海洋生态系统动力学模型中控制参数时空分布的反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究海洋生态学的目的是,通过加强对全球海洋生态系统结构和功能的认识,来提高预测生态系统响应全球变化的能力。发展生态系统动力学模型成为对复杂的海洋环境进行研究的一种重要手段。模型中参数的取值很大程度上影响着模拟效果。在以往海洋生态模拟工作中,部分研究者在一定程度上优化出随空间变化的生态参数,也有研究表明关键生态参数在时间上存在变化,但是至今没有研究考虑同时随时间和空间变化的参数。本文在改进参数优化方案的基础上,利用伴随同化方法优化出随时空变化的参数,提高了模拟精度。
     在SODA数据提供的背景场下,本文将伴随同化方法应用于一个全球尺度的三维海洋生态系统动力学模型,该模型含有NPZD(营养盐、浮游植物、浮游动物、碎屑)四个状态变量。
     基于参数空间分布,在理想实验中同化由模型产生的表层浮游植物“观测”数据,单独反演空间变化的浮游植物最大生长率Vm,其它参数取常数并保持不变。通过改进步长因子,得到最优的参数调整方案,同化效率明显提高:与前人的方案相比,在同化相同步数的情况下,约化后的代价函数值(RCF)、模拟与“观测”的平均误差(MAE)以及反演参数与给定参数的之间的相对误差(RE)均明显减小,反演的空间变化曲面与给定的空间变化曲面基本一致。通过探讨不同独立点方案和影响半径的选择对模拟结果的影响,找出独立点间的距离与最优影响半径之间的比例关系,为接下来的实验提供有利参考。通过比较不同时间步长对实验结果的影响,发现减小时间步长,计算量大大增加,但是对模拟结果影响不大。同时反演五个给定空间变化的参数,即影响生态机制的关键参数Vm、Gm、Dp、Dz、e(统称为KP),模拟精度和同化效率得到提高,各参数的RE都在6%以内,表明在海洋生态系统动力学伴随同化模型中通过优化步长因子,选择适当的独立点方案和时间步长,能够提高同化效率和模拟精度。通过对所有理想实验的结果进行线性回归分析,发现反演前后参数的RE与表层浮游植物的MAE正相关,两者的相关系数为0.8,说明表层浮游植物的MAE不仅能反应模拟结果误差的大小,在一定程度上还能反映参数反演结果的优劣,因此浮游植物的MAE可以在实际实验中作为检验参数优化正确与否的指标。
     在上述工作的基础上,进行实际实验。将一年分为72个过程(每个过程5天),划定16°N-44°N,173°E-142°W(位于北太平洋)以及16°N-44°N,167°W-122°W(位于南太平洋)作为重点关注区域。针对每一个区域,通过同化每一个过程的SeaWiFS表层叶绿素数据,优化5个KP,得到了它们在该区域的时空分布。对于每一个KP,首先,分别将其在时间和空间上求平均,得到参数的空间分布场(KPS)和时间分布序列(KPT);其次,将KPS在空间上求平均(或者将KPT在时间上求平均),得到一个常数(KPC);最后,利用KPS、KPT和KPC表示出KP的另一种时空变化形式KPST,它减少了模拟过程中变量个数。分析结果表明,无论是空间分布还是时间分布,Vm、Dz和e均具有相同的变化趋势,相关系数可达0.99,Dp和Gm亦然;而Vm、Dz和e的变化趋势与Dp和Gm的变化趋势呈负相关,相关系数可达-0.99。将区域A与区域A’内统计得到的KPT的距平进行对比,结果表明,对于每一个参数而言,其距平随时间和空间变化,Vm、Dz和e的距平在冬半年为正值,在夏半年为负值,而Dp和Gm的距平在冬半年为负值,在夏半年为正值。5个参数的变化趋势符合物理意义和生态机制。
     将模型中的参数分别按上述4种形式赋值,运行正向模式,模拟时间为1年。实验结果表明考虑参数时空分布的实验误差最小。说明在海洋生态系统动力学数值模拟中,与只考虑参数的空间分布、只考虑参数的时间分布以及把参数看作不随时空变化的常数相比,考虑参数时空分布更合理,有利于提高模拟精度;伴随同化技术在优化时空变化的参数方面,是一种有效的,值得推广的方法,它为我们研究生态系统的变化机制、对生态系统进行模拟和预报提供科学的决策依据。
Advancing our understanding of the structure and functioning of the global oceanecosystem, its major subsystems, and its response to physical forcing is the scientificresearcher's common goal, so that a capability can be developed to forecast theresponses of the marine ecosystem to global change. Developing the ecosystemdynamics model is becoming an important tool for studying the complicated marineenvironment. In most previous studies, the temporal and spatial variation of primaryproductivity and the concentration of ecological variables have been studied. Someresearches realize the spatial variations of the parameters, but the temporal variationsof key parameters are always ignored or not taken into account at all. In this study, thespatial and temporal variations of the parameters are realized, which improves thesimulation precision.
     In this effort, the adjoint variational method is applied to a3D marine ecosystemmodel (NPZD-type) and its adjoint model, which are built on global scale based onclimatological environment provided by SODA. The numerical study and assimilationexperiments are implemented within a depth of200m.
     In twin experiments, model-generated data of phytoplankton in the surface layerare served as fictitious observations. When the spatially varying Vm (maximumuptake rate of nutrient by phytoplankton) is estimated alone, new strategies aredesigned to optimize the step-length which is used to adjust the parameters preferablyand the assimilation efficiency is improved. On the condition that the same step isemployed, the reduced cost function (RCF), the mean absolute error of phytoplanktonin the surface layer (MAE) and the relative error (RE) of Vm between given andsimulated values decrease obviously compared with strategy in previous work. Based on the strategy above, how would the distribution schemes of spatial parameterizationand influence radius affect the results is discussed. The simulation precision is thehighest when the rate of dependent grid distance to influence radius is1.6, whichprovides for future experiments. The influence of time step was studied then and it isfound that the assimilation recovery would not be more successful with a smaller timestep of3hours compared with6hours. So6hours is the better option, by which thecomputational efficiency is improved. On the basis of the above work, when the fivekey parameters (KP) were estimated simultaneously, the given spatial variations couldbe reproduced, and the REs are less than6%. Analysis of the results of twinexperiments by linear regression method demonstrates that the relationship betweenRE of parameters and MAE is direct ratio with a correlation coefficient of0.8, soMAE can be considered as a criterion to evaluate both simulation results andparameter estimation which is useful in practical application.
