采动区送电线路铁塔力学计算模型及塔-线体系共同作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
送电线路铁塔的连接滑移和节点弹性,一直以来都被公认为是影响送电线路铁塔受力特性的主要因素。随着地下资源开发和地下空间利用呼声的提高,开展采动区铁塔力学计算模型和塔-线体系共同作用机理方面的研究,对于上部结构的安全性和地下空间资源的可用性具有重要的指导意义。
     通过滑移性能试验,针对单个螺栓和两个螺栓连接节点,研究了螺栓连接的荷载-位移相关关系、螺栓连接滑移机理和螺栓连接节点的破坏形态,同时,导出了有滑移杆件的轴向刚度。
     基于模糊数学的隶属度概念,从节点的弹性位移着手实现节点的模糊转角,推导了空间弹性梁单元的单刚矩阵,给出了模糊转角位移的隶属度与弹簧刚度的映射关系。借助MATLAB软件,引入有滑移杆件的轴向刚度折减系数,编制了考虑滑移的空间弹性节点模型(SFJS)源程序,对一JJ3型送电线路铁塔在支座不均匀沉降作用下主材和斜材的轴向力分布规律进行了数值分析,并与足尺寸铁塔试验结果进行比较。相比传统的刚架模型,考虑滑移的空间弹性节点模型的计算结果与试验吻合较好,能准确地反映地表变形作用下送电线路铁塔杆件的内力,验证了SFJS源程序的可靠性。考虑滑移的空间弹性节点模型对位于采动区送电线路铁塔的设计、计算和保护提供了理论依据。
     借助矿区沉陷预测预报系统—MSPS,对地下开采引起的动态地表变形进行了预计。并建立塔-线体系三维有限元模型,考虑了既定塔-线体系下方不同工作面布置对导、线应力和弧垂、铁塔杆件内力、支座反力和塔顶综合位移进行了系统研究,提出了地下开采过程中塔-线体系的共同作用机理。针对工作面推进方向与线路方向的三种关系,对塔-线体系进行了安全评价,同时给出了相应的评价指标。在此基础上,提出了已建塔-线体系工作面布置原则及纠偏加固改造技术和采动区新建塔-线体系设计建议。
Connection slippage and joint flexibility of tower are widely regarded as major influencing factors for its mechanic performance. As the improvement of tendency to underground resource and space development, mechanic model of transmission line steel tower and interaction mechanism of tower-line system is great significant to the realiability of superstructure and availability of underground resource.
     For one bolt and two bolts connection joint, load-displacement curve, slippage mechanism of bolt connection and failure mode of bolt joint were studied by using slippage performance test, and axial stiffness of member with slippage was presented.
     Based on the concept of fuzzy membership, using spring to achieve fuzzy rotation angle of joint through its flexible displacement, element stiffness matrix of space flexible beam was derived and the relationship between fuzzy rotation and spring stiffness was provided. Introduced the axial stiffness reduction coefficient, the source code on space flexible joint model with slippage (SFJS) was programmed using MATLAB and perform numerical analysis to obtain the axial force of legs and diagonals of JJ3-type transmission line steel tower. The numerical results compared fairly well with full-scale test results and verify the reliability of space flexible joint model with slippage which can solve the internal force distribution of bar of transmission line steel tower and more accurately than traditional space frame model. The SFJS provide theoretical foundation for the design, calculation and protection of transmission line steel tower located at mining area.
     Dynamic surface deformations were predicted using Mining Subsidence Prediction System (MSPS). Three-dimensional finite element model of tower-line system was built and perform study on stress and sag of conductor and lightning conductor, internal force of steel bar, bearing reaction and comprehensive displacement at tower top. Finally, interaction mechanism of tower-line system was provided. For three types relationship between workface tunneling direction and line, safety evaluation was conducted and give correspondent evaluation index. Based on workface layout principles, deviation rectification and strengthening reformation for existed tower-line system and design suggestion for newly-built tower-line system were presented.
引文
[1]何国清,杨伦,凌赓娣,贾风彩,洪镀.矿山开采沉陷学[M].北京:中国矿业大学出版社, 1989.
