三维视频编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维视频使用户能够自由选择观看的视点与视角,并体验三维视觉感知,可广泛应用于三维电视、娱乐、视频通话、视频监控、艺术展览、教育、医疗和军事等各个领域。典型的三维视频数据包括多视点视频与相应的深度图像序列。三维视频信息量巨大,是制约其应用的瓶颈,因此三维视频压缩技术成为近几年的研究热点,尤其是基于H.264/AVC标准的三维视频编码标准化工作成为运动图像专家组(Moving Picture Experts Group,MPEG)近年来的主要活动内容之一。
     本论文深入研究了基于H.264/AVC的三维视频压缩编码方法及相关技术,主要研究内容与成果如下:
     1.提出一种基于深度特征的多视点视频图像区域分割算法,并可同时估计得到每一个图像区域的视差。已有基于深度特征的区域分割算法的一个共同特点是需要先估计得到基于像素或图像块的视差场,再分割得到不同深度层区域。提出的算法能够避免计算和分割图像视差场,直接提取图像中各对象的深度特征计算得到区域视差,并基于这些区域视差进行图像分割得到不同深度层次区域。
     2.总结与分析了已有的普通视频与可伸缩视频的运动信息预测编码方法,提出一种多视点视频视点间运动预测编码方法——基于精细粒度运动匹配的视点间运动跳过模式。运动跳过模式是一种已有的视点间预测编码技术,它能够节省编码宏块运动信息所需的比特开销,提高多视点视频编码总体效率。提出的精细粒度运动匹配方法在邻近视点图像中搜索得到当前编码宏块的最优运动信息,再将该运动信息用于视点间运动跳过模式,从而显著改进已有运动跳过模式的编码效率。该项技术已被联合视频小组(Joint Video Team,JVT)纳入多视点视频编码参考软件。
     3.视频图像与对应深度图像间具有极强的相关性,表现为对象边界的相似性和对象运动的相似性。因此本论文提出一种视频-深度联合预测编码方法,包括视频-深度运动信息复制与视频-深度运动信息预测两种机制,可在编码深度图像过程中重用视频图像编码产生的运动信息,从而提高深度图像压缩效率。此外,对多视点视频-深度联合预测编码结构进行了初步研究,设计出一种预测结构能够将已有各种预测编码工具纳入其中,灵活使用这些工具可以有效去除各种冗余信息。
     4.视频编码预处理能够消除或降低视频图像采集过程中引入的各种噪声和畸变失真,改善视频图像质量,并能提高后续的视频压缩编码效率。本论文对其中的自动曝光功能进行了深入研究,提出一种基于图像亮度直方图的自动曝光控制方法。算法从亮度直方图分布中推导得到不感兴趣区域,为这些不感兴趣区域分配相对较小的权值来降低它在计算加权均值时所占的比重,从而将曝光重点放在用户感兴趣区域达到优化图像亮度效果的目的。
Three-dimensional video enables viewers to freely choose an arbitrary view-point and viewing direction, and provides three-dimensional visual perception to viewers. It can find wide applications in three-dimensional television, entertainments, video phone, video surveillance, exhibition, education, medical care and military field. Typical three-dimensional video data is comprised of multi-view video and corresponding depth image sequences. The huge amount of information in three-dimensional video is one of the key enabling factors for its wide applications. Therefore, kinds of three-dimensional video compression techniques have been intensively studied in recent years. Especially, the standardization of H.264/AVC based three-dimensional video coding scheme has recently become one of the main activities of moving picture experts group (MPEG).
     This dissertation investigates H.264/AVC based three-dimensional video compression algorithms and related techniques. Major contributions of this dissertation are summarized as follows:
     1. A depth based image region partitioning method is proposed for multi-view video, with which the disparity of each image region can be estimated simultaneously. Existing depth based region partitioning algorithms share one characteristic: pixel-wise or block-wise depth disparity field needs to be estimated firstly, and then region partitioning is performed by classifying these pixels or blocks into different groups. Distinguished from these algorithms, the proposed algorithm can directly get an estimation of the disparity for each of the regions with different depth characteristics. Then region partitioning is performed by specifying an optimal disparity from the estimated regional disparities for each block in the image.