     Real experiments are conducted based on the conclusions above.16°N-44°N,173°E-142°W and16°N-44°N,167°W-122°W are selected as study area. One year isdivided into72periods, each of which is five days long. Spatio-temporal variation ofKP was optimized by assimilating phytoplankton data in the surface layer in eachstudy area. For each study area, the RCF and MAE in each assimilation perioddecrease obviously after assimilation. The spatially varying KP (KPS), temporallyvarying KP (KPT) and constant KP (KPC) are obtained by averaging KP of spatialand temporal variation respectively. Another type of spatio-temporal KP (KPST) isrepresented by KPS, KPT and KPC. After the correlation analysis of KP, either KPS orKPT, it is found that there is the same distribution characteristics and variation trendbetween Vm, Dz and e. The correlation coefficient can reach0.99, and the relationbetween Dp and Gm is versa. After the comparison of KPT in the two study area, it isfound that KPT anomaly is time-varying. The anomaly of Vm, Dz and e are positivevalue in winter half year and negative value in summer half year, and the anomaly ofDp and Gm is versa, which accords with the real ecological mechanism.
     The model is run with KPS, KPT, KPC, and KPST respectively, and it is found that MAE is the minimum when KP are spatio-temporal variation (KPST), whileMAE reaches its maximum when KP are constant (KPC). KPST, representation ofspatio-temporal variation, reduces the variable number in model calculation.Therefore the spatio-temporal variation of parameters, which is the focus of severalresearchers, is reasonable and necessary and the adjoint variational method is a usefultool for optimizing the spatio-temporal parameters in a dynamical marine ecosystemmodel.
引文
[1] Allen J., Eknes M.,Evensen G. An Ensemble Kalman Filter with a complex marine ecosystemmodel: hindcasting phytoplankton in the Cretan Sea. Annales Geophysicae,2003,21,399-411
    [2] Allen J. I., Blackford J., Holt J., Proctor R., Ashworth M.,Siddorn J. A highly spatiallyresolved ecosystem model for the North West European Continental Shelf. Sarsia,2001,86(6):423-440
    [3] Anderson L. A., Robinson A. R.,Lozano C. J. Physical and biological modeling in the GulfStream region:: I. Data assimilation methodology. Deep Sea Research Part I: OceanographicResearch Papers,2000,47(10):1787-1827
    [4] Antoine D., Andrt J.-M.,Morel A. Oceanic primary production2. Estimation at global scalefrom satellite (coastal zone color). Global biogeochemical cycles,1996,10(1):57-69
    [5] Armstrong R. A. An optimization-based model of iron-light-ammonium colimitation ofnitrate uptake and phytoplankton growth. Limnology and Oceanography,1999,6(44):1436-1446
    [6] Armstrong R. A., Sarmiento J. L.,Slater R. D. Monitoring ocean productivity by assimilatingsatellite chlorophyll into ecosystem models. In: Powell, Steele (Eds.), Ecological time series.London: Chapman and Hall,1994.371-390
    [7] Athias V., Mazzega P.,Jeandel C. Selecting a global optimization method to estimate theoceanic particle cycling rate constants. Journal of Marine Research,2000,58(5):675-707
    [8] Barange M., Field J. G., Harris R. P., Hofmann E. E., Perry R. I.,Werner F. E. Marineecosystems and global change. Oxford: Oxford University Press,2010.
    [9] Baretta J., Ebenh h W.,Ruardij P. The European regional seas ecosystem model, a complexmarine ecosystem model. Netherlands Journal of Sea Research,1995,33(3-4):233-246
    [10] Be iktepe. T., Lermusiaux P. F.,Robinson A. R. Coupled physical and biogeochemicaldata-driven simulations of Massachusetts Bay in late summer: real-time and postcruise dataassimilation. Journal of Marine Systems,2003,40-41:171-212
    [11] Bryant A., Heath M., Broekhuizen N., Ollason J., Gurney W.,Greenstreet S. Modelling thepredation, growth and population dynamics of fish within a spatially-resolved shelf-seaecosystem model. Netherlands Journal of Sea Research,1995,33(3):407-421
    [12] Chai F., Dugdale R., Peng T.-H., Wilkerson F.,Barber R. One-dimensional ecosystem modelof the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogencycle. Deep Sea Research Part II: Topical Studies in Oceanography,2002,49(13):2713-2745
    [13] Chai F., Jiang M., Chao Y., Dugdale R., Chavez F.,Barber R. Modeling responses of diatomproductivity and biogenic silica export to iron enrichment in the equatorial Pacific Ocean. Globalbiogeochemical cycles,2007,21(3):1-16
    [14] Chau K.,Jin H. Depth-averaged, two-dimensional eutrophication modelling for ToloHarbour, Hong Kong. Environmental Modeling and Assessment,1999,4(2):189-199
    [15] Chen C., Beardsley R.,Franks P. J. A3-D prognostic numerical model study of the GeorgesBank ecosystem. Part I: physical model. Deep Sea Research Part II: Topical Studies inOceanography,2001,48(1):419-456
    [16] Chen C., Ji R., Zheng L., Zhu M.,Rawson M. Influences of physical processes on theecosystem in Jiaozhou Bay-A coupled physical and biological model experiment. Journal ofgeophysical research,1999,104(C12):29925-29949
    [17] Chen C., Wiesenburg D. A.,Xie L. Influences of river discharge on biological production inthe inner shelf: A coupled biological and physical model of the Louisiana-Texas Shelf. Journal ofMarine Research,1997,55(2):293-320
    [18] Chertok D.,Lardner R. Variational data assimilation for a nonlinear hydraulic model.Applied mathematical modelling,1996,20(9):675-682
    [19] Chesson P. L. Coexistence of competitors in spatially and temporally varying environments:a look at the combined effects of different sorts of variability. Theoretical Population Biology,1985,28(3):263-287
