旋切板胶合木的蠕变及其对结构稳定性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋切板胶合木(Laminated Veneer Lumber, LVL)是一种常见的工程木产品(Engineered Wood Product),因其良好的力学性能而广泛应用于建筑结构。蠕变是木材的显著特点之一,因木材蠕变产生的长期变形对结构工作性能的影响是极为重要的。对大跨度木结构而言,稳定承载力分析是一个关键问题,尤其是考虑木材的蠕变影响后,该问题更为复杂,使得木结构表现出不同于其它材料的结构特性。目前,对于木结构的长期荷载效应和长期刚度尚缺乏深入系统的研究,木结构因蠕变导致的屈曲研究尚属空白。因此,开展旋切板胶合木的蠕变及其对结构稳定性影响的研究便具有重要的理论意义与实用价值。
     本文首先对LVL开展了蠕变试验研究。在哈尔滨地区正常使用的室内环境条件下,分别进行了抗拉和抗压蠕变试验研究。拉、压蠕变试验均有三个应力水平,分别为LVL短期强度的20%、40%和60%。蠕变试验持续观测一年,获得了LVL在正常使用环境下的蠕变规律。通过将试件的变形-时间曲线转化为相对蠕变-时间曲线,得到了LVL在试验应力水平范围内蠕变与应力水平成正比的关系,并建立了LVL的蠕变本构模型,开发了用ABAQUS计算蠕变的用户材料子程序UMAT。在此基础上,针对木结构的长期变形和蠕变对木结构拱和网壳稳定性的影响进行了数值模拟研究。
     对基本构件的长期刚度和长期变形进行了系统研究。研究了周期荷载时间系数和其周期对基本构件长期变形的影响规律。通过对比,研究了有关国家木结构设计规范关于计算长期变形的处理方法,提出了完善我国木结构设计规范关于长期变形的计算方法。
     研究了木拱和单层三向网格木网壳的蠕变屈曲和蠕变对结构长期刚度的影响。将荷载水平作为无量纲化的荷载参数,通过研究不同结构参数和荷载参数的拱和网壳,得到了结构的荷载水平-蠕变屈曲临界时间的规律。结构发生蠕变屈曲的临界时间仅仅与结构承担的荷载水平有关,而与其结构参数如跨度、矢跨比和杆件截面尺寸等因素无关。木拱的蠕变屈曲荷载水平与临界时间的关系与木网壳相似,都表现表现为荷载水平随蠕变屈曲临界时间的增加先期急剧降低,而后慢慢降低,最终趋近于某一定值,即长期稳定承载力水平。50年设计基准期临界时间对应的长期稳定荷载都约为结构瞬时屈曲荷载的35%。通过数据回归分别总结了拱和网壳指数多项式形式的荷载水平-蠕变屈曲临界时间曲线方程。该方程可用以评估结构的长期稳定承载力或蠕变屈曲临界时间。
     研究了正常使用条件下蠕变对既有木拱和网壳的残余稳定承载力的影响。通过定义残余稳定承载力相对水平这个无量纲的参数,得到了考虑蠕变影响的结构残余稳定承载力相对水平与结构参数也无关以及在同一长期荷载水平下残余稳定承载力相对水平与结构服役时间的对数成线性关系的规律。经回归得到了不同荷载水平下的残余稳定承载力相对水平与结构服役时间的对数直线方程,利用该方程可以算得既有结构在任意服役时刻的残余稳定承载力。
Laminated veneer lumber (LVL), one of the engineered wood products, is widely used in building structures due to its excellent mechanical performance. Creep is the prominent behaviour of wood, long-term deformation of wood members and wood structures due to creep is of key importance. As far as large span wood structures are concerned, buckling analysis is another key important issue for design of the structures. Creep of wood makes the structures exhibit different behaviour from those made with steel, buckling of wood structures becomes more complicated. Yet in-depth and systematic study of long-term load effect and long-term stiffness of wood structures, so far, has not been conducted, and analysis of buckling of wood structures taking creep into consideration remains untouched. It is, therefore, very useful both theoretically and in a sense of engineering practice to investigate creep of LVL and the effect on the structural stability.