     2. Existing predictive coding methods for motion information in ordinary two dimensional video coding and scalable video coding schemes are summarized and analyzed firstly. Then an inter-view motion predictive coding method, i.e., fine-granular motion matching based motion skipped coding mode is proposed for multi-view video coding. Motion skip mode is an existing inter-view motion predictive coding method, with which the bits for coding motion information of a macroblock can be saved, hence the compression efficiency of multi-view video coding can be improved. The proposed fine-granular motion matching algorithm searches the encoded neighboring views for the motion that matches the motion of the coding macroblock best, and then uses the best matching motion information in the existing motion skip mode. Therefore, the coding efficiency of the existing motion skip mode can be significantly improved. The proposed technique had been adopted into the reference software of multi-view video coding by joint video team (JVT).
     3. There are strong similarities between video pictures and corresponding depth images in the aspects of contour and motion of video objects. To exploit this kind of redundancy, a joint video-depth coding scheme is proposed to reuse the motion information of encoded video pictures in the coding of corresponding depth images by two motion reusing mechanisms, i.e., motion information copy and motion information prediction. In addition, we also made a preliminary investigation on the prediction structure of joint multi-view video-depth coding, and proposed a prediction structure that can incorporate various existing coding tools that can be used to remove all kinds of redundancies in multi-view video and depth data.
     4. Video pre-processing prior to video coding can be used to remove or reduce various noises and distortions introduced in the video capturing process, and can enhance the efficiency of subsequent video coding. Automatic exposure control (AEC), one of the most important video pre-processing techniques, is studied in the dissertation, and a luminance histogram based AEC scheme is proposed. The proposed algorithm finds out regions-of-no-interests (RONI) in a captured video picture based on the luminance histogram distribution, and puts the emphasis of exposure on regions-of-interests (ROI) by assigning a relatively small weighting factor for ROI when calculating luminance average. Therefore, the exposure of captured video pictures is optimized.
引文
[1] A. Smolic, K. Mueller, N. Stefanoski, et al.. Coding algorithms for 3DTV - A survey. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(11): 1606-1620.
    [2] A. Redert, M. O. de Beeck, C. Fehn, et al.. Advanced three-dimensional television system technologies. Proceedings of First International Symposium on 3D Data Processing Visualization and Transmission, 2002. 313-319.
    [3] M. Tanimoto. Overview of free viewpoint television. Signal Processing: Image Communication, 2006, 21(6): 454-461.
    [4]杨海涛,常义林,霍俊彦等.应用于多视点视频编码的基于深度特征的图像区域分割与区域视差估计.光学学报, 2008, 28(6): 1073-1078.
    [5] K. Schüür, C. Fehn, P. Kauff, et al.. About the impact of disparity coding on novel view synthesis. ISO/IEC JTC1/SC29/WG11 Doc. M8676, Jul. 2002.
    [6] H.M. Ozaktas and L. Onural. Three-dimensional television - capture, transmission, display. Springer, 2008.
    [7] B. Javidi and F. Okano. Three-dimensional television, video, and display technologies. Springer, 2002.
    [8] A. Kubota, A. Smolic, M. Magnor, et al.. Multiview Imaging and 3DTV. IEEE Signal Processing Magazine, 2007, 24(6): 10-21.
    [9] C. Zhang and T. Chen. A survey on image-based rendering-representation, sampling and compression. Signal Processing: Image Communication. 2004, 19(1): 1-28.
    [10] C Fehn. Depth-Image-Based Rendering (DIBR), Compression and Transmission for a New Approach on 3D-TV. Proc. of the SPIE. Vol. 5291, pp. 93-104, 2004.
    [11] G. J. Iddan and Yahav G. 3D Imaging in the Studio (and Elsewhere…). Proc. of SPIE. Vol. 4298, pp. 48-55, 2001.
    [12] W. J. Tam and L. Zhang. 3D-TV content generation: 2D-To-3D conversion. IEEE International Conference on Multimedia and Expo. pp. 1869-1872, 2006.
    [13] D. Scharstein, R. Szeliski, and Zabih, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Proc. of IEEE Workshop on Stereo and Multi-Baseline Vision. pp. 131-140, 2001.
    [14] C. Fehn, K. Schüür, I Feldmann, et al.. Distribution of ATTEST test sequences forEE4 in MPEG 3DAV. ISO/IEC JTC1/SC29/WG11, Doc. M9219, Dec. 2002.