    [20] Courtier P.,Talagrand O. Variational assimilation of meteorological observations with thedirect and adjoint shallow‐water equations. Tellus A,1990,42(5):531-549
    [21] Cressman G. P. An operational objective analysis system. Monthly Weather Review,1959,87(10):367-374
    [22] Cropp R.,Norbury J. Parameterizing plankton functional type models: insights from adynamical systems perspective. Journal of Plankton Research,2009,31(9):939-963
    [23] Cui M.-c.,Zhu H. Coupled physical-ecological modelling in the central part of Jiaozhou BayII. Coupled with an ecological model. Chinese Journal of Oceanology and Limnology,2001,19(1):21-28
    [24] Das S.,Lardner R. Variational parameter estimation for a two‐dimensional numerical tidalmodel. International journal for numerical methods in fluids,2005,15(3):313-327
    [25] Delhez E.,Martin G.3D modelling of hydrodynamic and ecohydrodynamic processes on thenorth-western European continental shelf. Bulletin de la Societe Royale des Sciences de Liege,1994,63(1-2):5-64
    [26] Deus R., Brito D., Kenov I. A., Lima M., Costa V., Medeiros A., Neves R.,Alves C.Three-dimensional model for analysis of spatial and temporal patterns of phytoplankton inTucuruí reservoir, Pará, Brazil. Ecological Modelling,2013,253:28-43
    [27] DIMET F. X. L.,Talagrand O. Variational algorithms for analysis and assimilation ofmeteorological observations: theoretical aspects. Tellus A,2010,38(2):97-110
    [28] Doron M., Brasseur P.,Brankart J. M. Stochastic estimation of biogeochemical parameters ofa3D ocean coupled physical–biogeochemical model: Twin experiments. Journal of MarineSystems,2011,87(3):194-207
    [29] Dowd M.,Meyer R. A Bayesian approach to the ecosystem inverse problem. EcologicalModelling,2003,168(1):39-55
    [30] Eknes M.,Evensen G. An ensemble Kalman filter with a1-D marine ecosystem model.Journal of Marine Systems,2002,36(1):75-100
    [31] Eppley R. W.,Peterson B. J. Particulate organic matter flux and planktonic new productionin the deep ocean. Nature,1979,282:677-680
    [32] Evans G. T. The role of local models and data sets in the Joint Global Ocean Flux Study.Deep Sea Research Part I: Oceanographic Research Papers,1999,46(8):1369-1389
    [33] Fan W.,Lv X. Data assimilation in a simple marine ecosystem model based on spatialbiological parameterizations. Ecological Modelling,2009,220(17):1997-2008
    [34] Fasham M., Evans G., Kiefer D., Creasey M.,Leach H. The Use of Optimization Techniquesto Model Marine Ecosystem Dynamics at the JGOFS Station at47oN20oW. PhilosophicalTransactions of the Royal Society of London. Series B: Biological Sciences,1995,348(1324):203-209
    [35] Fasham M. J., Boyd P. W.,Savidge G. Modeling the relative contributions of autotrophs andheterotrophs to carbon flow at a Lagrangian JGOFS station in the Northeast Atlantic: Theimportance of DOC. Limnology and Oceanography,1999,44(1):80-94
    [36] Faugeras B., Bernard O., Sciandra A.,Levy M. A mechanistic modelling and dataassimilation approach to estimate the carbon/chlorophyll and carbon/nitrogen ratios in a coupledhydrodynamical-biological model. Nonlinear Processes in Geophysics,2004,11:515-533
    [37] Faugeras B., Lévy M., Mémery L., Verron J., Blum J.,Charpentier I. Can biogeochemicalfluxes be recovered from nitrate and chlorophyll data? A case study assimilating data in theNorthwestern Mediterranean Sea at the JGOFS-DYFAMED station. Journal of Marine Systems,2003,40-41:99-125
    [38] Fennel K., Losch M., Schr ter J.,Wenzel M. Testing a marine ecosystem model: sensitivityanalysis and parameter optimization. Journal of Marine Systems,2001,28(1):45-63
    [39] Fennel W. Towards bridging biogeochemical and fish-production models. Journal of MarineSystems,2008,71(1):171-194
    [40] Fennel W. Parameterizations of truncated food web models from the perspective of anend-to-end model approach. Journal of Marine Systems,2009,76(1):171-185
    [41] Fiechter J. Assessing marine ecosystem model properties from ensemble calculations.Ecological Modelling,2012,242:164-179
    [42] Fontana C., Brasseur P.,Brankart J. Toward a multivariate reanalysis of the North Atlanticocean biogeochemistry during1998–2006based on the assimilation of SeaWiFS chlorophylldata. Ocean Science Discussions,2012,9:1887-1931
    [43] Franks P. J.,Chen C. Plankton production in tidal fronts: a model of Georges Bank insummer. Journal of Marine Research,1996,54(4):631-651
    [44] Franks P. J.,Chen C. A3-D prognostic numerical model study of the Georges Bankecosystem. Part II: biological–physical model. Deep Sea Research Part II: Topical Studies inOceanography,2001,48(1):457-482
    [45] Friedrichs M. A. A data assimilative marine ecosystem model of the central equatorialPacific: Numerical twin experiments. Journal of Marine Research,2001,59(6):859-894
    [46] Friedrichs M. A. Assimilation of JGOFS EqPac and SeaWiFS data into a marine ecosystemmodel of the central equatorial Pacific Ocean. Deep Sea Research Part II: Topical Studies inOceanography,2002,49(1):289-319
    [47] Friedrichs M. A. M., Hood R. R.,Wiggert J. D. Ecosystem model complexity versusphysical forcing: Quantification of their relative impact with assimilated Arabian Sea data. DeepSea Research Part II: Topical Studies in Oceanography,2006,53(5):576-600
    [48] Garcia-Gorriz E., Hoepffner N.,Ouberdous M. Assimilation of SeaWiFS data in a coupledphysical–biological model of the Adriatic Sea. Journal of Marine Systems,2003,40-41:233-252
    [49] Gregg W. W. Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensionalglobal ocean model. Journal of Marine Systems,2008,69(3):205-225