    [2]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社, 2003.
    [3]张联军,王宇伟.高压输电铁塔下采煤技术研究[J].河北煤炭, 2002(4): 12-13.
    [4]查剑锋,郭广礼,狄丽娟,等.高压输电线路下采煤防护措施探讨[J].矿山压力与顶板管理, 2005(1):112-114.
    [5]付明翔,韩为民,默增禄.煤矿采空区500kV输电线路设计的探讨[J].电力建设, 2004,25(6):30-32.
    [6]郭广礼,王悦汉,马占国.煤矿开采沉陷有效控制的新途径[J].中国矿业大学学报, 2004,33(2):150-153.
    [7]李凤明.采动区地表减沉技术应用现状及发展趋势[J].煤矿开采, 2006,11(1):3-7.
    [8]查剑锋.采动影响下高压输电线路变形机理及其控制研究[D].徐州:中国矿业大学, 2005.
    [9]赵海涛,郭广礼,查剑锋.高压输电线路杆塔采动变形规律研究[J].煤矿安全, 2008(5):17-19.
    [10]刘涛.采动区自立式直线输电铁塔破坏机理及抗变形能力研究[D].徐州:中国矿业大学, 2008.
    [11]孙冬明,夏军武.地下开采对送电线路铁塔附加内力影响的有限元分析与试验研究2009年全国博士生论坛优秀论文集.长沙:中南大学, 2009: 400-407.
    [12]孙冬明,夏军武,常鸿飞.地下开采后送电线路铁塔的受力性能研究[J].武汉理工大学学报, 2010, 32(10): 58-61, 90.
    [13]郝际平,钟炜辉.薄壁杆件的弯曲与扭转[M].北京:高等教育出版社, 2006.
    [14]刘沪昌,唐国安.轴心受压热轧等边角钢肢边缘局部屈曲稳定计算方法的探讨[J].电力建设, 2007,28(9):1-4,17.
    [15]陈骥.单轴对称截面轴心受压构件的弯扭屈曲设计问题[J].钢结构, 1999,14(46):49-52.
    [16]钢结构设计规范(GB 50017—2003)[S].北京:中国计划出版社, 200.3.
    [17]顾石川,苏明周.热轧单角钢轴心受压构件的稳定承载力[J].苏州科技学院学报(工程技术版), 2006,19(2):6-9.
    [18]李峰,邓洪洲,唐国安,等.输电铁塔设计中角钢构件稳定计算问题的讨论[J].特种结构, 2006,23(2):4-7.
    [19]郭兵.单角钢压杆的屈曲及稳定计算[J].建筑结构学报, 2004,25(6):108-111.
    [20] Design of Latticed Steel Transmission Structures (ASCE10-97). American Society of Civil Engineers.
    [21]默增禄,耿景都.不等边角钢用于输电杆塔的试验研究[J].电力建设, 2001,22(7):10-15.
    [22]邹翠荣,孙洪,丁洪.新型输电铁塔的试验研究与理论分析[J].东北电力技术, 1997,(9):6-10.
    [23] Mohan S J, Shabeen S. R, Knight G M S. Behaviour of cold formed lipped angles in transmission line towers[J]. Thin-Walled tructures, 2006,44(9),1017-1030.
    [24]韩军科,李正,杨风利,等.冷弯型钢输电铁塔真型试验研究[J].电力建设, 2008,29(8):58-60.
    [25]冷弯薄壁型钢结构技术规范(GB 50081—2002)[S].北京:中国计划出版社, 2002.
    [26]王肇民, Peil U.塔桅结构[M].上海:同济大学出版社, 1989.
    [27]李成文,黄炜,秦国梅. 110kV送电线路常用杆塔工程图集(设计﹒计算﹒施工图)[M].北京:中国电力出版社, 2007.
    [28]架空送电线路杆塔结构设计技术规定(DL/T 5154-2002).北京:中国电力出版社, 2008.
    [29] 110~750kV架空输电线路设计技术规定(Q/DGW 179-2008).北京:中国电力出版社, 2008.
    [30]杨万里,鲍务均,龙小乐.输电杆塔结构的非线性有限元设计分析[J].湖北电力, 1999,23(1):25-27.