    [15] ISO/IEC JTC1/SC29/WG11. Description of Exploration Experiments in 3D Video Coding. ISO/IEC JTC1/SC29/WG11 Doc. N9991, Jul. 2008.
    [16] ISO/IEC JTC1/SC29/WG11. Final Text of 13818-2/AMD 3 (MPEG-2 Multiview profile). ISO/IEC JTC1/SC29/WG11 Doc. N1366, Sept. 1996.
    [17] P. Kauff, N. Atzpadin, C. Fehn,, et al.. Depth map creation and image-based rendering for advanced 3DTV services providing interoperability and scalability. 2007, 22(2): 217-234.
    [18] ISO/IEC JTC1/SC29/WG11. AHG on 3D video coding in MPEG. ISO/IEC JTC1/SC29/WG11 Doc. N4524, Dec. 2001.
    [19] ISO/IEC JTC1/SC29/WG11. Description of exploration experiments in 3DAV. ISO/IEC JTC1/SC29/WG11 Doc. N5959, Oct. 2003.
    [20] ISO/IEC JTC1/SC29/WG11. Study of some MPEG tools related to 3D-Video. ISO/IEC JTC1/SC29/WG11 Doc. M8423, May 2002.
    [21] ISO/IEC JTC1/SC29/WG11. Draft call for evidence on multiple view video coding. ISO/IEC JTC1/SC29/WG11 Doc. N6374, Mar. 2004.
    [22] A. Vetro, Y. Su, H. Kimata, et al.. Joint Multiview Video Model (JMVM) 1.0. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-T208. Jul. 2006.
    [23] A. Vetro, P. Pandit, H. Kimata, et al.. Joint draft 8.0 on multiview video coding. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-AB204. Jul. 2008.
    [24] Y. Chen, Y.-K. Wang, K. Ugur, et al.. The emerging MVC standard for 3D video Services 3DTV. EURASIP Journal on Advances in Signal Processing. Vol. 2009, article ID 786015.
    [25] ISO/IEC JTC1/SC29/WG11. Description of exploration experiments in 3D video coding. ISO/IEC JTC1/SC29/WG11 Doc. N10173, Oct. 2008.
    [26] G. B. Akar, A. M. Tekalp, C. Fehn, et al.. Transport methods in 3DTV - a survey. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(11): 1622-1630.
    [27] H.-Y. Shum, S. B. Kang, S.-C. Chan. Survey of image-based representations and compression techniques. IEEE Transactions on Circuits and Systems for Video Technology. 2003, 13(11): 1020-1037.
    [28] S.-C. Chan, H.-Y. Shum; K.-T. Ng. Image-based rendering and synthesis. IEEE Signal Processing Magazine. 2007, 24(6): 22-33.
    [29] J.-X. Chai, X. Tong, S.-C. Chan, et al.. Plenoptic sampling. Proc. of ACM Annu. Computer Graphics Conf.. pp. 307-318, 2000.
    [30] C.-M. Cheng, S.-J. Lin, S.-H. Lai, et al.. Improved Novel View Synthesis from Depth Image with Large Baseline. 19th International Conference on Pattern Recognition. Pp. 1-4, 2008.
    [31] G. Chen, Y. Liu, and N. Max. Real-time view synthesis from a sparse set of views. Signal Processing: Image Communication. 2007, 22(2): 188-202.
    [32] Y. Mori, N. Fukushima,T. Yendo, et al.. View generation with 3D warping using depth information for FTV. Signal Processing: Image Communication. 2009, 24(1-2): 65-72.
    [33] D. A. Forsyth and J. Ponce. Computer vision: a modern approach. Prentice Hall, 2003.
    [34] ISO/IEC JTC1/SC29/WG11. Call for contributions on FTV test material. ISO/IEC JTC1/SC29/WG11 Doc. N9468, Oct. 2007.
    [35] P. Benzie, J. Watson, P. Surman, et al.. A survey of 3DTV displays: techniques and technologies. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(11): 1647-1658.
    [36] N. A. Dodgson. Autostereoscopic 3D displays. Computer. 2005, 38(8): 31-36.