    [50] Gregg W. W., Friedrichs M. A. M., Robinson A. R., Rose K. A., Schlitzer R., Thompson K.R.,Doney S. C. Skill assessment in ocean biological data assimilation. Journal of Marine Systems,2009,76(1):16-33
    [51] Gregg W. W., Ginoux P., Schopf P. S.,Casey N. W. Phytoplankton and iron: validation of aglobal three-dimensional ocean biogeochemical model. Deep Sea Research Part II: TopicalStudies in Oceanography,2003,50(22):3143-3169
    [52] Gunson J., Oschlies A.,Gar on V. Sensitivity of ecosystem parameters to simulated satelliteocean color data using a coupled physical-biological model of the North Atlantic. Journal ofMarine Research,1999,57(4):613-639
    [53] Gurkan Z., Christensen A., Maar M., M ller E. F., Madsen K. S., Munk P.,Mosegaard H.Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the NorthSea: Predictions from a coupled individual-based and hydrodynamic–biogeochemical model.Ecological Modelling,2013,250:294-306
    [54] Harmon R.,Challenor P. A Markov chain Monte Carlo method for estimation andassimilation into models. Ecological Modelling,1997,101(1):41-59
    [55] Hemmings J. C., Srokosz M. A., Challenor P.,Fasham M. J. Assimilating satelliteocean-colour observations into oceanic ecosystem models. Philosophical Transactions of theRoyal Society of London. Series A: Mathematical, Physical and Engineering Sciences,2003,361:33-39
    [56] Hemmings J. C., Srokosz M. A., Challenor P.,Fasham M. J. Split-domain calibration of anecosystem model using satellite ocean colour data. Journal of Marine Systems,2004,50(3):141-179
    [57] Hiebeler D. E.,Michaud I. J. Quantifying spatial and temporal variability of spatiallycorrelated disturbances. Ecological Modelling,2012,240:64-73
    [58] Horwitz M. Theoretical ecology and mathematical modelling: Problems and methods.Ecological Modelling,2005,188:1-2
    [59] Hoteit I., Triantafyllou G., Petihakis G.,Allen J. A singular evolutive extended Kalman filterto assimilate real in situ data in a1-D marine ecosystem model. Annales Geophysicae.2003,21:389-397
    [60] Hurtt G. C.,Armstrong R. A. A pelagic ecosystem model calibrated with BATS data. DeepSea Research Part II: Topical Studies in Oceanography,1996,43(2):653-683
    [61] Hurtt G. C.,Armstrong R. A. A pelagic ecosystem model calibrated with BATS and OWSIdata. Deep-Sea Research Part I,1999,46(1):27-61
    [62] Ibrahim H., George T.,George P. Towards a data assimilation system for the Cretan Seaecosystem using a simplified Kalman filter. Journal of Marine Systems,2004,45(3):159-171
    [63] Ishizaka J. Coupling of coastal zone color scanner data to a physical-biological model of thesoutheastern US continental shelf ecosystem3. Nutrient and phytoplankton fluxes and CZCSdata assimilation. Journal of geophysical research,1990,95(C11):20201-20212
    [64] J rgensen S. Models as instruments for combination of ecological theory and environmentalpractice. Ecological Modelling,1994,75:5-20
    [65] J rgensen S. E. Integration of ecosystem theories: a pattern. Springer.,2002.
    [66] Jamart B. M., Winter D., Banse K., Anderson G.,Lam R. A theoretical study ofphytoplankton growth and nutrient distribution in the Pacific Ocean off the northwestern UScoast. Deep Sea Research,1977,24(8):753-773
    [67] Jamart B. M., Winter D. F.,Banse K. Sensitivity analysis of a mathematical model ofphytoplankton growth and nutrient distribution in the Pacific Ocean off the northwestern UScoast. Journal of Plankton Research,1979,1(3):267-290
    [68] Janssen P.,Heuberger P. Calibration of process-oriented models. Ecological Modelling,1995,83(1):55-66
    [69] Ji R., Chen C., Franks P. J., Townsend D. W., Durbin E. G., Beardsley R. C., Gregory LoughR.,Houghton R. W. Spring phytoplankton bloom and associated lower trophic level food webdynamics on Georges Bank:1-D and2-D model studies. Deep Sea Research Part II: TopicalStudies in Oceanography,2006,53(23):2656-2683
    [70] Jones E., Parslow J.,Murray L. A Bayesian approach to state and parameter estimation in aPhytoplankton-Zooplankton model. Australian Meteorological and Oceanographic Journal,2010,59:7-16
    [71] Kirk J. T. Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridgeuniversity press,1994.47-144
    [72] Kishi M.,Ikeda S. Population dynamics of ‘red tide’organisms in eutrophicated coastalwaters—Numerical experiment of phytoplankton bloom in the East Seto Inland Sea, Japan.Ecological Modelling,1986,31(1):145-174
    [73] Kishi M. J., Okunishi T.,Yamanaka Y. A comparison of simulated particle fluxes usingNEMURO and other ecosystem models in the western North Pacific. Journal of oceanography,2004,60(1):63-73
    [74] Kuroda H.,Kishi M. J. A data assimilation technique applied to estimate parameters for theNEMURO marine ecosystem model. Ecological Modelling,2004,172(1):69-85
    [75] Lawson L. M., Hofmann E. E.,Spitz Y. H. Time series sampling and data assimilation in asimple marine ecosystem model. Deep Sea Research Part II: Topical Studies in Oceanography,1996,43(2):625-651
    [76] Lenhart H. J., Radach G.,Ruardij P. The effects of river input on the ecosystem dynamics inthe continental coastal zone of the North Sea using ERSEM. Journal of sea research,1997,38(3):249-274
    [77] Leonard C. L., McClain C. R., Murtugudde R., Hofmann E. E.,Harding Jr L. W. Aniron-based ecosystem model of the central equatorial Pacific. Journal of geophysical research,1999,104(C1):1325-1341
    [78] Li X. Y., Wang C. H.,Lv X. Q. Inversion of the Spatially Varying Parameters in a MarineEcosystem Model. Procedia Environmental Sciences,2012,13:2062-2076
    [79] Liu Z., Wei H., Bai J., Zhang J., Liu D.,Liu S. Nutrients seasonal variation and budget inJiaozhou Bay, China: a3-dimensional physical–biological coupled model study. Water, Air,&Soil Pollution: Focus,2007,7(6):607-623