    [31]杨万里,龙小乐,鲍务均.输电杆塔结构的结构设计分析[J].武汉水利电力大学(宜昌)学报, 1999,21(1):58-64.
    [32]曾宪文,李新民,刘士彬.弹性节点的模糊分析及其在输电塔中的应用[J].东北电力学院学报, 2000,20(1):25-29
    [33] Roy S, FANG Shu-jin, Rossow E C. Secondary stresses on transmission towers structures. [J] Journal of Energy Engineering, 1984,110(2):157–172.
    [34] Al-Bermani F, Kitiporchai S. Nonlinear analysis of transmission towers[J]. Engineering Structures, 1992,14(3):139-151.
    [35] Al-Bermani F, Kitipornchai S. Numerical simulation of structural behavior of transmission towers[J]. Thin-Walled Structures, 2003,(41):167-177.
    [36] Knight G, Santhakumar A. Joint effect on behavior of transmission towers[J]. Journal of Structural Engineering, 1993,119(3):698-712.
    [37] Electric Power Research Institute, Structural development studies at the EPRI transmission line mechanical research facility, Interim Report No. 1: EPRI EL-4756. Tullahoma, TN: Sverdrup TechnologyInc.,1986.
    [38] Robert V, Lernelin D R. Flexural Consideration in Steel Transmission Tower Design[J]. Electrical Transmission In A New Age, 2000,(6):148-155.
    [39]邓洪洲,王肇民.输电铁塔结构系统极限承载力及可靠性研究[J].电力建设,2000(2):12-14.
    [40]王璋奇.输电线路杆塔设计中的几个问题[J].电网建设, 2002,23(1):19-21.
    [41]傅春蘅.高压输电线路铁塔结构设计几点分析[J].电力建设, 2003,24(1): 28-30,36.
    [42] Rao N P, Kalyanaraman V. Non-linear behaviour of lattice panel of angle towers[J].Journal of Constructional Steel Research, 2001,57(12):1337-1357.
    [43] Kitipornchai S, Al-Bermani F, KANG, et al. Some practical aspects of modeling lattice towers[C]. Proceedings of the Fourth International Conference on Advances in Steel Sturctures: Volume 1. Shanghai: Tongji University Press, 2005:369-375.
    [44] Lee P S, McClure G. Elastoplastic large deformation analysis of a lattice steel tower sturcture and comparison with full-scale tests[J]. Journal of Constructional Steel Research, 2007,63:709-717.
    [45] Al-Bermani F, Kitipornchai S, Chan R W K. Failure analysis of transmission towers[J]. Engineering Failure Analysis, 2008: 1-7.
    [46] Lee P S, McClure G. A general three-dimensional L-section beam finite element for elastoplastic large deformation analysis[J]. Computers and Structures, 2006(84):215–229.
    [47] Matsuo S, Tanabe S, Hongo E. The united design method of a transmission tower and the foundations[J]. IEEE, 2002:2166-2171.
    [48] 110~500kV架空送电线路施工及验收规范(GB 50233-2005)北京:中国计划出版社, 2005.
    [49]钢结构工程施工质量验收规范(GB 50205-2001).北京:中国计划出版社, 2001.
    [50] John D R, Nicholas R H. Detailed modeling of bolted jointed with slippage[J]. Finite Elements in Analysis and Design, 2005,41:547-562.
    [51]江文琳,梅燕.钢结构高强度螺栓连接面抗滑移系数试验[J].工业建筑增刊, 2005,35:414-416.
    [52]徐娟,时旭东.摩擦型高强螺栓抗剪连接的螺栓单排数量和间距因素分析[J].施工技术, 2006,35(5):74-76.
    [53]彭铁红,侯兆欣,文双玲等.螺栓孔径与孔型对高强度螺栓摩擦型连接承载能力影响的试验[J].钢结构, 2007,22(98):30-34.
    [54] Friction-Type Bolted Connections with A588 Weathering Steel. Structures and Applied Mechanics Division, Washington D.C., 1981.
    [55] Groper M. Microslip and macroslip in bolted joints[J]. Experimental Mechanics, 1985,6:171-174.