    [37] A. Redert, R.-P. Berretty, C. Varekamp, et al.. Philips 3D solutions: from content creation to visualization. Third International Symposium on 3D Data Processing, Visualization, and Transmission. Pp. 429-431, 2006.
    [38] L. Onural, T. Sikora, J. Ostermann, et al.. An assessment of 3DTV technologies. Proc. of NAB Broadcast Engineering Conference. Pp. 456-467, 2006.
    [39] M. Ziegler. Digital stereoscopic imaging and applications. A way towards new dimensions. The RACE II Project DISTIMA. IEE Colloquium on Stereoscopic Television. Pp. 611-614, 1992.
    [40] W. Matusik and H. Pfister. 3DTV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Transactions on Graphics. 2004, 23(3): 814-824.
    [41] J.-G. Lou, H. Cai, and J. Li. A real-time interactive multi-view video system. 13th ACM International Conference on Multimedia. Pp. 06-11, 2005.
    [42] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), ITU-T and ISO/IEC JTC 1, Version 1: May. 2003, Version 2: May. 2004, Version 3: Mar. 2005, Version 4: Sept. 2005, Version 5 and Version 6: Jun. 2006, Version 7: Apr. 2007, Version 8 (including SVC extension): Consented in Jul. 2007.
    [43] T. Wiegand, G. J. Sullivan, G. Bj?ntegaard, et al.. Overview of the H.264/AVCvideo coding standard. IEEE Transactions on Circuits and Systems for Video Technology. 2003, 13(7): 560-560.
    [44] T. Wiegand, G. J. Sullivan, J. Reichel, et al.. Joint draft 11 of SVC amendment. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-X201, Jul. 2007.
    [45] Y.-S. Ho, K.-J. Oh. Overview of multi-view video coding. Proc. of 14th International Workshop on Systems, Signals and Image Processing and 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services. Pp. 5-12, 2007.
    [46] Y. Su, A. Vetro, A. Smolic. Common test conditions for multiview video coding. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-U211, Oct. 2006.
    [47] ISO/IEC JTC1/SC29/WG11. Survey of algorithms used for multi-view video coding (MVC). ISO/IEC JTC1/SC29/WG11, Doc. N6909, Jan. 2005.
    [48] P. Merkle, A. Smolic, K. Muller, et al.. Efficient prediction structures for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology. 2004, 17(11): 1461-1473.
    [49]蒋刚毅,张云,郁梅.基于相关性分析的多模式多视点视频编码.计算机学报. 2007, 30(12): 2205-2211.
    [50] C. Chen, Y. Liu, Q. Dai, et al.. Performance modeling and evaluation of prediction structures in multi-view video coding. Proc. of IEEE International Conference on Multimedia and Expo. Pp. 1335-1338, 2007.
    [51] P.-K. Park, K.-J. Oh, and Y.-S. Ho. Efficient view-temporal prediction structures for multi-view video coding. Electronics Letters, 2008, 44(2): 102-103.
    [52] Y. Liu, Q. Huang, D. Zhao, et al.. Low-delay view random access for multi-view video coding. Proc. of IEEE International Symposium on Circuits and Systems. Pp. 997-1000, 2007.
    [53] Y. Liu, Q. Huang, X. Ji, et al.. Multi-view video coding with flexible view-temporal prediction structure for fast random access. Lecture Notes in Computer Science. 2006, 4261: 564-571.
    [54] P. Pandit, Y. Su, P. Yin, et al.. MVC high-level syntax for random access. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-T130, Jul. 2006.
    [55] M. Drose, C. Clemens, and T. Sikora. Extending single-view scalable video coding to multi-view based on H.264/AVC. Proc. of IEEE International Conference on Image Processing. Pp. 2977-2980, 2006.
    [56] N. Ozbek, A. M. Tekalp. Scalable multi-view video coding for interactive 3DTV. Proc. of IEEE International Conference on Multimedia and Expo. Pp. 213-216,2006.
    [57] G. Li, Y. He. A novel multi-view video coding scheme based on H.264. Proc. of the 2003 Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing, and the Fourth Pacific Rim Conference on Multimedia: 1. Pp. 493-497, 2003.
    [58] A. S. Akbari, N. Canagarajah, D. Redmill, et al.. A Novel H.264/AVC based multi-view video coding scheme. Proc. of 3DTV Conference. Pp. 1-4, 2007.
