无粘结预应力钢—混凝土组合连续梁理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢—混凝土组合结构将钢梁与混凝土顶板通过剪力连接件来共同承担外力的一种新型结构。充分发挥了钢材和混凝土两种材料的力学性能,对其施加预应力可以有效控制连续组合梁负弯矩区的混凝土裂缝,提高组合梁的抗弯性能。由于我国对该种类型结构的研究和应用较少,有必要对其进行系统的理论与试验研究。
     通过室内试验,测试了各个受力阶段组合梁连续梁的变形和应力状态,得到了无粘结预应力钢—混凝土组合连续梁在单调荷载作用下的受力特性:在弹性阶段不再符合平截面假定;组合连续梁的混凝土顶板存在剪力滞现象;钢—混凝土交界面处的剪切滑移应变差在预应力钢筋的锚固端和转向点和集中力作用点以及中支点附近较大。施加预应力之后构件仍然具有优良的塑性性能,且弹性范围增大。
     通过设置荷载步的方法分析了在预应力和外荷载共同作用下,试验梁的受力全过程,并与试验结果进行了对比,对比结果表明,采用ANSYS模型可以代替试验进行数值模拟分析,研究无粘结预应力钢—混凝土组合连续梁的受力行为特性。
     基于弹性理论推导了钢—混凝土组合连续梁在集中荷载作用下和均布荷载作用下剪切滑移应变差的解析表达式,研究了钢—混凝土组合连续梁剪切滑移应变差的分布规律。并与按完全相互作用假设条件计算得出的组合连续梁的应力状态进行了对比,对比结果表明按完全相互作用进行应力验算是偏不安全的。
     在混凝土顶板和钢梁之间存在剪切滑移的情况下,基于弹性力学的基本理论,首先建立了集中荷载作用下的钢-混凝土组合简支梁的受力状态的解析表达式。然后把此计算理论进行扩充,建立了集中荷载作用下的钢-混凝土组合连续梁受力状态的解析表达式。
     基于弹性力学和复合材料力学的基本理论,建立了考虑混凝土板与钢梁交界面处剪切滑移效应的连续钢-混凝土组合梁的受力特性计算理论模型。采用此理论模型计算了预应力作用下组合梁的受力状态,与试验结果吻合较好,充分说明了本文所建立理论模型的正确性、有效性。
Steel-concrete composite structure is a new structure developed from basis of original steel structure and reinforced concrete structure.Compared with steel structure, steel-concrete composite structure can save steels,and increase rigidity,etc.Compared with reinforced concrete structure, steel-concrete composite structure has many advantages of reducing dead weight and structural dimension,etc.Since 20 century 80s, steel-concrete composite structure has become an important bridge supporting member in constructions such as high-rise building and bridge span structure in our country,and there will be more and more applications of steel-concrete composite structure.
     In order to obtain working performance of prestressed steel-concrete composite continuous beam under vertical load during tension stage and using stage,the laboratory test model of prestressed steel-concrete composite continuous beam is designed by summarizing present research results.A two-span test beam with 3 meters’span length is made,and then it is tested under vertical load during the whole process. States of strain and displacement of each part under each load grade are measured. Conclusions can be obtained as follows.Strain state of normal section of unbonded prestressed steel-concrete composite continuous beam,under monotonic load,basically corresponds to plane section assumption during elastic stage. Shear lag phenomenon existes on concrete roof of composite continuous beam. Shearing slip strain deviation on the interface between steel and concrete nearby action point of concentrated load is relatively large. And shearing slip strain deviation also increase nearby anchor ends of prestressed steel and turning points.The existence of shearing slip will have large influence on the composite effect between steel and concrete in continuous beam,and lead to the increase of member curvature and stress at upper and lower. Influence of shearing slip should be taken into full consideration in the process of designing.After applying prestress, bearing capacity and elastic range of composite structure improve a lot.but members still have excellent plastic property.Because of large elastic range of composite structure,it can infer that it can increase the span ability of composite continuous beam under the prerequisite for satisfying the use requirement. And it has a wide application prospect.
