):28-35
    61. S. Yi and R. Kravets, Composite Key Management for Ad Hoc Networks[A].In Proceeding of the 1st Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous'04)[C],2004,52-61.
    62. A. A. Pirzada and C. McDonald, Kerberos assisted authentication in mobile ad-hoc networks[A], In Proceedings of the 27th Australasian Computer Science Conference (ACSC)[C],2004, vol.26,41-46.
    63.杨德明,慕德俊,许钟,Ad hoc空间网络密钥管理与认证方案[J],通信学报,2006,27(8):104-108
    64. Srdjan Capkun, Levente Nuttyan, Jean-Pierre Hubaux, Self-organized public-key Management for mobile ad hoc networks[J], IEEE Transactions on mobile computing, 2003,2(1)
    65.B.Wu, J.Wu, E. Fernandez, S. Magliveras, and M. Ilyas, Secure and Efficient Key Management in Mobile Ad Hoc Networks[A]. In Proceeding of 19th IEEE International Parallel & Distributed Processing Symposium[C], Denver,2005.
    66.况晓辉,胡华平,卢锡城,移动自组网络组密钥管理框架[J],计算机研究与发展,2004,4:704-708
    67.傅坚,张翎,无线Ad Hoc网动态密钥管理问题的研究[J],电子与信息学报,2007,5(28):815-819
    68.况晓辉,朱培栋,卢锡城,移动自组网络分布式组密钥更新算法[J],软件学报,2004, 15(5):757-766.
    69.刘鲁西,王志坚,移动Ad Hoc网络的入侵检测研究[J],计算机与现代,2005,5,83-85
    70. Y. Zhang, W. Lee and Y. Huang. Intrusion Detection Techniques for Mobile Wireless Networks[J]. In Wireless Networks,2003,9(5),545-556.
    71.宦娟,鞠时光,移动自组网入侵检测综述[J],计算机工程与设计,2007,28(13):3066-3070
    72. Ozgrur Depren, Murat Topallar, Emin Anarim, at el, An intelligent intrusion detection system(IDS) for anomaly and misuse detection in computer networks[J], Expert System with Applications,2005, pp.713-722
    73. D. Sterne, P. Balasubramanyam, D. Carman, et al. A General Cooperative Intrusion Detection Architecture for MANETs[A], In proceedings of the 3rd IEEE International Workshop on Information Assurance (IWIA'05)[C], March 2005,57-70.
    74. Ioanna Stamouli, Patroklos G. Argyroudis and Hitesh Tewari, Real-time Intrusion Detection for Ad hoc Networks[J], Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM'05), 2005,pp.78-94
    75.尹其斌,何炎祥,Ad Hoc网络中一种基于信任域值的IDS模型的设计[J],计算机工程与科学,2006,28(6):41—44
    76. D. Schwab and R Bunt. Characterising the Use of a Campus Wireless Network[A], In proceedings of INFOCOM 2004[C], Hong Kong, China, March 2004.
    77. S. Sarafijanovic and J.-Y. Le Boudec. An artificial immune system for misbehavior detection in mobile ad-hoc networks with virtual thymus, clustering, danger signal:and memory detectors[J]. International Journal of Unconventional Computing,2005, 1:221-254,
    78. Wayne A. Jansen. Intrusion detection with mobile agents[J], Computer Communications, 2005:.1392-1401.
    79. Yanxin Wang, Smruti Ranjan Behera, Johnny Wong. Towards the automatic generation of mobile agents for distributed intrusion detection system[J], The Journal of Systems and Software,2006:.1-14.