    [59] P. Merkle, K. Muller, A. Smolic, et al.. Efficient compression of multi-view video exploiting inter-view dependencies based on H.264/MPEG4-AVC. Proc. of IEEE International Conference on Multimedia and Expo. Pp. 1717-1720, 2006.
    [60] C. Bilen, A .Aksay, and G. B. Akar. A multi-view video codec based on H.264. Proc. of IEEE International Conference on Image Processing. Pp. 541-544, 2006.
    [61] J. H. Kim, P. L. Lai, J. Lopez, et al.. New coding tools for illumination and focus mismatch compensation in multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(11): 1519-1535.
    [62] J.-H. Hur, S. Cho, and Y.-L. Lee. Adaptive local illumination change compensation method for H.264/AVC-based multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(11) : 1496-1505.
    [63] W.-S. Shim, H.-S. Song, Y.-H. Moon, et al.. Deblocking filter on Illumination compensation. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-V051, Jan. 2007.
    [64] G.-H. Park, M.-W. Park, D.-Y. Suh, et al.. MVC deblocking for illumination compensation. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-V033, Jan. 2007.
    [65] W.-S. Shim, M.-W. Park, G.-H. Park, et al.. CE5 results- joint proposal for MVC deblocking. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-W024, Apr. 2007.
    [66] J. Huo, Y. Ma, H. Yang, et al.. Illumination and color compensation for MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, Doc. JVT-Y038, Oct. 2007.
    [67] K. Yamamoto, M. Kitahara, H. Kimata, et al.. Multiview video coding using view interpolation and color correction. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(11) : 1436-1449.
    [68]邵枫,蒋刚毅,郁梅,等.一种多视点视频自动颜色校正系统.光学学报. 27(5): 830-834.
    [69] Y. Chen, C. Cai, and J. Liu. YUV correction for multi-view video compression. Proc. of 18th International Conference on Pattern Recognition: 3. Pp. 734-737, 2006.
    [70] W.-Y. Chen, L.-F. Ding, L.-G. Chen. Fast Luminance and Chrominance Correction based on Motion Compensated Linear Regression for Multi-view Video Coding. Proc. of SPIE. Vol. 6508: 650823, 2007.
    [71] J. Huo, Y. Chang, H. Yang et al.. Color compensation for multi-view video coding based on diversity of camera. Journal of Zhejiang University: Science. 2008, 9(12): 1631-1637.
    [72] P. Lai, Y. Su, P. Yin, et al.. Adaptive filtering for cross-view prediction in multi-view video coding. Proc. of SPIE. Vol. 6508: 650814, 2007.
    [73] P. Lai, A. Ortega, P. Pandit, et al.. Adaptive reference filtering for MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-W065, Apr. 2007.
    [74] P. Pandit. CE 2: adaptive reference filtering. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-X302, Jul. 2007.
    [75] P. Lai, A. Ortega, P. Pandit, et al.. CE2: adaptive reference filtering for MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-Y041, Oct. 2007.
    [76] P. Lai, P. Pandit, P. Yin, et al.. CE2: adaptive reference filtering for MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16, Doc. JVT-Z020, Jan. 2007.
    [77] Y.-S. Ho, K.-J. Oh, C. Lee, et al.. Global disparity compensation for multi-view video coding. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-U100, Oct. 2006.
    [78] H. Yang, J. Huo, Y. Chang, et al.. Regional disparity est/comp for MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-U047, Oct. 2006.
    [79] R.-S. Wang, Y. Wang. Multiview video sequence analysis, compression, and virtual viewpoint synthesis. IEEE Transactions on Circuits and Systems for Video Technology. 2000, 10(3): 397-410.
    [80] Y.-S. Ho, K.-J. Oh, C. Lee. Geometrical compensation for MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-X049, Jul. 2007.
    [81] S. Shimizu, M. Kitahara, H. Kimata, et al.. View scalable multiview video coding using 3-D warping with depth map. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(11) : 1485-1495.
    [82] Y. Sehoon, A. Vetro. RD-Optimized view synthesis prediction for multiview video coding. Proc. of IEEE International Conference on Image Processing : 1. Pp. 209-212, 2007.