     In this study, tension and compression tests of creep of LVL were conducted under normal in-door service conditions in Harbin. The LVL specimens were divided into three groups in both tension and compression, with each group subjected to a stress level of 0.2, 0.4 and 0.6 time the instantaneous mean strength of LVL, respectively. The test lasted for one year, and the creep behaviour of LVL under normal service conditions was obtained. It was found that creep is proportional to stress in a the range of stress levels applied. The creep constitutive model of LVL was developed, and a user-defined subroutine UMAT in ABAQUS was encoded to deal with the creep behaviour in the analysis. Then, the numerical simulations on the long-term derformation and the effect of creep on the stability of LVL structures were conducted.
     Long-term deflection and stiffness of elementary wood members were comprehensively studied, and the effect of the time coefficient and period of load on the long-term behaviour of wood members was obtained. By comparison, treatments of long-term deformation of wood structures in the design codes of different countries were investigated, and suggestions for China national code for design of wood structures to improve calculations of the long-term deflection of wood structures proposed.
     The creep buckling and the creep effect on long-term stiffness of LVL arches and single layer reticulated LVL shells were investigated. The load level, a dimensionless load parameter, was introduced to the analysis of the structures. The relationships between the load level and the critical creep buckling time of arches and single layer reticulated shells were revealed via parametric studies. It was found that the critical creep buckling time is only related with the load level of the structures, while it has nothing to do with the structural parameters, such as the span, ratio of rise to span and the cross-sectional dimensions of member. The buckling load level decreases sharply with the critical buckling time at first, then the decrease becomes slow and reaches nearly a constant when buckling time is long enough. The long-term safety load against buckling is about 35% of the instantaneous elastic buckling load in relation to the basic design period of 50 years. The equations in the form of exponential polynomials of load level-critical buckling time of the arches and the reticulated shells were established by regression of the analytical results. The equations can be used to evaluate the long-term buckling load or critical buckling time of the structures.
     The effect of creep on the residual buckling load of arches and the shells having underwent a certain period of normal service was also investigated. The relative residual buckling load level, also a dimensionless parameter, was introduced into the analysis. It was found that the residual buckling load level of the structures has nothing to do with the structural parameters either. A linear relationship between the relative residual buckling load level and the logarithmic service time under a certain load level was disclosed. Then the logarithmic equations were established to evaluate the relative residual buckling load level at an arbitrary service time.
引文
1费本华,王戈,任海青,余雁.我国发展木结构房屋的前景分析.木材工业. 2002, 16(5):6-9.
    2中华人民共和国国家统计局.中国统计年鉴2008.北京:中国统计出版社, 2008.
    3木结构设计手册编辑委员会.木结构设计手册(第3版).北京:建筑工业出版社, 2005, 5.
    4王周绪.浅析人工林发展和环境保护的有效方式.中国林业. 2008, 8.
    5徐咏兰,华毓坤.不同结构杨木单板层积材的蠕变和抗弯性能.木材工业. 2002, 16(6):10-12.
    6朱典想,刘林芳.单板层积材用意杨厚单板制造中应注意的几个技术问题.林产工业. 1998, 2(3):34-37.
    7吕斌,付跃进,吴盛富,唐召群.几种人工林树种单板层积材的生产试验及力学性能研究.林产工业. 2004, 31(3):13-17.
    8陈雷,金菊婉,徐咏兰.速生杉木单板层积材(LVL)的研究.林业科技开发. 1999, 6:26-28.
    9马阿滨,王伟英,孙宝刚.黑龙江森工林区可持续发展指标体系与评价研究.林业科学. 2004, 40(2):68-74.
    10何敏娟, Frank Lam,扬军,张盛东.木结构设计.北京:中国建筑工业出版社. 2008, 1-6.