     In order to analyze the mechanical behavior of prestressed steel-concrete composite continuous beam in actual dimension, the large finite element software named ANSYS is used to establish finite element analysis model of the test beam,by summarizing the mechanical characteristics of the test beam during tensiling prestress stage and using stage, based on stress characteristics of the test beam,By the method of setting load step,the whole process of the test beam under prestressed and external loads is analyzed.Compared with test results,it shows that effective simulation test can be carried out to the finite element model of unbonded prestressed steel-concrete composite continuous beam established based on basic idea in this paper. The variation law of static response,such as shear lag effect and shearing slip of external prestressed concrete composite beam, deflection and curvature under monotonic load,is analyzed and calculated effectively.So the method reduces lots of experiments,saves substantial contribution,and provides a finite element model with certain use-value for numerical simulation research of composite beams in future.
     By summarizing the research results of shearing slip and data analysis of the test beam,the analytical expression of shearing slip strain deviation of steel-concrete composite continuous beam under concentrated load and uniform load is derived based on elastic theory.Results of shearing slip strain deviation under concentrated load is analyzed comparatively,by using the form of uniform load equivalent to concentrated force. The analysis shows that the analytical solution under each kind of loads is reasonable and believable. Shearing slip strain deviation of steel-concrete composite continuous beam under concentrated load reaches maximum value at concentrated force point and middle fulcrum.It means that the setion with the larger moment,the larger the Shearing slip strain deviation is.Calculated results of the stress at upper and lower of steel-concrete composite continuous beam is relatively small,based on the hypothesis of complete interaction.If calculation is carried out based on complete interaction,the results are unsafe.Therefore,the influence of shearing slip to steel-concrete composite continuous beam should be taken into consideration.
     In order to obtain practical formula of prestressed steel-concrete composite continuous beam under vertical load, according to characteristics of the interaction between steel beam and the vertical part of concrete roof along composite beam,a new composite beam element stiffness equation is obtained for the first time,based on contact theory.By comparing theoretical results and test results,it shows that the formula is reasonable and believable.Vertical distribution of static response along the beam,such as deflection of composite beam under vertical load,each part of stress and strain deviation between shear stress and shearing slip,can be calculated by using finite element solution of composite beam element.Each static response of prestressed steel-concrete composite continuous beam can be obtained at one time.
     By the basic idea of iterative method, the deformation behaviour of composite beam under prestressed tendon load is calculated.By comparing test results and calculation results, a conclusion is obtained.It is that static response of prestressed steel-concrete composite beam calculated by iterative method combined with composite beam element method is reliable and reasonable.
     Influence of various parameters on flexural behavior of composite beam is analyzed by iterative method combined with composite beam finite element method. Influence of static parameter which designers care about , such as thickness of concrete flange plate,detail dimensions of steel beam, diameter and number of studs,area of prestressed steel and tension control stress,on flexural behavior of composite continuous beam is obtained. Based on the characteristics of finite element method, composite beam element method is easily extended to flexural calculation of variable cross-section composite continuous beam and composite simply surpported beam.However, flexural calculation of variable cross-section composite continuous beam with considering shearing slip is not be found at present.
引文
[1] Mackay HM,Gillespie P &Leluau C. Report on the strength of steel T-beams haunched with concrete[J] . Engineering Journal , Canada , 1923 ,6 -8 :365-369。
    [2]肖辉,李爱群,陈丽华,等.钢与混凝土组合梁的发展、研究和应用[J] .特种结构. 2005,122(11):38-41。
    [3] Batho C,Lash SD & Kirkham RHH. The properties of composite beams ,consisting of steel joints encased in concrete , under direct and sustained loading[J] . Journal of the Institution of Civil Engineers, 1939 ,11 -4 :61-114.
    [4] Viest IM. Investigation of stud shear connectors for composite concrete and steel T-beams[J] . Journal of the American Concrete Institute ,1956 ,27 -8 :875-891。
    [5] D.Lam. Composite steel beams with precast hollow core slabs: behavior and design[J] . Compostite structure, 2002, 11 -4 :179-185.
    [6] Chapman JC. Composite construction in steel and concrete :The behaviour of composite beams[J] . The Structural Engineer , 1964, 42 -4 : 115-125。
    [7] Chapman JC. Balakrishnan S. Experiments on composite beams[J] . The Structural Engineer 1964 ,42 -11 :369-383.
