高效能空间薄膜聚光光伏系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对能源需求的日益增大以及化石能源的枯竭,空间太阳能的开发正在成为地球空间科学所关注的热点。在该方向应用的聚光光伏技术是一种集成廉价的大口径聚光器来替代平板太阳能电池的技术,其作为空间太阳能收集与转换的核心技术一直以来向着高效能的方向发展。其中最具有应用前景的薄膜聚光器具有轻质、低成本、易于折叠展开等优点,是空间可展开太阳能收集装置的最佳选择。然而,现有的空间薄膜聚光光伏系统存在稳定性差、效-质比低和光伏电池遮挡等问题而降低了系统的性能,使其在空间的应用受到了严重的限制。因此,本论文针对以上问题研究设计了高效性能的空间薄膜聚光光伏系统,并提供了一系列解决方案,为其应用发展提供新的思路。
     本文结合薄膜的反射误差模型,全面地研究了空间抛物面型薄膜聚光器各种参数对接收面上能流密度分布的影响。利用Monte Carlo光线追迹法具体分析了薄膜聚光器的表面反射误差、焦径比、接收器的遮挡作用和接收器的位置对系统接收面上辐射能流密度分布的影响,该分析可为薄膜聚光器的空间应用提供理论参考。在理论建模的基础上,进一步利用口径Ф180mm的薄膜聚光器实验平台,对薄膜聚光器进行了初步聚光实验,测量结果验证了薄膜反射误差模型的合理性。
     提出了一种新型三角元薄膜聚光器的优化设计方法。该方法以系统聚光功率30kW和聚光比300倍为设计目标,在聚光系统设计阶段充分考虑了系统面形误差,设计出所需要最少拼接单元的三角元薄膜聚光器,从而降低空间聚光器结构的复杂性。该新型聚光器基于可展开桁架式结构,具有高稳定性及高展开性等优点,有望发展成为新一代的空间薄膜聚光器。
     为进一步提高薄膜聚光器接收面能流密度的均匀性,提出一种对聚光光伏系统光伏电池进行布局及形状优化的模型。该优化模型以接收面辐射能流密度分布均匀度最高为目标,对光伏电池位置进行离焦以及变化形状来实现系统的优化,获得了接收面上最佳均匀的能流密度分布。结果表明该优化模型提高了薄膜聚光光伏系统效-质比,有效地降低系统发射成本,为空间聚光光伏系统工程化提供有效的方案。
     针对薄膜聚光光伏系统光伏电池对太阳辐射遮挡导致光学接收效率降低的问题,提出一种光伏电池结合超薄光谱分束聚光光伏系统的混合式接收器。其中设计的超薄光谱分束聚光器首次利用导光板中的耦合面引导聚焦光束,同时作为光谱分束面,得到的超薄光谱分束聚光光伏系统结构紧凑、跟踪要求低,可方便地与光伏电池集成来提高系统整体光学接收效率。
With the increasing human demands for energy sources and exhaust of fossilfuels, the exploitation of solar energy in space is becoming the priority research areasin the earth and space science. Concentration photovoltaic (CPV) technique isintegrated with a large aperture concentrator in place of plane solar cells, whichdevelops toward high efficiency as the key technique of solar energy in spacecollection and transformation. As lightweight, inexpensive, high-performancestructures, membrane concentrators are excellent candidates for space-deployablecollection device. However, current membrane CPV system results in low stabilityand efficiency-mass ratio and shadow of solar cells and thus degrades the system’sperformance, which makes space-based applications of the membrane CPV systemlimited. Thus, according the above problems this thesis researches high efficiencyspace-based membrane CPV system, which offers a series of solutions and a novelview for application of membrane CPV system.
     Firstly, coupling with a membrane reflective error probability model, wecomprehensively consider the influences of parameter of space-based membrane CPVsystem on the flux radiation distributions at the received plane. The influences ofreflective error of membrane concentrator、focal-diameter ratio、the shadow ofreceivers and the receiver location on radiation flux density distributions is analyzed by using monte-carlo ray-tracing method. The simulation results present a referencefor space-based application of membrane CPV system. Then based on theoreticalmodel, to validate the rationality of the membrane reflective error probability model,we built an experiment platform with membrane concentrator with aperture of180mmand conduct a concentrating experiment, and the measurement results demonstrate therationality of the membrane reflective error probability model.