    [83] C . Lee, K.-J. Oh, S.-H. Kim, et al.. An efficient view interpolation scheme and coding method for multi-view video coding. Proc. of 14th International Workshop on Systems, Signals and Image Processing and 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services. Pp. 102-105, 2007.
    [84] K. Mueller, P. Merkle, H. Schwarz, et al.. Multi-view video coding based on H.264/MPEG4-AVC using hierarchical B pictures. Proc. of Picture Coding Symposium. SS3-3, 2006.
    [85] T. Senoh, T. Aoki, H. Yasuda, et al.. Disparity vector prediction CE plan for MVC/CE4. ISO/IEC JTC1/SC29/WG11 Doc. M13166, Apr. 2006.
    [86] G. Zhu, P. Yang, Y. and He. A new inter-view prediction method for multi-view video coding. Proc. of IEEE Workshop on Signal Processing Systems. Pp. 337-340, 2007.
    [87] X. San, H. Cai, J.-G. Lou, et al.. Multiview image coding based on geometric prediction. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(11): 1536-1548.
    [88] H. Kimata, M. Kitahara, and K. Kamikura. Multi-view video coding using reference picture selection for free-viewpoint video communication. Proc. of Picture Coding Symposium. 2004.
    [89] S.-H. Lee, S.-H. Lee, N.-I. Cho, et al.. Disparity vector prediction methods in MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-U040, Oct. 2006.
    [90] S.-H. Lee, S.-H. Lee, N.-I. Cho, et al.. Disparity vector prediction in MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-V071, Jan. 2007.
    [91] H. Yang, J. Huo, Y. Chang, et al.. Regional disparity based motion and disparity prediction for MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-W104, Apr. 2007.
    [92] H . Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(9): 1103-1120.
    [93] C. A. Segall, G. J. Sullivan. Spatial scalability within the H.264/AVC scalable video coding extension. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(9) : 1121-1135.
    [94] X. Guo and Q. Huang. Multiview video coding based on global motion model. Lecture Notes in Computer Science. 2004, 3333: 665-672.
    [95] H.-S. Koo, Y.-J. Jeon, B.-M. Jeon. MVC motion skip mode. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-U091, Oct. 2006.
    [96] X. Guo, Y. Lu Yan, and F. Wu. Inter-view direct mode for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology. 2006, 16(12): 1527-1532.
    [97] H.-S. Song, W.-S. Shim, Y.-H. Moon, et al.. Macroblock information skip for MVC. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-V052, Jan. 2007.
    [98] H. Yang, J. Huo, Y. Chang, et al.. Inter-view motion skipped multi-view video coding with fine motion matching. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-Y037, Oct. 2007.
    [99] J. Reichel, H. Schwarz, and M. Wien. Joint scalable video model JSVM-11. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-X202, Jul. 2007.
    [100] J.-H. Park, Y.-H. Kim, J. Kim, et al.. Motion skip mode with residual prediction. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Document JVT-Z031, Jan. 2008.
    [101] P. Merkle, A. Smolic, K. Muller et al.. Multi-view video plus depth representation and coding. IEEE International Conference on Image Processing. Vol. I, Pp. 201-204, 2007.
    [102] H. Oh, Y.-S. Ho. H.264-based depth map sequence coding using motion information of corresponding texture video. Lecture Notes in Computer Science. 2006, 4319: 898-907.
    [103] R. He, M. Yu, G. Jiang. A depth image coding method for 3DTV system based on edge enhancement. 11th IEEE International Conference on Communication Technology. Pp. 665-668, 2008.
    [104] B.-B. Chai, S. Sethuraman, H. S. Sawhney et al.. Depth map compression for real-time view-based rendering. Pattern Recognition Letters. 2004, 25(7): 755-766.
    [105] S.-Y. Kim and Y.-S. Ho. Mesh-based depth coding for 3D video using hierarchical decomposition of depth maps. IEEE International Conference on Image Processing. Vol. V, pp. 117-120, 2007.
    [106] I. Daribo, C. Tillier, and B. Pesquet-Popescu. Adaptive wavelet coding of the depth map for stereoscopic view synthesis. IEEE 10th Workshop on Multimedia Signal Processing. Pp. 413-417, 2008.