    [8] Viest IM. Investigation of stud shear connectors for composite concrete and steel T-beams[J] . Journal of the American Concrete Institute ,1956 ,27 -8 :875-891.
    [9] Slutter RG, Driscoll GC. Flexural strength of steel-concrete compostite beams[J] . Journal of the Structural Division (ASCE) , 1965 , 91(ST2) :71-99.
    [10] Ollgaard JG,Slutter RG & Fisher JW. Shear strength of stud connectors in lightweight and normal weight concrete[J] . Engineering Journal (AISC) ,1971 ,8 -2 :55-64.
    [12] N.M.Newmark,C.P.Siess,l.M.Viest,Tests and analysis of composite beams with incomplete interaction,Experimental Stress Analysis[J] , 1951, 9(1):328-345..
    [13] L.C.P.Yam and J.C.Chapman, The inelastic behaviour of simply supported composite beams of steel and concrete[C] , pProc.Inst. Civil Engrs. ,Londen41, 1968:651-683.
    [14] L.C.P.Yam and J.C.Chapman, The inelastic behaviour of continuous composite beams of steel and concrete[C] , pProc.Inst. Civil Engrs. , Londen 53, 1972:487-501
    [15] D.J.Oehlers and G.Sved, Composite beams with linited-slip-capacity shear connectors[J] ,struct.Engrg., ASCE121(6), 1995:932-938.
    [16] Andre HAUFE, Horst MENRATH, Numerical simulation of high strength steel highs trength concrete composite structures[C] . Proceedings of 6th ASCCS conference. 1131-1140.
    [17] Ehsan Ahmed. Finite element elastic analysis of profiled steel sheeting dru board single span composite panels[C] . Proceedings of 6th ASCCS conference. 1083-1090..
    [18] Baskar K. Steel-concrete composite plate girder[C] . Proceedings of 6th ASCCCS conference. 655-662.
    [19] Amadio C, Fragiacomo M. Effective width evaluation for steel-concrete composite beams[J] . Journal of Constructional Steel Research, 2002, 58:00:00 373-388
    [20] Ansourian, P. Effective width of continuous composite beams[J] . Institution of Engineers, Australia, Civil Engineering Transactions, v(25)1: 63-70
    [21] Qing Quan, Uy, Brian, Bradford, Mark A., Ronagh, Hamid R. Ultimate strength of continuous composite beams in combined bending and shear Liang[J] . Journal of Constructional Steel Research, 2004, 60(8):1109-1128.
    [22] Chung, K.F., Wang, A.J. 2 Numerical analysis and design of continuous composite beams exhibiting moment redistribution[J] . Proceedings of the International Conference in Metal Structures-Steel-A New and Traditional Material for Building, 2006, P371-378
    [23] Bradford, M.A. Restrained distortional buckling in continuous composite beams[C] Proceedings of the 3rd International Conference on Steel and Composite Structures, ICSCS07 - Steel and Composite Structures, 2007, p 37-47
    [24] Fabbrocino, G., Manfredi, G., Cosenza, E. Analysis of continuous composite beams including partial interaction and bond[J] Journal of structural engineering New York, N.Y.,2000,126(11):1288-1294.
    [25] Weil, T., Schnell, J. Continuous composite beams with large web openings[C] . Proceedings of the 3rd International Conference on Steel and Composite Structures, ICSCS07 - Steel and Composite Structures, 2007, p 171-176
    [26] Chaudhary, Sandeep, Pendharkar, Umesh, Nagpal, A.K. Time-dependent behavior of continuous composite beams[C] Proceedings of the 3rd International Conference on Steel and Composite Structures, ICSCS07 - Steel and Composite Structures, 2007, p 323-328
    [27] Gilbert, R.Ian, Bradford, Mark Andrew Time-dependent behavior of continuous composite beams at service loads[J] . Journal of structural engineering New York, N.Y., 121,(2):319-327.
    [28] Chaudhary, Sandeep, Pendharkar, Umesh, Nagpal, Ashok Kumar Bendingmoment prediction for continuous composite beams by neural networks[J] . Advances in Structural Engineering, 2007, 10(4):439-454.