    11杨挺青,罗文波,徐平,危银涛,刚芹果.黏弹性理论与应用.北京:科学出版. 2004.
    12惠荣炎,黄国兴,易冰若.混凝土的徐变.北京:中国铁道出版社. 1988, 151-158.
    13周光泉,刘孝敏.粘弹性理论.合肥:中国科学技术大学出版社, 1996.
    14穆霞英.蠕变力学.西安:西安交通大学出版社, 1990.
    15 J. C. Simo, T. J. R. Hughes. Computational inelasticity. NY: Springer-Verlag New York, Inc.; 1998:336-73.
    16徐滨雁.浅谈木质材料的普通蠕变行.林业科技情报. 2003, 35(4):72-73.
    17 S. Thelandersson, E. Aasheim, A. Ranta-Maunus. New timber construction in Nordic countries. 8th World Conference on Timber Engineering. WCTE 2004, Lahti, Finland, June 14-17, 2004.
    18樊承谋,张盛东,陈松来,陈志勇.木结构基本原理.北京:中国建筑工业出版社, 2008.
    19 Engineered Wood Products Association of Australasia. Structural Plywood & LVL Design Manual. The Plywood Association of Australasia Ltd, 2007, 178-179.
    20沈世钊,陈昕.网壳结构稳定性.北京:科学出版社, 1999.
    21曹正罡.网壳结构弹塑性稳定性能研究.哈尔滨工业大学博士学位论文, 2007.
    22 P. Borg Madsen. Eng. Structural Behavior of Timber. Timber Engineering Ltd. 1992, 111-176.
    23 I. Smith, E. Landis, M. Gong. Fracture and Fatigue in Wood. England: John Wiley & Sons Ltd, 2003, 53-58.
    24 P. Hoffmeyer. Strength under long-term loading. Contribution to Wiley textbook on Timber Engineering. 2001.
    25 L. W. Wood. Behaviour of wood under continued loading. Eng. News-Record. 1947, 139(24):108-11.
    26 L. W. Wood. Relation of strength of wood to duration of stress. USDA Forest Products Laboratory, Madison, WI, USA. Report No. 1916. 1951.
    27 B. Madsen, J. D. Barrett. Time strength relationship for lumber. Structural Research Series Report No. 13. University of British Columbia, Vancouver, Canada. 1976.
    28 J. A. Liska. Effect of rapid loading on the compressive and flexural strength of wood. USDA Forest Products Laboratory report No. 1767. 1950.
    29 S. Thelandersson, J. H. Larsen. Timber Engineering. John Willey & Suns Ltd. 2003, 131-152.
    30 Annual Book of ASTM Standards 2005, Section Four, Construction, Volume 04.10, Wood. Baltimore, MD, U.S.A. 2005, 730-740.
    31 S. Holmberg, K. Persson, H. Petarsson. Nonlinear mechanical behavior and analysis of wood and fiber materials. Computers and Structures. 1999, 72:459-480.
    32 H. Sobier, C. C. Menzemer, T. S. Srivatsan. An investigation and understanding of the mechanical response of Palmyrah timber. Materials Science and Engineering A. 2003, 35(4):257-269.
    33 S. Rangaraj, L. V. Smith. The nonlinearcoelastic response of a wood-thermoplastic composite. Mechanics of Time-dependent Material, 1999, 3:125-139.
    34 C. W. Brandt, K. J. Fridley. Load-duration behavior of wood-plastic compsites. Journal of Materials in Civil Engineering. 2003, 15(6):524-536.
    35 Bengtsson, Charlotte. Creep of timber in difference loading modes–material property aspects. Whister: 6th World Conference on Timber Engineering (WCTE2000), Canada. 2000.
    36 S. Aicher, G. Dill-Langer. Long term strength of spruce solid wood at transverse tension loading. Otto-Graf-Journal. 1999, 10:99-112.