    [107] F. Long, D. Feng, H. Peng, et al.. Extracting semantic video objects. IEEEComputer Graphics and Applications. 2001, 21(1): 48-55.
    [108] P. Salembier, F. Marques. Region-based representations of image and video: segmentation tools for multimedia services. IEEE Transactions on Circuits and Systems for Video Technology. 1999, 9(8): 1147-1169.
    [109] A. Hampapur, T. Weymouth, and R. Jain. Digital video segmentation. Proc. of the second ACM international conference on Multimedia. Pp. 357-364, 1994.
    [110]郭平,卢汉清.贝叶斯概率图像自动分割研究.光学学报. 2005, 22(12): 1479-1483.
    [111]刘贵喜,邵明礼,刘先红等.真实场景下视频运动目标自动提取方法.光学学报. 2006, 26(8): 1150-1155.
    [112] A. D. Doulamis, N. D. Doulamis, K. S. Ntalianis et al.. Unsupervised semantic object segmentation of stereoscopic video sequences. Proc. of IEEE International Conference on Information Intelligence and Systems. Pp. 527-533, 1999.
    [113] K. S. Ntalianis, N. D. Doulamis, A. D. Doulamis et al.. An active contour-based video object segmentation scheme for stereoscopic video sequences. Proc. of IEEE International Electromechanical Conference. Vol. 2, pp. 554-557, 2000.
    [114] N. Atzpadin, S. Askar, P. Kauff et al.. New concept for joint disparity estimation and segmentation for real-time video processing. Picture Coding Symposium. Pp. 23-25, 2003.
    [115] J. H. Luo, C. N. Wang, and T. Chiang. A novel all-binary motion estimation (ABME) with optimized hardware architectures. IEEE Transactions on Circuits and Systems for Video Technology. 2002, 12(8): 700-712.
    [116] T. Wiegand, H. Schwarz, A. Joch, et al.. Rate-constrained coder control and comparison of video coding standards. IEEE Transactions on Circuits and Systems for Video Technology. 2003, 13(7): 688-703.
    [117] Laroche, G.; Jung, J.; Pesquet-Popescu, B. RD optimized coding for motion vector predictor selection. IEEE Transactions on Circuits and Systems for Video Technology. 2008, 18(12): 1681-1691.
    [118] H.-S. Koo, Y.-J. Jeon, and B.-M Jeon. Motion information inferring scheme for multi-view video coding. IEICE Trans. Commun. 2008, E91-B(4): 1247-1250.
    [119] A. Vetro, P. Pandit, H. Kimata, et al.. Joint draft 4.0 on multiview video coding. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-X209, Jun. 2007.
    [120] G. Bjontegaard. Calculation of average PSNR differences between RD-curves. ITU-T Q6/SG16 Doc. VCEG-M33, Apr. 2001.
    [121] A. Vetro, P. Pandit, H. Kimata, and A. Smolic. Joint multiview video model(JMVM) 7.0. ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Doc. JVT-Z207, Jan. 2008.
    [122] S.-T. Na, K.-J. Oh, and Y.-S. Ho. Joint coding of multi-view video and corresponding depth map. Proc. of IEEE International Conference on Image Processing. Pp. 2468-2471, 2008.
    [123] C. Fehn, K. Schüür, P. Kauff et al... Coding results for EE4 in MPEG 3DAV. ISO/IEC JTC1/SC29/WG11 Doc. M9561, Mar. 2003.
    [124] C. L. Zitnick, S. B. Kang, M. Uyttendaele et al.. High-quality video view interpolation using a layered representation. ACM Transactions on Graphics. 2004, 23(3): 600-608.
    [125] M. Tanimoto, T. Fujii, K. Suzuki. Experiment of view synthesis using multi-view depth. ISO/IEC JTC1/SC29/WG11 Doc. M14889, Oct. 2007.
    [126] S. Shimizu, H. Kimata. View generation from neighboring two videos and two depth maps. ISO/IEC JTC1/SC29/WG11 Doc. M14920, Oct. 2007.
    [127] M. Tanimoto, T. Fujii, K. Suzuki. Improvement of depth map estimation and view synthesis. ISO/IEC JTC1/SC29/WG11, Doc. M15090, Jan. 2008.