     Secondly, to improve the stability of the membrane CPV system, the design of asolar dish concentrator is proposed based on triangular membrane facets for spacepower applications. With the goals of30kW of received power and300ofconcentration ratio, considering the system root-mean-square (RMS) deviation in thisdesign procedure, we achieve the minimal number of facets rows of membraneconcentrator, which degrades the complexity of membrane concentrator structure. Theproposed novel concentrator is supported by a deployable perimeter truss structureand offers the advantages of high stability and extensibility, which become thepotential alternate for the new general of space-based membrane concentrator.
     And then to enhance the uniformity of radiation flux distribution at the receivedplane of membrane CPV system, we proposed the arrangement and shapeoptimization model of solar concentrating cell. This optimization model aims at thehighest uniformity of radiation flux distribution, and makes the solar cell location andshape varied to realize the optimization process. The result indicates this optimizationmodel enhances the efficiency-mass ratio of membrane CPV system, and effectivelydecreases system launch cost, which provided an effective solution for practicalapplication of space-based membrane CPV system.
     At last, the shadow of the solar cell of membrane CPV system to the incidentsunlight results in the decrease of optical received efficiency, a novel hybrid receivercombined solar cell with a super-thin spectral-splitting CPV is proposed. Thesuper-thin spectral-splitting concentrator utilizes injected facets in light guide layersconcurrently redirect the focused beam, while acting as spectral splitting facets. Thespectral-splitting concentrator has the advantages of compact structure and low tracking requirement, and is conveniently integrated with membrane CPV system toenhance optical received efficiency.
引文
[1] W.T. Xie, Y.J. Dai, R.Z. Wang, et al.. Concentrated solar energy applicationsusing Fresnel lenses: A review [J]. Renewable and Sustainable Energy Reviews,2011,15:2588-2606
    [2] Michael G., Debije, Paul P. C. Verbunt. Thirty Years of Luminescent SolarConcentrator Research: Solar Energy for the Built Environment [J]. Adv. EnergyMater.2012,2:12-35
    [3] A.G. Imenes, D.R. Mills. Spectral beam splitting technology for increasedconversion efficiency in solar concentrating systems: a review [J]. Solar EnergyMaterials&Solar Cells,2004,84:19-69
    [4]李国欣,徐传继,黄秉琰等.空间太阳能电站技术的可行性研究[J].上海航天,1998
    [5] HEINLOTH K. Renewable Energy [M]. Berlin: Springer Berlin Heidelberg,2006
    [6]侯欣宾,王立,朱耀平等.国际空间太阳能电站发展现状[J].太阳能学报,2009,30(10):1263-1268
    [7] John C. Mankins, Nobuyuki Kaya. Space Solar Power: The First InternationalAssessment of Space Solar Power: Opportunities, Issues and Potential PathwaysForward [R]. International Academy of Astronautics,2011
    [8] Ari Rabl. Active Solar Collectors and their Applications [M]. Oxford UniversityPress, New York.1985:356-361
    [9] Kent S. Jefferies. Optical Analysis of Parabolic Dish Concentrators for SolarDynamic Power Systems in Space [R]. NASA Technical Memorandum87080,1985
    [10]Lee S. Mason. A Solar Dynamic Power Option for Space Solar Power [R]. NASATechnical Memorandum,1999
    [11]李瑞恒,邢玉明,刘伟.空间太阳能热动力发电系统10kW聚能器焦平面热流分布计算[J].太阳能学报,2005,26(1):116-120
    [12]C. M. Jenkins. Gossamer Spacecraft Membrane and Inflatable StructuresTechnology for Space Application [M]. Progress in Astronautics and AeronauticsSeries,2001, American Institute of Aeronautics&Astronautics
    [13]M. J. O’Neill, M. F. Piszczor, M. I. Eskenazi et al.. Ultralight stretched Fresnellens solar concentrator for space power applications [C]. in Proceedings of the SPIE’s48th AnnualMeeting, pp.5179-5117, San Diego, Calif, USA, August2003
    [14]Joseph J. O’Gallagher. Nonimaging Optics in Solar Energy [M]. In the Morgan&Claypool Publishers series.