    [80] Losa S. N., Kivman G. A.,Ryabchenko V. A. Weak constraint parameter estimation for asimple ocean ecosystem model: what can we learn about the model and data? Journal of MarineSystems,2004,45(1):1-20
    [81] Losa S. N., Vezina A., Wright D., Lu Y., Thompson K.,Dowd M.3D ecosystem modelling inthe North Atlantic: Relative impacts of physical and biological parameterizations. Journal ofMarine Systems,2006,61(3):230-245
    [82] Lu X.,Zhang J. Numerical study on spatially varying bottom friction coefficient of a2Dtidal model with adjoint method. Continental shelf research,2006,26(16):1905-1923
    [83] M ller J. K., Madsen H.,Carstensen J. Parameter estimation in a simple stochasticdifferential equation for phytoplankton modelling. Ecological Modelling,2011,222(11):1793-1799
    [84] Maar M., M ller E. F., Larsen J., Madsen K. S., Wan Z., She J., Jonasson L.,Neumann T.Ecosystem modelling across a salinity gradient from the North Sea to the Baltic Sea. EcologicalModelling,2011,222(10):1696-1711
    [85] Magri Hoeltzener S., Brasseur P.,Lacroix G. Data assimilation in a marine ecosystem modelof the Ligurian Sea. Comptes Rendus Geoscience,2005,337(12):1065-1074
    [86] Maier-Reimer E.,Bacastow R. Modelling of geochemical tracers in the ocean. In:Schlesinger M. E., eds. Climate-ocean interaction. M. E. Schlesinger: Kluwer AcademicPublishers,1990.233-267
    [87] Marsili-Libelli S. Parameter estimation of ecological models. Ecological Modelling,1992,62(4):233-258
    [88] Marsili-Libelli S., Guerrizio S.,Checchi N. Confidence regions of estimated parameters forecological systems. Ecological Modelling,2003,165(2):127-146
    [89] Martin J. H.,Fitzwater S. E. Iron deficiency limits phytoplankton growth in the north-eastPacific subarctic.1988,
    [90] Martin J. H., Gordon R. M.,Fitzwater S. E. Iron in Antarctic waters. Nature,1990,345:156-158
    [91] Marzeion B., Timmermann A., Murtugudde R.,Jin F.-F. Biophysical feedbacks in thetropical Pacific. Journal of climate,2005,18(1):58-70
    [92] Matear R. J. Parameter optimization and analysis of ecosystem models using simulatedannealing: A case study at Station P. Journal of Marine Research,1995,53(4):571-607
    [93] Matsumoto K. Biology-mediated temperature control on atmospheric pCO2and oceanbiogeochemistry. Geophysical Research Letters,2007,34(20): L20605
    [94] Mattern J. P., Fennel K.,Dowd M. Estimating time-dependent parameters for a biologicalocean model using an emulator approach. Journal of Marine Systems,2012,96-97:32-47
    [95] McGillicuddy D., Lynch D., Moore A., Gentleman W., Davis C.,Meise C. An adjoint dataassimilation approach to diagnosis of physical and biological controls on Pseudocalanus spp. inthe Gulf of Maine–Georges Bank region. Fisheries Oceanography,1998,7(3‐4):205-218
    [96] McNeil B. I.,Matear R. J. Southern Ocean acidification: A tipping point at450-ppmatmospheric CO2. Proceedings of the National Academy of Sciences,2008,105(48):18860-18864
    [97] Miller A. J., Alexander M. A., Boer G. J., Chai F., Denman K., Erickson D. J., Frouin R.,Gabric A. J., Laws E. A.,Lewis M. R. Potential feedbacks between Pacific Ocean ecosystems andinterdecadal climate variations. Bulletin of the American meteorological Society,2003,84(5):617-634
    [98] Miller A. J., Chai F., Chiba S., Moisan J. R.,Neilson D. J. Decadal-scale climate andecosystem interactions in the North Pacific Ocean. Journal of oceanography,2004,60(1):163-188
    [99] Miller A. J., Di Lorenzo E., Neilson D. J., Cornuelle B. D.,Moisan J. R. Modeling CalCOFIobservations during El Nino: Fitting physics and biology. Reports of California CooperativeOceanic Fisheries Investigations,2000,41:87-97
    [100] Miller A. J., Gabric A. J., Moisan J. R., Chai F., Neilson D. J., Pierce D. W.,Lorenzo E. D.Global change and oceanic primary productivity: Effects of ocean–atmosphere–biologicalfeedbacks. Elsevier Oceanography Series,2007,73:27-63,473-477
    [101] Moll A.,Radach G. Review of three-dimensional ecological modelling related to the NorthSea shelf system: Part1: models and their results. Progress in oceanography,2003,57(2):175-217
    [102] Morel A., Huot Y., Gentili B., Werdell P. J., Hooker S. B.,Franz B. A. Examining theconsistency of products derived from various ocean color sensors in open ocean (Case1) watersin the perspective of a multi-sensor approach. Remote Sensing of Environment,2007,111(1):69-88
    [103] Natvik L.-J., Eknes M.,Evensen G. A weak constraint inverse for a zero-dimensionalmarine ecosystem model. Journal of Marine Systems,2001,28(1):19-44
    [104] Natvik L.-J.,Evensen G. Assimilation of ocean colour data into a biochemical model of theNorth Atlantic: Part1. Data assimilation experiments. Journal of Marine Systems,2003a,40:127-153
    [105] Natvik L.-J.,Evensen G. Assimilation of ocean colour data into a biochemical model of theNorth Atlantic: Part2. Statistical analysis. Journal of Marine Systems,2003b,40:155-169
    [106] Navon I. Practical and theoretical aspects of adjoint parameter estimation andidentifiability in meteorology and oceanography. Dynamics of Atmospheres and Oceans,1998,27(1):55-79
    [107] Neumann T., Fennel W.,Kremp C. Experimental simulations with an ecosystem model ofthe Baltic Sea: a nutrient load reduction experiment. Global biogeochemical cycles,2002,16(3):1033
    [108] O'Reilly J. E. SeaWiFS Postlaunch Technical Report Series: SeaWiFS PostlaunchCalibration and Validation Analyses, Part3. National Aeronautics and Space Administration,Goddard Space Flight Center,2000.