    37 S. Mohager, T. Toratti. Long term bending creep of wood in cyclic relative humidity. Wood Science and Technology. 1993, 27:49-59.
    38 A. Hanhij?rvi. Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part I. Experimental techniques for conditions simulating the drying process and results on shrinkage, hygrothermal deformation, modulus of elasticity and strength. Holz als Roh-und Werkstoff. 1998, 56:373-380.
    39 A. Hanhij?rvi. Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part II. Experimentalresults under constant conditions (viscoelastic creep). Holz als Roh-und Werkstoff. 1999, 57:365-372.
    40 A. Hanhij?rvi. Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part III. Experimental results under drying conditions (mechano-sorptive creep). Holz als Roh-und Werkstoff. 2000, 58:63-71.
    41 A. Hanhij?rvi. Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part IV. Modelling. Holz als Roh-und Werkstoff. 2000, 58:211-216.
    42 A. Hanhij?rvi. Advances in the knowledge of the influence of moisture changes on the long-term mechanical performance of timber structures. Materials and Structures. 2000, 33:43-49.
    43 K. Santaoja, T. Leino, Alpo Ranta-Maunus, Antti Hanhij?rvi. Mechano-sorptive structural analysis of wood by the ABAQUS finite element program. Technical Research Center of Finland, Research Notes. 1991.
    44 D. G.. Hunt. The prediction of long-time viscoelastic creep from short data. Wood Sci Technol. 2004, 38:479-492.
    45 A. Ranta-Maunus, M. Kortesmaa. Creep of timber during eight years in natural environments. Whister: 6th World Conference on Timber Engineering (WCTE2000), Canada. 2000.
    46 P. E. Nur Yazdani, E. Johnson, S. Duwadi. Creep effect in structural composite lumber for bridge applications, Journal of Bridge Engineering. 2004, 9(1):87-94.
    47 B. Wisniewski, H. B. Manbeck. Residential floor systems: wood I-joist creep behavior. Journal of Architectural Engineering. 2003, 9(1):41-45.
    48 American Forest & Paper Association, American Wood Council. National design specification for wood construction, ANSI/AF & PA NDS-1997. American National Standard. 1997.
    49 American Forest & Paper Association. Commentary on the natonal design specification for wood construction, Commentary on the 1997 edition. 1997.
    50 K. J. Fridley, P. Hong, D. V. Rosowsky. Time-dependent service-load behavior of wood floors: experimental results. Journal of Structural Engineering. 1997, 123(6):836-843.
    51 K. J. Fridley, D. V. Rosowsky, P. Hong. Time-dependent service-load behavior of wood floors: Analytical Model. Computers & Structures. 1997, 66(6):847-860.
    52 T. A. Philpot, D. V. Rosowsky, K. J. Fridley. Reliability of wood joist floor systems with creep. Journal of Structural Engineering. 1995,121:946-954.
    53 BS EN 1995-1-1:2004, Britishi Standards. 2004.
    54 Eurocode 5: Design of timber structures-Part 1-1: General-Common rules and rules for building. 2004.
    55日本建築学会.木質構造設計規準·同解說—許容応力度·許容耐力設計法, 2002:14, 159-164.
    56 Australia 1720.1-1997. Timber structures–design methods. 1997.
    57中华人民共和国建设部.木结构设计规范GB50005-2003,北京:建筑工业出版社. 2002.
    58 P. Becher, K. Rautenstrauch. Time-dependent material behavior applied to timber columns under combined loading. Part 1: Creep deformation. Holz als Roh-und Werkstoff. 2001, 59:380-386.
    59 P. Becher, K. Rautenstrauch. Time-dependent material behavior applied to timber columns under combined loading. Part 2: Creep-buckling. Holz als Roh-und Werkstoff. 2001, 59:491-495.
    60 P. Becker, K. Rautenstrauch. Deformation and stability of columns of viscoelastic material wood. Proceedings of the CIBW18-meeting, paper 31-2-1, Savonlinna, Finland. 2006.