    80.吴国凤,吴其林.一种基于移动Agent的移动Ad Hoc网络入侵检测系统[J],合肥工业大学学报(自然科学版),2006,29(4):406—410
    81.MICHIARDI P, MOLVA R. CORE:A Collaborative Reputation Mechanism to enforce node cooperation in Mobile Ad-hoc Networks [A]. Sixth IFIP conference on security communications, and multimedia[C]. Portoroz, Slovenia,2002:412-425
    82. D. Schnackenberg, H. Holliday, R. Smith, K. Djahandari, and D. Sterne, Cooperative Intrusion Traceback and Respose Architecture(CITRA)[A], Proceedings of the Second DARPA Information Survivability Conference and Exposition(DISCEXII)[C], Anaheim, CA, June 2001
    83.X. Wang, D. Reeves, and S. F. Wu, Tracing-Based Active Intrusion Response[J], Journal of Information Warfare, Vol.1, No.1, September,2001
    84.易平,移动Ad Hoc网络入侵检测与主动响应机制研究(D),上海:复旦大学,2005,15-60.
    85.王英龙,王美琴,王少辉,潘景山,无线移动自组网安全路由协议的分析与研究[J],计算机应用研究,2004,9:161-163
    86. A. A. Pirzada, C. McDonald, Secure routing protocols for mobile ad-hoc wireless networks[A], in Advanced Wired and Wireless Networks[C],2004,Springer,57-80.
    87. S. Zhong, L. Li, Y. G. Liu and Y. Yang, On Designing Incentive-Compatible Routing and Forwarding Protocols in Wireless Ad-hoc Networks:An Integrated Approach Using Game Theoretical and Cryptographic Techniques[A], Proceedings of the 11th Annual International Conference on Mobile Computing and Networking (MobiCom'05)[C],2005, 117-131.
    88.蒋毅,史浩山,一种新的移动Ad hoc网络的安全路由策略[J],微电子学与计算机,2005,22(4):30-33
    89. A. A. Pirzada, C. McDonald, and A. Datta, Performance comparison of trust-based reactive routing protocols[J], IEEE Transactions on Mobile Computing,2006.
    90.朱道飞,王东艳等,移动Ad hoc网络安全路由协议综述[J],计算机工程与应用,2005,41(27):116-119.
    91.易平,蒋嶷川,钟亦平等,移动Ad hoc网络路由协议安全研究[J],计算机科学,2005,32(6):37-70.
    92. Y. C. Hu, D. Johnson and A. P. Sead. Secure Efficient Distance Vector Routing for Mobile wireless Ad hoc Networks[A], WMCSA'02[C],2002.6:3-13
    93. Robert Carruthers, Ioanis Nikolaidis. Certain Limitations of Reputation-based Schemes in Mobile Environments [A]. In Proceedings of the 8th ACM Int'l Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems(MSWiM'05)[C], October 10-13, 2005, Montreal, Quebec, Canada..2-11
    94. Jiangyi Hu and Mike Burmester. LARS-A Locally Aware Reputation System for Mobile Ad Hoc Networks [A]. In Proceedings of the ACM SE'06[C] March 10-12,2006, Melbourne, Florida, USA,119-123
    95.Radu Jurca, Boi Faltings, Minimum Payments that Reward Honest Reputation Feedback[A], In Proceedings of the EC'06[C], June 11-15,2006, Ann Arbor, Michigan, USA:190-199
    96. J. Mundinger and J.-Y. Le Boudec. Analysis of a reputation system for mobile ad-hoc networks with liars[A]. In Proceedings of WiOpt 2005:Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks[C],2005,41-46
    97. S. Buchegger and J.-Y. Le Boudee, Self-Policing Mobile Ad Hoc Networks by Reputation Systems[J]. IEEE Communications Magazine,2005,43(7),101-107
    98. Y. Rebahi, V. E. Mujica-V and D. Sisalem, A Reputation-Based Trust Mechanism for Ad hoc Networks[A]. In Proceedings of 10th IEEE Symposium on Computers and Communications[C], Cartagena, Spain,2005,37-42
    99. S. Yan Lindsay, Y. Wei, H. Zhu and K. J. R. Liu, Information Theoretic Framework of Trust Modeling and Evaluation for Ad Hoc Networks[J]. IEEE Journal on Selected Areas in Communications,2006,24(2):.305-317
    100. Kevin Kane, James C. Browne, Using Uncertainty in Reputation Methods to Enforce Cooperation in Ad-Hoc Networks[A], In Proceedings of WiSe'06[C], September 29,2006, Los Angeles, California, USA.105-113
    101. A. Josang, E. Gray, and M. Kinateder. Simplification and analysis of transitive trust networks[J]. Web Intelligence and Agent Systems Journal,2006,4(2):139-161
    102. A. A. Pirzada and C. McDonald, Establishing trust in pure ad-hoc networks[A], in Proceedings of the 27th Australasian Computer Science Conference (ACSC)[C],2004, vol. 26,47-54.