    [109] Omlin M.,Reichert P. A comparison of techniques for the estimation of model predictionuncertainty. Ecological Modelling,1999,115(1):45-59
    [110] Oschlies A.,Schartau M. Basin-scale performance of a locally optimized marine ecosystemmodel. Journal of Marine Research,2005,63(2):335-358
    [111] P tsch J.,Radach G. Long-term simulation of the eutrophication of the North Sea: temporaldevelopment of nutrients, chlorophyll and primary production in comparison to observations.Journal of sea research,1997,38(3):275-310
    [112] Parsons T. R., Takahashi M.,Hargrave B. Biological oceanographic processes. OXFORD:PERGAMON PRESS,1983.
    [113] Pelc J. S., Simon E., Bertino L., Serafy G. E.,Heemink A. W. Application of model reduced4D-Var to a1D ecosystem model. Ocean Modelling,2012,57-58:43-58
    [114] Popova E., Lozano C., Srokosz M., Fasham M., Haley P.,Robinson A. Coupled3Dphysical and biological modelling of the mesoscale variability observed in North-East Atlantic inspring1997: biological processes. Deep Sea Research Part I: Oceanographic Research Papers,2002,49(10):1741-1768
    [115] Price N. M., Andersen L. F.,Morel F. M. Iron and nitrogen nutrition of equatorial Pacificplankton. Deep Sea Research Part A. Oceanographic Research Papers,1991,38(11):1361-1378
    [116] Pruner P.,Minster J.-F. o. physical-biogeochemical model of the surface ocean1. Methodand preliminary results. Global biogeochemical cycles,1996,10(1):111-138
    [117] Qian S. S., Stow C. A.,Borsuk M. E. On Monte Carlo methods for Bayesian inference.Ecological Modelling,2003,159(2):269-277
    [118] Radach G.,Maier-Reimer E. The vertical structure of phytoplankton growth dynamics; amathematical model. Mem. Soc. Roy. Sci. de Liege,1975,7(6):113-146
    [119] Radach G.,Moll A. Review of three-dimensional ecological modelling related to the NorthSea shelf system. Part II: model validation and data needs. Oceanography and Marine Biology,2006,44:1-60
    [120] Redfield A. C., Ketchum B. H.,Richards F. A. The influence of organisms on thecomposition of sea-water. The sea: Ideas and observations on progress in the study of the seas,1963,2:26-77
    [121] Riley G. A., Stommel H. M.,Bumpus D. F. Quantitative ecology of the plankton of thewestern North Atlantic. Bingham Oceanographic Laboratory,1949.
    [122] Samaniego F. J. A comparison of the Bayesian and Frequentist approaches to estimation.Springer,2010.
    [123] Schartau M.,Oschlies A. Simultaneous data-based optimization of a1D-ecosystem modelat three locations in the North Atlantic: Part I-Method and parameter estimates. Journal ofMarine Research,2003,61(6):765-793
    [124] Schartau M., Oschlies A.,Willebrand J. Parameter estimates of a zero-dimensionalecosystem model applying the adjoint method. Deep Sea Research Part II: Topical Studies inOceanography,2001,48(8):1769-1800
    [125] Schlitzer R. Carbon export fluxes in the Southern Ocean: results from inverse modelingand comparison with satellite-based estimates. Deep Sea Research Part II: Topical Studies inOceanography,2002,49(9):1623-1644
    [126] Semovski S.,Wozniak B. Model of the annual phytoplankton cycle in the marineecosystem-assimilation of monthly satellite chlorophyll data for the North Atlantic and Baltic.Oceanologia,1995,37(1):3-31
    [127] Simon E., Samuelsen A., Bertino L.,Dumont D. Estimation of positive sum-to-oneconstrained zooplankton grazing preferences with the DEnKF: a twin experiment. Ocean Sci.Discuss,2012,9:1085-1121
    [128] Smedstad O. M.,O'Brien J. J. Variational data assimilation and parameter estimation in anequatorial Pacific Ocean model. Progress in oceanography,1991,26(2):179-241
    [129] Solidoro C., Pastres R., Cossarini G.,Ciavatta S. Seasonal and spatial variability of waterquality parameters in the lagoon of Venice. Journal of Marine Systems,2004,51(1):7-18
    [130] Spitz Y., Moisan J.,Abbott M. Configuring an ecosystem model using data from theBermuda Atlantic Time Series (BATS). Deep Sea Research Part II: Topical Studies inOceanography,2001,48(8):1733-1768
    [131] Spitz Y., Moisan J., Abbott M.,Richman J. Data assimilation and a pelagic ecosystemmodel: parameterization using time series observations. Journal of Marine Systems,1998,16(1):51-68
    [132] Steinacher M., Joos F., Fr licher T., Bopp L., Cadule P., Cocco V., Doney S. C., Gehlen M.,Lindsay K.,Moore J. K. Projected21st century decrease in marine productivity: a multi-modelanalysis. Biogeosciences,2010,7(3):979-1005
    [133] Storn R.,Price K. Differential evolution–a simple and efficient heuristic for globaloptimization over continuous spaces. Journal of global optimization,1997,11(4):341-359
    [134] Stow C. A., Jolliff J., McGillicuddy D. J., Doney S. C., Allen J., Friedrichs M. A., Rose K.A.,Wallhead P. Skill assessment for coupled biological/physical models of marine systems.Journal of Marine Systems,2009,76(1):4-15
    [135] Strom S. L., Macri E. L.,Olson M. B. Microzooplankton grazing in the coastal Gulf ofAlaska: Variations in top-down control of phytoplankton. Limnology and Oceanography,2007,52(4):1480-1494
    [136] Strom S. L., Olson M. B., Macri E. L.,Mordy C. W. Cross-shelf gradients in phytoplanktoncommunity structure, nutrient utilization, and growth rate in the coastal Gulf of Alaska.MARINE ECOLOGY-PROGRESS SERIES-,2006,328:75-92
    [137] Talagrand O.,Courtier P. Variational assimilation of meteorological observations with theadjoint vorticity equation. I: Theory. Quarterly Journal of the Royal Meteorological Society,1987,113(478):1311-1328
    [138] Tashkova K., ilc J., Atanasova N.,D eroski S. Parameter estimation in a nonlineardynamic model of an aquatic ecosystem with meta-heuristic optimization. Ecological Modelling,2012,226:36-61
    [139] Thornton K. W., Kimmel B. L.,Payne F. E. Reservoir limnology: ecological perspectives.Wiley-Interscience,1990.