    [15]Travis Deyle. Inatable Membrane Solar Concentration Systems for Space-BasedApplications [EB/OL]. A Term Paper for “Solar Cells”,2007
    [16]Jeffrey G. Schreiber. A Deep Space Power System Option Based on SynergisticPower Conversion Technologies [R]. NASA Technical Memorandum,2000
    [17]M.F. Piszczor and M.J. O’Neill. Development of a Dome Fresnel Lens/GaAsPhotovoltaic Concentrator for Space Applications [C].19th IEEE-PVSC,1987.
    [18]刘志全,杨淑利,濮海玲.空间太阳电池阵的发展现状及趋势[J].航天器工程,2012,21(6):112-118
    [19]R.E. Freeland, G. D. Bilyeu. IN-STEP Inflatable Antenna Experiment [J].43rdCongress of the International Astronautical Federation, IAF-92-0301,1992,Washington, D. C:1-12
    [20]Schleinitz J P, Lo R E. Solar-thermal OTVS in comparison with electrical andchemical propulsion systems [J]. IAF-87-1999,1987
    [21]D. Lichodziejewski, C. Cassapakis. Inflatable power antenna technology [C]. inProceedings of the AIAA99-107437th Aerospace Sciences Meeting and Exhibit(AIAA’99), January1999.
    [22]Louis Roy Miller Giersch. Pathfinder Photogrammetry Research forUltra-Lightweight and Inflatable Space Structures [R]. NASA Contractor Report,2001
    [23]Frederick H. Redell, Justin Kleber, David Lichodziejewski et al..Inflatable-Rigidizable Solar Concentrators for Space Power Applications [C].2003,American Institute of Aeronautics and Astronautics:1-10
    [24]G. Tibert. Deployable tensegrity structures for space applications [D]. Stockholm,2002.
    [25]刘荣强,田大可,邓宗全.空间可展开天线结构的研究现状与展望[J].机械设计,2010,27(9):1-10
    [26]K. Ando, J. Mitsugi, Y. Senbokuya. Analyses of cable membrane structurecombined with deployable truss [J]. Computers and Structures,2000,74(1):21-39
    [27]S. P. Chodimella, J. Moore, J. Otto, et al. Design evaluation of a large aperturedeployable antenna [C]. in Proceedings of the AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference, vol.6624, Newport, RI,USA, May2006.
    [28]石广丰.空间薄膜反射镜的多电极控制方法研究[D]:[博士学位论文].北京:中国科学院研究生院博士学位论文,2010
    [29]Stamper B, Angerl R, Burge J, et al.. Stretched membrane with electrostaticcurvature (SMEC) mirrors for extremely large spacetelescope [J]. SPIE,2001,4451:105-113.
    [30]Errico S, Angel R, Stamper B,et al.. Stretched membrane with electrostaticcurvature (SMEC) mirrors: a newtechnology for large lightweight space telescopes[J].SPIE,2002,4849:356-364.
    [31]Angel M.Eight inch f5deformable magnetic membrane mirror [J]. SPIE,2006,6273:62732A.
    [32]张鹏.空间薄膜反射镜成形控制及实验研究[D]:[博士学位论文].北京:中国科学院研究生院博士学位论文,2012
    [33]孙小伟.空间薄膜反射镜控制机理研究[D]:[博士学位论文].北京:中国科学院研究生院博士学位论文,2007
    [34]安源;金光;齐迎春;孙小伟;蒋宁;艾晨光薄膜反射镜的单电极控制静电成形[J].光学精密工程,2009,17(8):1964-1970
    [35]刘红军;沈为民;唐敏学等.膜基反射镜的非线性有限元挠度分析[J].光学仪器,2007,29(6):85-89.