    61 F. R. Botros. Creep buckling of structures. AIAA Journal. 1983, 237-251.
    62 B. Hayman. Aspects of creep buckling. 1. The influence of post-buckling characteristics. Proceedings of the Royal Society of London. Series A,Mathematical and Physical Sciences, 1978, 364:393-414.
    63 B. Hayman. Aspects of creep buckling. 2. The effects of small deflection approximations on predicted behaviour. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1978, 364:415-433.
    64 J. L. Zeng, K. H. Tan, Z. F. Huang. Primary creep buckling of steel columns in fire. Journal of Constructional Steel Research. 2003, 59:951-970.
    65 D. Touati, G. Cederbaum. Post buckling analysis of imperfect nonlinear viscoelastic columns. Int. J. Solids Structures. 1997, 34(14):1751-1760.
    66 M. N. Kirsanov. Singular point of the creep deformation and buckling of a column. Int. J. Engng Sci. 1997, 35(3): 221-227.
    67 J. M. Stubstad, G. J. Simitses. Solution methods for one-dimensional viscoelastic problems. AIAA Journal. 1987, 458-465.
    68 V. O. Shestopal, P. C. Goss. The estimation of column creep buckling durability from the initial stages of creep. Acta Mechanica. 1984, 52:269-275.
    69向红,傅衣铭.具几何缺陷缺陷两端扭转弹性约束压杆的蠕变屈曲分析.湖南理工学院学报(自然科学版) . 2003, 16(4):20-23.
    70杨骁,何录武.粘弹基上受压粘弹杆的稳定性.兰州大学学报(自然科学版). 1998, 34(4):41-46.
    71彭凡,傅衣铭.黏弹性结构蠕变屈曲特性的分析.力学学报. 2003, 35(3):353-356.
    72 A. M. Vinogradov. Buckling of viscoelastic beam colums. AIAA Journal, 1987, 25(3):479-483.
    73 R. L. Carlson. Column creep buckling with end Restraint. AIAA Journal, 1981, 19(5): 664-666.
    74 D. Lanc, G. Turkalj, J. Brnic. Finite-element model for creep buckling analysis of beam-type structures. Communication in Numerical Methods in Engineering. DOI: 10.1002/cnm.1004.
    75 N. G. Torshenov. Creep buckling of an Eccentrically load column. Zhurnal Prikladnoi Mekhaniki I Teckhnicheskoi Fiziki, 1966, 7(4):164-166.
    76 W. P. Chang, Chung-Li. Creep buckling of nonlinear viscoelastic columns. Acta Mechanica. 1986, 60:199-215.
    77 H. H. Hilton. Probabilistic delamination onset analysis of nonliner viscoelastic columns with large deformations. AIAA Journal. 2002, 1-10.
    78 H. H. Hilton, M. Achour. Dyanamic creep buckling of viscoelastic columns with large deformations and follower loads_failure probabilities and survivial times. AIAA Journal. 2003, 1-11.
    79 Wojciech Skowroński. Buckling fire endurance of steel columns. Journal of Structural Engineering. 1993, 119(6):1712-1732.
    80 H. H. Hilton. Dynamic thermal stress creep buckling, probabilistic failures and survival times of viscoelastic columns with follower loads. AIAA Journal. 2005, 1-19.
    81 P. J. S. Cruz, A. R. Marí, P. Roca. Nonlinear time-dependent analysis of segmentally constructed structures. Journal of Structural Engineering. 1998, 124(3):278-287.
    82彭凡.粘弹性板壳的静动力稳定性问题研究.湖南大学博士学位论文. 2005
    83杨挺青,张晓春,刚芹果.黏弹性薄板蠕变屈曲的荷载-时间特性研究.力学学报. 2000, 32(3):319-325.
    84 H. Altenbach, G. Kolarow, O. K. Morachkousky, K. Naumenko. On the accuracy of creep-damage predictions in thinwalled structures using the finite element method. Computational Mechanics. 2000, 25:87-98.