    [29] Bradford, M.A., Manh, H. Vu, Gilbert, R.I. "21. Numerical" analysis of continuous composite beams under service loading[J] . Advances in Structural Engineering,2002, 5(1):1-12
    [30] Maeda, Yukio, Kajikawa, Yasuharu, Kida, Hideyuki. Static and fatigue behaviors of continuous composite beams with preflexed beams[J] . Technology Reports of the Osaka University, 32(1630-1651):159-166
    [31] Long, A.E., Van Dalen, K., Csagoly, P. Fatigue behavior of negative moment regions of continuous compositie beams at low temperatures[J] . Canadian Journal of Civil Engineering, 2(1): 98-115.
    [32] Hamada, Sumio, Longworth, Jack. Ultimate strength of continuous composite beams[J] . ASCE J Struct Div, 102(7): 1463-1478.
    [33] Aribert, J.M. Effect of the local plate buckling on the ultimate strength of continuous composite beams[J] . Thin-Walled Structures, 1994, 20(1):279-300.
    [34] Ansourian, P. Experiments on continuous composite beams[J] . Proceedings of the Institution of Civil Engineers (London). Part 1 - Design & Construction, 73(2):25-51
    [35] Herzog, Max. Ultimate Strength of Continuous Composite Beams According to Tests[J] . Bautechnik, v(4,):114-120
    [36] Hope-Gill, M.C., Johnson, R.P. Tests on three-span continuous composite beams[J] . Proceedings of the Institution of Civil Engineers (London). Part 1 - Design & Construction, 61(pt 2):367-381
    [37] Ranzi, G., Bradford, M.A. Nonlinear analysis of composite beams with partial shear interaction by means of the direct stiffness method[J] . Steel and Composite Structures, 2009, 9(2):131-158.
    [38] Kemp, Alan R, Nethercot, David A. Required and available rotations in continuous composite beams with semi-rigid connections[J] . Journal of Constructional Steel Research, 2001, 57(4): 375-400.
    [39] Dall'Asta, Andrea, Zona, Alessandro. Comparison and validation of displacement and mixed elements for the non-linear analysis of continuous composite beams[J] . Computers and Structures, 2004, 82(23-26): 2117-2130.
    [40] Ranzi, G., Zona, A. A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component[C] . Proceedings of the3rd International Conference on Steel and Composite Structures, ICSCS07 - Steel and Composite Structures,2007, p 231-236.
    [41] Basu, Prodyot K., Sharif, Alfarabi M., Ahmed, Nesar U. Partially prestressed continuous composite beams[J] . Journal of structural engineering New York, N.Y., 113(9):1909-1925