    [56] Kitipornchai S, Al--Bermani F, Peyrot A H. Effect of bolt slippage on ultimate behavior of lattice structures[J]. Journal of Structural Engineering, 1994,120(8):2281–2287.
    [57] Ungkurapinan N. A study of joint slip in galvanized bolted angle connections[D]. University ofManitoba, Canada:2000.
    [58] Kroeker D. Structural analysis of transmission towers with connection slip modeling[D]. University of Manitoba, Canada:2001.
    [59]陈惠发.钢框架稳定设计[M].周绥平译.上海:世界图书出版公司, 1999.
    [60] Ungkurapinan N, Chandrakeerthy S R De S, Rajapakse R K N D, Yue S B. Joint slip in steel electric transmission towers[J]. Engineering Structures, 2003,25:779–788.
    [61] Kroeker D. Structural analysis of transmission towers with connection slip modeling[D]. University of Manitoba, Canada:2001.
    [62] John D R, Nicholas R H. Detailed modeling of bolted jointed with slippage[J]. Finite Elements in Analysis and Design, 2005,41:547-562.
    [63]徐建设,陈以一,韩琳,等.普通螺栓和承压型高强螺栓抗剪连接滑移过程[J].同济大学学报, 2003,31(5):510-514.
    [64]赵滇生.输电塔架结构的理论分析与受力性能研究[D].浙江:浙江大学, 2003.
    [65] Silvaa J G S, Vellascob P C G, Andrade S A L, et al. Structural assessment of current steel design models for transmission and telecommunication towers[J]. Journal of Constructional Steel Research, 2005,61(8):1108-1134.
    [66]隋允康,潘天群.结构节点模型的“弗晰”精化处理[J].计算结构力学及其应用, 1989, 6(3):45-51.
    [67]隋允康,丁殿民.结构节点的中介状态对力学分析和优化设计的影响[M].上海力学, 1992, 13(2):6-12.
    [68]张仰光,曹运萍.采空区上方建筑物抗变形措施[J].江苏煤炭, 1999(2):42-43.
    [69]段敬民,钱永久,曾宪桃.塌陷区地表房屋抗采动结构体系及其加固[J].工程力学, 2007,24(1):94-97.
    [70]郭广礼.老采空区上方建筑物地基稳定性及处理措施研究[D].徐州:中国矿业大学, 1999.
    [71]邓喀中,郭广礼,谭志祥,等.采动区建筑物移动变形特性研究[J].中国矿业大学学报, 2001,30(4):354-358.
    [72]仲继寿.采动区砌体结构房屋变形控制设计理论研究[D].徐州:中国矿业大学, 1993.
    [73]仲继寿.采动区砌体结构房屋变形控制设计[M].北京:煤炭工业出版社,1995.
    [74]乔志春.移动地表土对砌体结构基础作用的试验研究[D].徐州:中国矿业大学, 1997.
    [75]秦杰.采动区砖混结构房屋双重保护的研究[D].徐州:中国矿业大学, 1999.
    [76]袁迎曙,秦杰,杨舜臣.村镇砖混住宅抗采动变形的结构保护体系研究[J].中国矿业大学学报, 1999, 28(6):530-534.
    [77]段敬民,钱永久,曾宪桃.采空区抗变形住宅建筑体系及其加固技术[J].煤炭工程,2008,8:44-46.
    [78]乔志春,夏军武,郭广礼,等.老采空区上方大型工业建筑抗变形措施研究[J].中国矿业大学学报, 1999,28(6):593-596.
    [79]夏军武,王守祥,王宽如,等.位于老采空区上的门式刚架结构抗变形性能分析研究[J].建筑结构, 2004, 34(5): 30-32, 35.
    [80]夏军武,郭广礼,王守祥,等.框架结构抗变形性能的研究现状和展望[J].东南大学学报, 2002,32 (增刊) : 348-351.
    [81]夏军武.采动区地基–基础–钢框架结构共同作用机理及抗变形的研究[D].徐州:中国矿业大学, 2005.