    85 A. Sammari, J. F. Jullien. Creep buckling of cylindrical shells under external lateral pressure. Thin-Walled Structures. 1995, 23:255-269.
    86彭凡,傅衣铭.考虑蠕变的正交铺设层合柱形曲板的屈曲分析.湖南大学学报. 1998, 25(3):10-15.
    87 C. H. Popelar, D. Evans. Creep ovalization and buckling of a linear viscoelastic externally pressurized pipe. Journal of Pressure Vessel Technology. 2004, 126:208-215.
    88 Q. Zhao, R. Nassar, D. E. Hall. Numerical simulation of creep-induced buckling of thin-walled pipe liners. 2001, 123:373-380.
    89 M. Yousef, R. Nassar. Analysis of accelerated failure times of rehabilitation liners subjected to a constant or variable pressure. Tunnelling and Underground Space Technology, 2006, 21:97-105.
    90 R. Nassar, M. Yousef. Analysis of creep failure times of cured-in-place pipe rehabilitation liners. Tunnelling and Underground Space Technology, 2002, 17:327-332.
    91 M. Zhu, D. E. Hall. Creep induced contact and stress evolution in thin-walled pipe liners. Thin-Walled Structures. 2001, 39:939-959.
    92 R. M. Bakeer, Michael E. Barber, John E. Taylor, Sean E. Pechon. Long-term buckling performance of HDPE liners. Journal of Materials in Civil Engineering. 2001, 13(3):176-184.
    93 J. C. Boot, I. L. Toropova, A. A. Javadi. Predicting the creep lives of thin-walled cylindrical polymeric piper linings subject to external pressure.International Journal of Solid and Structures. 2003, 40:7299-7314.
    94 C. H. Popelar, D. Evans. Creep ovalization and buckling of a liner viscoelastic externally pressurized pipe. Transactions of the ASME. 2004, 126:208-215.
    95 J. G. J. Beijer, J. L. Spoormaker. Solution strategies for FEM analysis with nonlinear viscoelastic polymers. Computers and Structures. 2002, 80:1213-1229.
    96 T. Wang, M. A. Bradford, R. lan Gilbert. Creep buckling of shallow parabolic concrete arches. Journal of Structural Engineering. 2006, 132(10):1641-1649.
    97 R. Riff. Nonisothermal elastoviscoplastic snap-through and creep buckling of shallow arches. AIAA Journal. 1987, 27(8):1110-1115.
    98 Y. Song, I. Sheinman, G. J. Simitses. Thermoelastioviscoplastic buckling behavior of cylindrical shells. Journal of Engineering Mechanics. 1995, 121(1):62-70.
    99 N. Huang. Creep deflection of viselastic laminated cylindrical panels with initial deflection under axial compression. Composites: Part B. 1999, 30: 145-156.
    100 A. Samuelson Lars. Creep buckling of a circular cylindrical shell. AIAA Journal, 1968, 7(1):42-49.
    101 A. Combescure. Simplified prediction of creep buckling of cylinders under external pressure. Part 1: finite element validation. Eur. J. Mech. A/Solids. 1998, 17:1021-1036.
    102 A. Combescure. Alain Combescure. Simplified prediction of creep buckling of cylinders under external pressure. Part 2: Experiment verification. Eur. J. Mech. A/Solids. 1999, 19:1045-1059.
    103 Y. Song, I. Sheinman, G. J. Simitses. Thermoelastoviscoplastic buckling behavior of cylindrical shells. Journal of Engineering Mechanics. 1993, 121(1):62-70.
    104 B. F. Oliveira, G. L. Creus. Viscoelastic failure analysis of composite plates and shells. Composite Structures. 2000, 49:369-384.
    105 A. H. Muliana. Integrated micromechanical-structural framework for the nonlinear viscoelastic behavior of laminated and pultruded composite materials and structures. PhD thesis. Georgia Institute of Technology, US. 2003.