    103. R. G. Cole, N. Phamdo, M. A. Rajab, A. Terzis, Requirements on Worm Mitigation Technologies in MANETS[A], Proceedings of the 19th Workshop on Principles of Advanced and Distributed Simulation[C], Monterey, CA, June 2005
    104. 黄玉飞,王培康,黄少滨,移动Ad hoc网基于信任度的路由发现算法[J],计算机辅助工程,2005,6,14(2):59-62
    105. M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC:A Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks [A]. Proc. SenSys'06[C]. Denver: ACM,2006,307-320.
    106. Janos Levendovszky, Andras Olah, Novel adaptive channel equalization algorithms by statistical sampling[J], WORLD ENFORMATIKA SOCIETY,2006,13(3):18-25.
    107. I. Demirkol, C. Ersoy, and F. Alag'oz. Mac protocols for wireless sensor networks:a survey [J]. IEEE Communications Magazine.2006,44:115-121.
    108. C. Behrens, O. Bischoff, M. Lueders, R. Laur. Energy-efficient topology control for wireless sensor networks using online battery monitoring [J]. Advances in Radio Science. 2007,5:205-208.
    109. C. Chaudet, D. Dhoutaut, and I. Gu'erin Lassous. Experiments of some performance issues with IEEE 802.11b in ad hoc networks[A]. In Proceeding.2nd Annual Conference on Wireless On demand Network Systems and Service (WONS 2005)[C], StMoritz, Switzerland,2005,158-163.
    110. Imad Aada, Qiang Nib, Chadi Barakatc, Thierry Turletti, Enhancing IEEE 802.11 MAC in congested environments[J], Computer Communications,2005,28:1605-1617.
    111. R. Bruno, M. Conti, and E. Gregori. Distributed contention control in heterogeneous 802.11b WLANs[A]. In Proceeding 2nd Annual Conference on Wireless On demand Network Systems and Service (WONS 2005)[C], St Moritz, Switzerland,2005,190-199.
    112. L. Bononi, M. Conti, and E. Gregori. Runtime optimization of IEEE 802.11 wireless LANs performance[J]. IEEE Transactions on Parallel and Distributed Systems,2004, 15(1):66-80.
    113. Choi S, del Pedro J, Shankar N S, et al. IEEE 802.11 a contention based channel access EDCF performance evaluation[A].In Proceedings of the IEEE ICC[C], Anchorage, Alaska,2003
    114. Ying Z, Anand A L, Jacob L. A QoS enabled MAC protocol for multi-hop Ad hoc wireless networks[A]. In Proceedings of the 22nd IEEE International Performance, Computing,and Communications Conference[C], Phoenix, AZ,2003.149-156
    115. V VijayalQishna, H. Ramamurthy and D. Marathe. Effective Channel Utilization in MANETs for Pervasive Computing Using a Novel RTS-CTS Mechanism[A]. In Proceedings of the International Symposium on Applications on Internet[C], Washington DC:IEEE Computer Society,2006,164-170.