    [82]夏军武,于广云,吴侃,等.采动区桥体可靠性分析及抗变形技术研究[J].煤炭学报, 2005,30(1):17-21.
    [83]于广云,夏军武,王东权.采动区铁塔桥沉陷加固治理[J].中国矿业大学学报, 2004,33(1):59-61.
    [84]章根德.岩土材料本构模型的最新进展[J].力学进展, 1994,24(3):374-385.
    [85]郑颖人.岩土塑性力学的新进展-广义塑性力学[J]岩土工程学报, 2003, 25(1):1-10.
    [86]胡群芳,李清富,刘文.土的本构模型研究现状与趋势[J].河南建材, 2005(1):22-25.
    [87] Roscoe K H, Schofield A N, Worth C P. on the yielding of soils[J]. Geotechnique, 1958, 8(1):22- 53.
    [88] Roscoe K H, Schofield A N, Thurairajah A. Yielding of clays in states wetter than critical[J]. Geolechnique, 1963,13 (1):211-240.
    [89]陈惠发, A. F.萨里普.混凝土和土的本构构方程[M].北京:中国建筑工业出版社, 2004.
    [90]熊春宝,雷礼钢,葛有志.土的不同本构关系对三维有限元分析的影响[J].天津理工大学学报, 2006,22(1):81-84.
    [91]赵明华.土力学与基础工程[M].武汉:武汉工业大学出版社, 2000.
    [92]苏静波,尹建兵,董兴平.岩土体的本构模型在Marc中的实施[J].盐城工学院学报, 2005,18(1):6-8,13.
    [93]韩春秀,董羽蕙. ANSYS对岩土材料进行三维模拟的技巧探讨[J].岩土工程界, 2005,9(9):40-43.
    [94] Potyondy J G. Skin friction between various soils and construction materials[J]. Geotechnique, 1961,11(4) :339-353.
    [95] Clough G W, Duncan J M. Finite element analyses of retaining wall behavior[J]. Journal of Soil Mechanic and Foundation Division, 1971,97(12):1657-1673.
    [96] Desai C S, Drumm E C, Zaman M M. Cyclic testing and modeling interfaces[J].Journal of Geotechnical Engineering Division, 1985,111(6) :793-815.
    [97]殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟[J].岩土工程学报, 1994 ,16(3):14-22.
    [98]胡黎明.土与结构物接触面力学特性研究和工程应用[D].北京:清华大学,2000.
    [99]王伟.基于能量耗散原理的土与结构接触面模型研究和应用[D].南京:河海大学,2006.
    [100] Fakharian K. Three-dimensional monotonic and cyclic behavior of sand-steel interfaces[D]. Ottawa :University of Ottawa, 1996.
    [101] Fakharian K, Evgin E. An automated apparatus for three-dimensional monotonic and cyclic testing of interfaces[J]. Geotechnical Testing Journal, 1996,19(1):22-31.
    [102]张冬霁,卢廷浩.一种土与结构接触面模型的建立及应用[J].岩土工程学报, 1998,20(6):62-66.
    [103]卢廷浩,鲍伏波.接触面薄层单元耦合本构模型[J].水利学报, 2000(2):71-75.
    [104]高俊合,于海学,赵维炳.土与混凝土接触面特性的大型单剪试验研究及数值模拟[J].土木工程学报, 200 ,33(4):42-46.
    [105]张嘎.粗粒土与结构接触面静动力学特性及弹塑性损伤理论研究[D].北京:清华大学, 2002.
    [106]张嘎,张建民.大型土与结构接触面循环加载剪切仪的研制及应用[J].岩土工程学报, 2003,25(2):149-154.
    [107]张嘎,张建民.粗粒土与结构接触面的可逆性与不可逆性剪胀规律[J].岩土力学, 2005,26(5):699-705.
    [108]陈慧远.摩擦接触面单元及其分析方法[J].水利学报, 1985(4): 44-50.
    [109]钱家欢.接触面剪切流变特性试验研究[G]/ /安关峰,高大钊.岩土与水工建筑物共同作用研究成果汇编.南京:河海大学, 1990.
    [110] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations, 1968,94(3):660-677.