    [42] Ansourian, Peter. On the design of continuous composite beams[C]. ASCE, 1985, 1-12.
    [43]钟善桐钢—混凝土组合结构在我国的研究与应用[J] ,钢结构,2000,15(50):41-46。
    [44]聂建国,余志武.钢—混凝土组合梁在我国的研究及应用[J] .土木工程学报.1999,32(2):3-7.
    [45]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J] .土木工程学报,1995,28(6):11-17
    [46]聂建国,崔玉萍,石中柱,刘冲,郭绍斌.部分剪力连接钢—混凝土组合梁受弯极限承载力的计算[J] .工程力学. 2000,17(3)。
    [47]崔玉萍,部分剪力连接钢-混凝土组合梁强度及变形的试验研究[D]。北京:北京市政工程研究院,1996。
    [48]谭英.钢-高强混凝土组合梁抗弯性能的试验研究[D]。北京:清华大学,1998年。
    [49]徐德标.大跨径钢—混凝土连续组合梁桥设计研究[D] ,大连:大连理工大学. 2002年。
    [50]孙文彬,部分剪力连接钢—混凝土简支组合梁滑移性能研究[D]。南京:河海大学. 2001年。
    [51]蒋秀根,孟石平,剧锦三.基于整体-局部弯曲模型的钢-混凝土组合梁界面滑移及其效应分析[J] .工程力学,2008,25(5):85-90
    [52]胡少伟,涂启华,陈亮.考虑栓钉滑移效应及钢筋作用的组合梁受力分析[J] ,钢结构. 2008,23(8):43-45,51
    [53]沈小冬,胡夏闽,于天泓,张琪.滑移效应对组合梁弹性受弯承载力的影响分析[J] .南京工业大学学报(自然科学版),2008,30(5):68-72。
    [54]王刚,王福建,申永刚,曾进忠.双层连续组合梁弹塑性状态的界面滑移[J] .浙江大学学报(工学版),2008,43(11):2023-2027
    [55]毛学明,赵人达,万臻.同时考虑滑移和纵向剪力重分布时组合梁挠度变形的理论分析[J] .公路交通科技,2007,24(1):55-59
    [56]孙小菲,吴春生.界面滑移效应下钢-混凝土组合梁总剪力和挠度[J] .南昌大学学报(工科版),2007,29(4):390-394。
    [57]周凌宇,余志武,蒋丽忠.钢-混凝土组合梁界面滑移剪切变形的双重效应分析[J] .工程力学,2005,22(2):104-109
    [58]樊健生,聂建国.负弯矩作用下考虑滑移效应的组合梁承载力分析[J] .工程力学,2005,22(3):177-182
    [59]刘寒冰,刘文会,张云龙.集中荷载作用下组合梁剪切滑移计算分析[J] .应用数学和力学,2005,26(6):677-682
    [60]余志武,周凌宇,蒋丽忠.钢-混凝土连续组合梁滑移与挠度耦合分析[J] .工程力学,2004,21(2):76-83
    [61]孙飞飞,李国强.考虑滑移、剪力滞后和剪切变形的钢-混凝土组合梁解析解[J] .工程力学,2005,22(2):96-103
    [62]蒋丽忠,余志武,李佳.均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算[J] .工程力学,2003,20(2):133-137
    [63]余志武,蒋丽忠,李佳.集中荷载作用下钢-混凝土组合梁界面滑移及变形[J] .土木工程学报,2003,36(8):1-6
    [64]罗如登,叶梅新.组合梁钢与混凝土板相对滑移及栓钉受力状态研究[J] .铁道学报,2002,24(3):57-61
    [65]孙文彬.部分剪力连接钢-砼组合梁的滑移及曲率分析[J] .力学与实践,2001,23(6):44-47
    [66]亓路宽,李琳,常晶,霍达.钢-混凝土连续组合梁负弯矩区裂缝宽度[J] .北京工业大学学报,2008,34(7):714-719
    [67]周安,戴航,刘其伟.基于栓钉柔性连续预应力组合梁挠度增量理论解[J] .合肥工业大学学报(自然科学版) ,2007,30(3):290-293。
    [68]聂建国,陶慕轩.预应力钢-混凝土连续组合梁的变形分析[J] .土木工程学报,2007,40(12):38-44
    [69]聂建国,温凌燕.体外预应力加固钢-混凝土连续组合梁的承载力分析[J] .工程力学,2006,23(1):81-86。
    [70]辛学忠,蒋丽忠,曹华.钢-混凝土连续组合梁的恢复力模型[J] .建筑结构学报,2006,27(1):83-89。
    [71]余华,贾允祥.混凝土收缩引起连续组合梁的内力重分布计算[J] .工业建筑,2005,35(S1):85-87
    [72]郭风琪,余志武.预应力钢-混凝土连续组合梁抗裂度计算[J] .钢结构,2003,18(64):21-24
    [73]吴献,回国臣,王庆利,刘之洋.钢与混凝土连续组合梁的塑性性能[J] .东北大学学报(自然科学版),2002,23(6):599-601
    [74]贾远林,陈世鸣.钢-混凝土连续组合梁强度极限状态调幅系数[J] .钢结构,2006,21(87):31-34
    [75]刘航,李晨光,聂建国,体外预应力钢与混凝土组合梁试验研究[J] ,土木工程学报,2002,29(11):1-2,15。
    [76]胡夏闽,刘子彤,赵国藩.钢与混凝土组合梁栓钉连接件的设计承载力[J] ,南京建筑工程学院学报,2000,55(4):1-10.。
    [77]钢—混凝土组合结构科研组.钢—混凝土组合梁的试验研究[J] .郑州工学院学报,1982,3(2):22-28。