    [128]毕厚杰.新一代视频压缩编码标准——H.264/AVC.人民邮电出版社, 2005.
    [129] D. R. Cok. Signal processing method and apparatus for sampled image signals. United States Patent 4,630,307, 1987.
    [130] E. Chang, C. Shiufun, and D. Pan. Color filter array recovery using a threshold-based variable number of gradients. Proc. SPIE. Vol. 3650, pp. 36-43, 1999.
    [131] K. Hirakawa and T. W. Parks. Adaptive homogeneity-directed demosaicing algorithm. IEEE Transactions on Image Processing. 2005, 14(3): 360-369.
    [132]刘晓松,杨新,汪进.基于统计特征的彩色图像快速插值方法.电子学报. 2004, 32(1): 29-33.
    [133]赵建森.视频前处理技术研究.西安电子科技大学硕士论文. 2007.
    [134] Y. Kim, H. S. Lee, and A.W. Morales. A video camera system with enhanced zoom tracking and auto white balance. IEEE Transactions on Consumer Electronics. 2002, 48(3): 428-434.
    [135] J. Huo, Y. Chang, J. Wang, et al.. Robust automatic white balance algorithm using gray color points in images. IEEE Transactions on Consumer Electronics. 2006, 52(2): 541-546.
    [136]谢攀,张利,康宗明等.一种基于尺度变化的DCT自动聚焦算法.清华大学学报(自然科学版). 2003, 43(1): 55-58.
    [137] Kazushige Ooi, Keiji Izumi, M itsuyuki Nozaki, et al.. An advanced autofocus system for video camera using quasi condition reasoning. IEEE Transactions on Consumer Electronics. 1990, 36(3): 526- 530.
    [138]胡凤萍.视频自动聚焦方法研究与实现.西安电子科技大学硕士论文. 2008.
    [139]章毓晋.图像工程上册-图像处理和分析.清华大学出版社. 1999.
    [140]刘阳.数字视频格式转换算法研究.西安电子科技大学硕士论文. 2008.
    [141] T. Haruki and K. Kikuchi. Video camera system using fuzzy logic. IEEE Transactions on Consumer Electronics. 1992, 38(3): 624-634.
    [142] M. Murakami, and N. Honda. An exposure control system of video cameras based on fuzzy logic using color information. Proc. of the Fifth IEEE International Conference on Fuzzy System. Vol. 3, pp. 2181-2187, 1996,.
    [143] S. Shimizu, T. Kondo, T. Kohashi, et al.. A new algorithm for exposure control based on fuzzy logic for video cameras. IEEE Transactions on Consumer Electronics. 1992, 38(3): 617-623.
    [144] J. A. Stark. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing. 2000, 9(5): 889-896.
    [145] M. C. Su, J. H. Guo, D. T. Lin, et al.. New compensation algorithm for color backlight images. Proc. of the 2002 International Joint Conference on Neural Networks. Vol. 2, pp. 1396-1400, 2002.
    [146] L. Neumann, K. Matkovic, and W. Purgathofer. Automatic exposure in computer graphics based on the minimum information loss principle. Proc. of Computer Graphics International. Pp. 666-677, 1998.
    [147] K. Matkovic and L. Neumann. Interactive calibration of the mapping of global illumination values to display devices. Proc. of the Twelfth Spring Conference on Computer Graphics. 1996.
    [148] T. Kadir and M. Brady. Saliency, scale and image description. International Journal of Computer Vision. 2001, 45(2): 83-105.
    [149] T. Kuno, H. Sugiura, and N. Matoba. A new automatic exposure system for digital still cameras. IEEE Transactions on Consumer Electronics. 1998, 44(1): 192-199.
    [150] ISO/IEC JTC1/SC29/WG11. Vision on 3D video. ISO/IEC JTC1/SC29/WG11 Doc. N10357, Feb. 2009.
    [151] H. Yang, Y. Chang, X. Liu, et al.. Adaptive non-uniform quantization in depth format conversion. ISO/IEC JTC1/SC29/WG11 Doc. M15795, Oct. 2008.
    [152] H. Yuan, Y. Chang, H. Yang, et al.. Depth estimation improvement for depth discontinuity areas and temporal consistency preserving. ISO/IEC JTC1/SC29/WG11 Doc. M16048, Feb. 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700