    [140] Tian T., Wei H., Su J.,Chung C. Simulations of annual cycle of phytoplankton productionand the utilization of nitrogen in the Yellow Sea. Journal of oceanography,2005,61(2):343-357
    [141] Tjiputra J. F., Polzin D.,Winguth A. M. E. Assimilation of seasonal chlorophyll andnutrient data into an adjoint three-dimensional ocean carbon cycle model: Sensitivity analysisand ecosystem parameter optimization. Global biogeochemical cycles,2007,21(GB1001):1-13
    [142] Triantafyllou G., Hoteit I.,Petihakis G. A singular evolutive interpolated Kalman filter forefficient data assimilation in a3-D complex physical–biogeochemical model of the Cretan Sea.Journal of Marine Systems,2003,40:213-231
    [143] Tundisi J. Spatial distribution, temporal sequence and seasonal cycle of phytoplankton inreservoirs: limiting and controlling factors. Rev. Bras. Biol,1990,50:937-955
    [144] Ullman D. S.,Wilson R. E. Model parameter estimation from data assimilation modeling:Temporal and spatial variability of the bottom drag coefficient. Journal of geophysical research,1998,103(C3):5531-5549
    [145] Vallino J. Improving marine ecosystem models: use of data assimilation and mesocosmexperiments. Journal of Marine Research,2000,58(1):117-164
    [146] Van Leeuwe M., Scharek R., De Baar H., De Jong J.,Goeyens L. Iron enrichmentexperiments in the Southern Ocean: physiological responses of plankton communities. Deep SeaResearch Part II: Topical Studies in Oceanography,1997,44(1):189-207
    [147] Varela R. A., Cruzado A.,Gabaldón J. E. Modelling primary production in the North Seausing the European regional seas ecosystem model. Netherlands Journal of Sea Research,1995,33(3):337-361
    [148] Volk T.,Hoffert M. I. Ocean carbon pumps: Analysis of relative strengths and efficienciesin ocean-driven atmospheric CO2changes. The Carbon Cycle and Atmospheric CO2: NaturalVariations Archean to Present, Geophys. Monogr. Ser,1985,32:99-110
    [149] Walsh J. J. On the nature of continental shelves. New York: Academic Press New York,1988.
    [150] Walsh J. J., Dieterle D. A., Maslowski W., Grebmeier J. M., Whitledge T. E., Flint M.,Sukhanova I. N., Bates N., Cota G. F.,Stockwell D. A numerical model of seasonal primaryproduction within the Chukchi/Beaufort Seas. Deep Sea Research Part II: Topical Studies inOceanography,2005,52(24):3541-3576
    [151] Walters C. J.,Martell S. J. Fisheries ecology and management. Princeton University Press,2004.
    [152] Ward B. A., Friedrichs M. A. M., Anderson T. R.,Oschlies A. Parameter optimisationtechniques and the problem of underdetermination in marine biogeochemical models. Journal ofMarine Systems,2010,81(1):34-43
    [153] Weber L., V lker C., Schartau M.,Wolf-Gladrow D. Modeling the speciation andbiogeochemistry of iron at the Bermuda Atlantic Time-series Study site. Global biogeochemicalcycles,2005,19(GB1019):1-23
    [154] Xu Q., Lin H., Liu Y., Lv X.,Cheng Y. Data assimilation in a coupled physical-biologicalmodel for the Bohai Sea and the Northern Yellow Sea. Marine and Freshwater Research,2008,59(6):529-539
    [155] Yamanaka Y., Yoshie N., Fujii M., Aita M. N.,Kishi M. J. An ecosystem model coupledwith Nitrogen-Silicon-Carbon cycles applied to Station A7in the Northwestern Pacific. Journalof oceanography,2004,60(2):227-241
    [156] Yoder J. A., Doney S. C., Siegel D. A.,Wilson C. Study of marine ecosystems andbiogeochemistry now and in the future: Examples of the unique contributions from space.Oceanography,2010,23(4):104-117
    [157] Zhao L., Wei H., Xu Y.,Feng S. An adjoint data assimilation approach for estimatingparameters in a three-dimensional ecosystem model. Ecological Modelling,2005,186(2):235-250
    [158] Zhao Q.,Lu X. Parameter estimation in a three-dimensional marine ecosystem model usingthe adjoint technique. Journal of Marine Systems,2008,74(1):443-452
    [159] Zhao X., Zhang H.,Tao X. Predicting the short-time-scale variability of chlorophyll a in theElbe River using a Lagrangian-based multi-criterion analog model. Ecological Modelling,2013,250:279-286
    [160] Zheng W., Shi H., Fang G., Hu L., Peng S.,Zhu M. Global sensitivity analysis of a marineecosystem dynamic model of the Sanggou Bay. Ecological Modelling,2012,247:83-94
    [161]陈长胜.海洋生态系统动力学与模型.北京:高等教育出版社,2003.