    116. 李健,自组织网络中基于802.11 DCF的信道介入协议研究[D],南京:中南大学,2007
    117. Jaehyuk Choi, Joon Yoo, Sunghyun Choi,Chong-kwon Kim. EBA:an enhancement of the IEEE 802.11 DCF via distributed reservation[J]. IEEE Transactions on Mobile Computing,2005,4(4):378-390
    118. Raniwata, A.Tzi-cker Chiueh. Architecture and algorithms for an IEEE 802.11 based mufti-channel wireless mesh networks[A]. In Proceeding of IEEE INFOCOM[C], Miami, FL, USA, Mar.2005,2223-2234
    119. Gill, R., Smith, J., Looi, M.& Clark, A. Passive Techniques for Detecting Session Hijacking Attacks in IEEE 802.11 Wireless Networks[A], In Proceedings of AusCERT Asia Pacific Information Technology Security Conference(AusCERT2005)[C], Referred R&D Stream, Clark A., Kerr, K., and Mohay, G. (Eds), University of Queensland:26-38.
    120. John Bellardo and Stefan. Savage 802.11 denial-of-service attacks:Real vulnerabilities and practical solutions[A], In Proceedings of USENIX Security Symposium [C],Aug.2003,112-118
    121. V. Gupta, S Krishnarrurthy, and M Faloutsos, Denial of service attacks at the MAC layer in wireless Ad Hoc networks [J], IEEE MILCOM,2002,9(3):125-132
    122. Y. Rong, S.K. Lee, and H.A. Choi, Detecting stations cheating on backoff rules in 802.11 networks using sequential analysis[A], In Proceedings from IEEE INFOCOM[C], 2006.
    123. Pradeep Kyasanur and Nitin H. Vaidya. Selfish MAC layer misbehavior in wireless networks[J], IEEE Transactions on Mobile Computering,2005,4(5):502-516
    124. A. C'ardenas, S. Radosavac, and J. S. Baras, "Detection and prevention of MAC layer misbehavior in ad hoc networks," in Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks, pp.17-22, October 2004.
    125. Gill, R., Smith, J., Looi, M.& Clark, A. Passive Techniques for Detecting Session Hijacking Attacks in IEEE 802.11 Wireless Networks[A], in Proceedings of AusCERT Asia Pacific Information Technology Security Conference(AusCERT2005)[C], University of Queensland,2005:26-38.
    126. Douglas Madory, New Methods of Spoof Detection in 802.11b Wireless Networking[D], Thayer School of Engineering Dartmouth College, Hanover, New Hampshire,2006.
    127. Svetlana Radosavac, John S.Baras. A framework for MAC protocol misbehavior detection in wireless networks [J], WiSE, Sep.2005,2(7):26-32
    128. A. Cardenas, S. Radosavac, and J. S. Baras, Detection and prevention of MAC layer misbehavior in Ad Hoc networks [A], In Proceedings of the 2nd ACM Workshop:on Security of Ad Hoc and Sensor Networks [C], Oct.2005,17-22
    129. A. Cardenas, S. Radosavac, and J. S. Baras, Detection and prevention of MAC layer misbehavior in Ad Hoc networks [A], In Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks [C], Oct.2005,17-22
    130. Q. Li, W. Trappe. Light-weight, Relationship-based MAC Layer Defenses for Wireless Networks [A], In Proceedings of WINLAB Research Review[C], Rutgers University, December 6 2005.
    131. U. Deshpande, T. Henderson and D. Kotz. Channel Sampling Strategies for Monitoring Wireless Networks[A], In Proceedings of the Second International Workshop On Wireless Network Measurement (WiNMee)[C]. IEEE Computer Society Press. April 2006.
    132. M. Raya, J-P. Hubaux and I. Aad. Domino:A system to detect greedy behavior in IEEE 802.11 hotspots [J], ISYS,2004,12(6):6-9
    133. Geng Rong, Li Zhe, QoS-Aware Routing Based on Local Information for Mobile Ad Hoc Networks, LNCS 4317,2006,12:159-167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700