    [111] Desai C S, Zaman M M. Thin layer element for interfaces[J]. Int Journ for Num & Analy Meth in Geomech, 1984,8(1):19-43.
    [112]煤炭科学研究院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社, 1981.
    [113]周国铨,崔继宪,刘广容,等.建筑物下采煤[M].北京:煤炭工业出版社, 1983.
    [114]顾少华,仲继寿.煤矿采动区地表压缩变形区建筑物基础切入地基规律的认识[J].矿山测量,1995(3):29-33.
    [115]刘长文,刘忠洪,李继红.采动区建筑地基与基础上部作用的有限元计算[J].辽宁工程技术大学学报, 2000,19(2):32-34.
    [116]秦杰,袁迎曙,杨舜臣.砌体结构与地基共同作用的研究[J].工业建筑, 2000,30(12):22-25.
    [117]谭志祥,刘润芳,邓喀中.采动区建筑物移动变形及附加应力数值模拟研究[J].煤炭科学技术,2007,35(3):94-97,102.
    [118]邓喀中,郭广礼,谭志祥.采动区建筑物地基、基础协同作用特性研究[J].煤炭学报, 2001,26(6):601-605.
    [119]谭志祥,邓喀中.采动区建筑物地基、基础和结构协同作用模型[J].中国矿业大学学报, 2004,33(3):264-267.
    [120]谭志祥.采动区建筑物地基、基础和结构协同作用理论与应用研究[D].徐州:中国矿业大学, 2004.
    [121]夏军武,郭广礼,刘家新,等.老采空区地基变形与基础协同作用的研究[J].河海大学学报, 2001,29 (增刊) :51-53.
    [122]夏军武.袁迎曙,董正筑.采动区地基、独立基础与框架结构共同作用机理研究[J].中国矿业大学学报, 2007, 36(1):33-37.
    [123]夏军武,袁迎曙,董正筑.采动区地基、条形基础与框架结构共同作用机理研究[J].岩土工程学报, 2007, 29(4):537-541.
    [124]张永吉,陈刚,王琼.开采引起地表沉陷规律的有限元分析[J].矿山压力与顶板管理, 2005(1): 97-98,101.
    [125]徐向东,贾留东,孙剑平等.建筑物基底掏土灌水法纠倾—设计方法与工程实例[J].建筑结构学报, 1999,20(5):59-65.
    [126]刘毓氚,刘祖德.某危房的地基应力解除法纠偏工程实例[J].土工基础, 2000,14(4):29-31.
    [127]胡琦.掏土法纠偏有限元分析[D].浙江:浙江大学, 2004.
    [128]杜庆荣.铁塔倾斜原因及纠偏技术的探讨[J].武汉船舶职业技术学院学报, 2006,3:46-48.
    [129]史振华.采空区输电线路直线自立塔基础沉降及处理方案[J].山西电力技术, 1997,17(3):18-20.
    [130]孙俊华.煤矿采空区线路设计技术[J].山西电力, 2004,3(120):13-14.
    [131]张建强,杨昆,王予东,等.煤矿采空区地段高压输电线路铁塔地基处理的研究[J].电网建设, 2006,30(2):30-34.
    [132]杜长林.煤矿采空区对输电线路的影响及防范措施[J].电力安全技术, 2007,9(10):51.
    [133]刘毓氚,刘祖德.输电线路倾斜铁塔原位加固纠偏关键技术研究[J].岩土力学, 2008,29(1):173-176.
    [134] Al-Bermani F, Mahendran M, Kitipornchai S. Upgrading of transmission towers using a diaphragm bracing system[J]. Engineering Structures, 2004(26):735-744.
    [135] Robert E.S. Matrix Analysis of Structures[M]. Illinosis: Waveland Press, Inc, 2000.
    [136]东北电业管理局. 35~110千伏送电线路铁塔通用设计型录[M].北京:水利水电出版社, 1979.
    [137]国家煤炭工业局.建筑物、水体、铁塔及主要井巷煤柱留设与压煤开采规程.北京:煤炭工业出版社, 2000.
    [138]地下开采后110kV送电线路铁塔加固技术研究报告.徐州:中国矿业大学, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700