    [78]聂建国,孙国良.钢—混凝土组合梁槽钢剪力连接件的试验研究[J] .郑州工学院学报,Vol.6,No.2,1985(2):10-17
    [79]朱聘儒,李铁强,陶惫治.钢与混凝土组合梁弯筋连接件的抗剪性能[J] .工业建筑,1985,(10):17-22
    [80]张少云.钢-混凝土组合梁栓钉剪力连接件抗剪强度及性能的研究[D] .郑州:郑州工学院,1987.10
    [81]孙文彬.部分剪力连接钢—混凝土组合梁曲率的理论分析[J] .长沙大学学报. 2002,16(2):57-59。
    [82]聂建国,沈聚敏,袁彦声,林伟,王文辉钢-混凝土组合梁中剪力连接件实际承载力的研究[J] ,建筑结构学报,1996,17(2):21-28。
    [83]范立础主编,桥梁工程(上册),北京:人民交通出版社,2001.11。
    [84]公路钢筋混凝土和预应力混凝土桥涵设计规范(JTG D62—2004)中华人民共和国交通部,2004(1)
    [85]赵洁,聂建国.钢板-混凝土组合梁的非线性有限元分析[J] ,工程力学,2009,26(4):105-112.。
    [86]谭燕秋,王伟,武祥宝.钢-混凝土连续组合梁受力性能的有限元分析[J] ,钢结构. 2009,24(2):20-22,48。
    [87]付果.考虑界面滑移和掀起影响的钢-混凝土组合梁试验与理论研究[D] ,西安建筑科技大学,西安,2008.4。
    [88]聂建国,沈聚敏,袁彦声钢—混凝土简支组合梁变形计算的一般公式[J] ,工程力学, 1994,11(1):21-27。
    [89]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析[J] .土木工程学报. 1983,16(1):1-4.。
    [90]魏丽娜,方放,余天庆.变截面箱形梁桥剪滞效应的近似计算方法[J].土木工程学报, 1997,30(7):65-68.。
    [91]程海根,强士中.钢-混凝土组合简支箱梁剪力滞效应分析[J],西南交通大学学报, 2002,37(4):362-366。
    [92]扬允表,黄剑源.广义有限条法分析多室箱梁的剪滞效应[J] .桥梁建设,1995(4):40-43。
    [93]黄剑源,扬允表.钱塘江二桥变截面箱形连续梁剪滞效应的有限元分析[J] .桥梁建设,1994(1):70-73。
    [94]聂建国,孙国良.钢-混凝土组合梁槽钢剪力连接件的研究[J],工业建筑,1990(10):21-26[95]
    [95]钢结构设计规范(GBJ17-88)[S] ,中华人民共和国标准,中国计划出版社,1988年。
    [96]伊藤矿一.海外组合梁的技术现状及展望[J] .桥梁与基础[日本] . 1992,(2):49-52。
    [97]聂建国,沈聚敏.滑移效应对钢-混凝土组合梁弯曲强度的影响及计算[J] .土木工程学报,1997,30 (1):31-36
    [98]王连广,刘之洋,曹阅.钢-火山渣混凝上组合梁连接件及交界面滑移分析[J] .工业建筑,1995, 25 (3):18-23。
    [99]王力,杨大光等.钢-混凝上组合滑移及掀起的理论分析方法[J] .哈尔滨建筑大学学报,1998, 31(1):37-41。
    [100]柳长江.滑移对组合梁的影响[J] .包头钢铁学院学报,1999, 18-4 : 473-475。
    [101] Baskar K, Shanmugam N E, Thevendran V. Finite-element analysis of steel-concrete composite plate girder[J]. Journal of Structural Engineering, 2002, 128(9):1842-1849.
    [102] Dall' Asta A, Zona A. Non-linear analysis of composite beams by a displacement approach. Computers and Structures, 2002, 80:00:00 2217-2228
    [103] Faella C, Martinelli E, Nigro E. Shear connection nonlinearity and deflections of steel-concrete composite beams: a simplified method. Journal of Structural Enginee ring, 2003,129(1):12-20
    [104] Nie J G, Cai C S. Steel-concrete composite beams considerings hear slip effects. Journal of Structural Engineering, 2,003,129 (4):495-506.
    [105] Shanmugam N E, Baskar K. Steel-concrete composite plate girders subject to shear loading. Journal of Structural Engineering, 2,003,129 (9):1230-1242.
    [106]先张法预应力混凝土简支梁反拱计算[J] .华东公路,1998,(1):41-45。
    [107]张云龙.体外预应力钢—混凝土组合梁结构行为的试验研究[D].吉林大学,长春,2005。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700