    [162]樊伟.海洋生态系统动力学数值模拟与同化研究:[博士学位论文].青岛:中国海洋大学,2009
    [163]樊伟,吕咸青.基于参数空间分布的海洋生态系统模拟.海洋科学进展,2009,1:24-33
    [164]高会旺,孙文心,翟雪梅.水层生态系统动力学模式参数的敏感性分析.青岛海洋大学学报:自然科学版,1999,29(3):398-404
    [165]高会旺,王强.1999年渤海浮游植物生物量的数值模拟.中国海洋大学学报(自然科学版),2004,5:867-873
    [166]高会旺,杨华,张英娟,卢筠.渤海初级生产力的若干理化影响因子初步分析.中国海洋大学学报,2001,31(4):487-494
    [167]李清雪.海湾浮游生物及氮营养盐生态水动力学模拟:[博士学位论文].天津:天津大学,2000
    [168]李武,梁懋钢,陈涛.海中准直光衰减系数与透明度盘深度的经验关系.海洋学报,1993,15(5):130-135
    [169]刘桂梅,孙松,王辉.海洋生态系统动力学模型及其研究进展.地球科学进展,2003,18(3):427-432
    [170]刘桂梅,孙松,王辉,韩博平.一种三维物理与生物耦合模型在渤海的应用研究.中国物理海洋学现状与展望.青岛:中国海洋大学出版社,2004.186-205
    [171]刘浩,尹宝树.渤海生态动力过程的模型研究——Ⅰ.模型描述.海洋学报,2006,6(28):21-31
    [172]吕咸青.海洋数值建模中伴随方法的研究:[博士后研究工作报告].青岛:中国科学院海洋研究所,2000
    [173]潘德炉,Doerffer R,毛天明,李淑菁.海洋水色卫星的辐射模拟图像研究.海洋学报,1997,19(6):43-55
    [174]彭虹,郭生练.汉江下游河段水质生态模型及数值模拟.长江流域资源与环境,2002,11(4):363-369
    [175]任敬萍,赵进平.二类水体水色遥感的主要进展与发展前景.地球科学进展,2002,17(3):363-371
    [176]任湘湘,李海,吴辉碇.海洋生态系统动力学模型研究进展.海洋预报,2012,29(1):65-72
    [177]商少凌,柴扉,洪华生.海洋生物地球化学模式研究进展.地球科学进展,2004,19(4):621-629
    [178]沈国英,施并章.海洋生态学.北京:科学出版社,2002.
    [179]苏纪兰,唐启升.我国海洋生态系统基础研究的发展——国际趋势和国内需求.地球科学进展,2005,20(2):139-143
    [180]唐启升,苏纪兰.海洋生态系统动力学研究与海洋生物资源可持续利用.地球科学进展,2001,1:5-11
    [181]王海黎,洪华生.海洋生态动力学模式.海洋科学,1996,2:16-18
    [182]王辉.海洋生态系统模型研究的几个基本问题.海洋与湖沼,1998,4:341-346
    [183]王辉,刘桂梅,万莉颖.数据同化在海洋生态模型中的应用和研究进展.地球科学进展,2007,22(10):989-996
    [184]王震勇.胶州湾浮游生态系统四十年变化的模拟与分析:[硕士学位论文].青岛:中国海洋大学海洋环境学院,2007
    [185]魏皓,赵亮.渤海浮游植物生物量时空变化初析.青岛海洋大学学报:自然科学版,2003,33(2):173-179
    [186]魏皓,赵亮,冯士筰.渤海浮游植物生物量与初级生产力变化的三维模拟.海洋学报,2003,25(2):66-72
    [187]吴增茂,翟雪梅,张志南,俞光耀,张新玲,高山红.胶州湾北部水层-底栖耦合生态系统的动力数值模拟分析.海洋与湖沼,2001,32(6):588-597
    [188]夏洁,高会旺.南黄海东部海域浮游生态系统要素季节变化的模拟研究.安全与环境学报,2006,6(4):59-65
    [189]徐崇刚,胡远满,常禹,姜艳,李秀珍,布仁仓,贺红士.生态模型的灵敏度分析.应用生态学报,2004,15(6):1056-1062
    [190]徐青,刘玉光,程永存,吕咸青.伴随同化技术在渤、黄海生态模式中的应用:控制变量的选取与孪生实验.高技术通讯,2006,16(1):78-83
    [191]徐永福,赵亮,李阳春.海洋碳循环与海洋生态系统动力学.海洋环境科学,2007,26(5):495-500
    [192]杨东方,于子江,张柯,李梅,姜独祎.营养盐硅在全球海域中限制浮游植物的生长.海洋环境科学,2008,27(5):547-553
    [193]杨生光,张坤诚,吕培顶.海水相对透明度与叶绿素a的关系.海洋科学进展,1987,1(5):68-70
    [194]俞光耀,吴增茂,张志南,陆贤昆,奚盘根,娄安刚,张新玲.胶州湾北部水层生态动力学模型与模拟I胶州湾北部水层生态动力学模型.中国海洋大学学报,1999,29(3):421-428
    [195]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1997.
    [196]袁征,祁建华,张曼平.海水中铁的来源形态及其与浮游植物的相互关系.海洋湖沼通报,2003,4:38-48
    [197]曾淦宁,陈焕,晏荣军,沈江南,徐燕青.循环式实验室生态海模拟装置的构建及验证.实验室研究与探索,2012,31(9):153-155
    [198]张亭禄,施英妮.一种划分Ⅰ类水体和Ⅱ类水体的方法.中国海洋大学学报:自然科学版,2005,35(5):849-853
    [199]张文书,夏长水,袁业立.黄海冷水团水域物理-生态耦合数值模式研究.自然科学进展,2002,12(3):315-319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700