    106 A. H. Muliana, Haj-Ali Rami M. Analysis for creep behavior and collapse of thick-section composite structures. Composite Structures. 2006, 73:331-41.
    107 F. O. Branca, J. Creus Guillermo. Nonlinear viscoelastic analysis of thin-walled beams in composite material. Thin-walled Structures. 2003, 41:957-971.
    108 A. C. F. Cocks, M. F. Ashby. Creep-buckling of cellular solids. Acta mater. 2000, 48:3395-3400.
    109 H. X. Zhu, N. J. Mills. Modelling the creep of open-cell polymer foams. Journal of the Mechanics and Physics of Solids. 1999, 47:1437-1457.
    110 J. Lin, J. Huang. Creep-buckling of hexagonal honeycombs with plateau borders. Composites Science and Technology. 2006, 66:51-60.
    111 N. C. Huang. Creep buckling of imperfect columns. Journal of applied mechanics. 1976, 3:131-136.
    112 D. H. Pan, Ulf Arne Girhammar. Effect of ring beam stiffness on behavior of reticulated timber-domes. International Journal of Space Structures. 2005, 20(3):143-160.
    113 M. Fujimoto, K. Imai. Experimental study of single layer three-way grid dome composed of KIT-wood space truss system with timber. Montpellier: IASS symposium, Shell and Spatial Structures from Models to Realization, France. 2004.
    114秦孟佳,薛建荣.大跨度斜拉桥大位移影响的非线性静力分析.华北水利水电学院学报. 2007, 1:43-45.
    115王策,刘西拉.空间刚架动态失稳全过程分析.工程力学. 2001, 6:68-75.
    116沈祖炎,唐建民.圆形平面轴对称索穹顶结构成形后的刚度计算.同济大学学报. 1999,3:253-258.
    117谢贻权,何福保.弹性和塑性力学中的有限单元法.机械工业出版社. 1981, 182-184.
    118朱军,周光荣.空间桁架结构大位移问题的有限元分析方法.计算力学学报. 2000, 3:339-342.
    119周水兴,陈山林.计入初始应变项的平面梁单元非线性刚度矩阵.重庆建筑大学学报. 2007, 4:40-74.
    120周凌远,李乔.基于UL法的CR列式三维梁单元计算方法.西南交通大学学报. 2006,6:690-695.
    121陈麟,张耀春.基于等参公式的三节点梁单元.工程力学. 2003(1):48-52.
    122辛克贵,刘钺强.杨国平大跨度斜拉桥恒载非线性静力分析.清华大学学报(自然科学版). 2002, 6:818-821.
    123王策,沈世钊.单层球面网壳结构动力稳定分析.土木工程学报. 2000, 6:17-24.
    124李占军,张福海,刘锡良.拉索拱结构几何非线性分析的实用方法.建筑结构学报. 1999, 3:35-41.
    125陈政清,曾庆元,颜全顺.空间杆系结构大挠度问题内力分析的UL列式法.土木工程学报. 1992, 5:34-44.
    126 ABAQUS theory manual Version 6.4. Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, R.I. 2003a.
    127 ABAQUS user’s manual Version 6.4. Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, R.I. 2003b.
    128中华人民共和国行业标准.网壳结构技术规程JGJ61-2003.北京:建筑工业出版社. 2003.
    129中华人民共和国国家标准.木材物理力学性质试验方法GB1927~1943-91.北京:国家技术监督局. 1992.
    130中华人民共和国国家标准.木结构试验方法标准GB/T 50329-2002.北京:建筑工业出版社. 2002.
    131中华人民共和国国家标准.建筑结构荷载规范GB 50009-2001.北京:建筑工业出版社. 2006.
    132 H. Z. Zhou, E. C. Zhu, S. W. Wang. Creep of LVL and its effect on the structures. Miyazaki: 10th World Conference on Timber Engineering (WCTE2008), Japan. 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700