    [36]Hongcai Ma, Guang Jin, Xing Zhong, Kai Xu, Yanjie Li. Optical design of a solardish concentrator based on triangular membrane facets [J]. International journal ofphotoenergy, Volume2012, Article ID391921
    [37]William B. Stine. A Compendium of Solar Dish/Stirling Technology [R]. SandiaNational Laboratories Technical report,1994
    [38]Development of a Stretched-Membrane Dish [R]. Phase I, SAND88-7035(SolarKinetics,Inc., Dallas, Texas), Albuquerque, NM:Sandia National Laboratories,1989
    [39]Detail Design of A10.4-m Stretched-Membrane Dish [R]. Phase I,SAND55-2465(Solar Kinetics,Inc., Dallas, Texas), Albuquerque, NM:SandiaNational Laboratories,1994
    [40]Thomas R. Mancini. Analysis and Design of Two Stretohed-Membrane ParabolicDish Concentrators [J]. Journal of Solar Energy Engineering,1991,113:180-187
    [41]R. Bader, P. Haueter, A. Pedretti et al.. Optical Design of a Novel Two-StageSolar Trough Concentrator Based on Pneumatic Polymeric Structures [J]. Journal ofSolar Energy Engineering,2009,131:031007-1-031007-9
    [42]Roman Bader, Andrea Pedretti, Aldo Steinfeld. A9-m-Aperture Solar ParabolicTrough Concentrator Based on a Multilayer Polymer Mirror Membrane Mounted on aConcrete Structure [J]. Journal of Solar Energy Engineering,2011,133:031016-1-031016-12
    [43]G. Zanganeh, R. Bader, A. Pedretti et al.. A solar dish concentrator based onellipsoidal polyester membrane facets [J]. Solar Energy,2012,86:40-47
    [44]王志峰.“碟式聚光太阳热发电系统及关键技术研究”通过科技部验收[EB/OL]. http://iee.ac.cn/Website/index.php?ChannelID=1515&NewsID=3494
    [45]Metropolis, Nicholas, Ulam, S.. The Monte Carlo Method [J]. J.Am.StatisticalAssoc,1949,44(247):335-341.
    [46]刘颖.太阳能聚光镜聚焦光斑能流密度分布的理论与实验研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学自动化测试与控制系,2008
    [47]W.T威尔福德,R.韦恩斯顿.非成像聚光器光学:光和太阳能[M].北京:科学出版社,1987:1-48
    [48]Julio Chaves. Introduction to Nonimaging Optics [M]. CRC Press,2008
    [49]Roland Winston, Juan C. Mi ano, Pablo Benítez. Nonimaging optics [M].Elsevier Academic Press,2004
    [50]Welford W T, Winston Roland. High collection Non-imaging optics [M].Academic Press, New York,1989
    [51]Antonio L. Luque Viacheslav M. Andreev. Concentrator Photovoltaics [M].Springer, New York,2007
    [52]荆雷.新型Fresnel聚光光伏镜的设计研究[D]:[博士学位论文].北京:中国科学院研究生院博士学位论文,2012
    [53]P. Benitez, and J. C. Mi ano,“Concentrator Optics for the next generationphotovoltaics”. Chap.13of A. Marti&A. Luque. Next Generation Photovoltaics:High Efficiency through Full Spectrum Utilization,(Taylor&Francis, CRC Press,London,2004).
    [54]Pablo Benítez, Juan C. Mi ano, Pablo Zamora. High performance Fresnel-basedphotovoltaic Concentrator [J]. Opt. Express,2010,18(S1): A25-A40
    [55]G. Grossman, G. Williams. Inflatable concentrators for solar propulsion anddynamic space power [J]. Journal of Solar Energy Engineering,1990,112:229-236.
    [56]Costa G. Cassapakis, Mitchell Thomas. A power antenna for deep spacemissons[J]. Solar Engineering. Book No.HO1046-1996
    [57]Kristi K. Laug, Michael R. Holmes. Paraboloidal thin film inflatableconcentrators and their use for power applications[R]. AFMC Technical Paper.
    [58]Neumann A, Witzke A, Scott A J. Representative Terrestrial Solar BrightnessProfiles. Journal of Solar Energy Engineering [J].2002,124(1):198-204
    [59]Buie. D, Monger. A. G, Dey. C. J. Sunshape Distributions for Terrestrial SolarSimulations. Solar Energy [J].2003,74(2):113-122
    [60]齐迎春.空间薄膜反射镜的成像机理研究[D]:[博士学位论文].北京:中国科学院研究生院博士学位论文,2007
    [61]关富玲,徐彦,郑耀.充气可展开结构技术在空间探索领域中的应用[J].载人航天,2009,4:40-48
    [62]P. K. Agrawal, M. S. Anderson, M. F. card. Preliminary design of large reflectorswith flat facets [J]. IEEE Transactions on Antennas and Propagation,1981, AP-29(4):688-694
    [63]M. W. Thomson. AstroMesh deployable reflectors for ku and ka bandcommercial satellites [C]. in Proceedings of the20thInternational CommunicationSatellite Systems Conference and Exhibit (AIAA’02), Montreal, Canada, May2002.
    [64]Spectrolab Triple Junction Terrestrial Concentrator Solar Cells. SpectrolabMJ.pdfDatasheet [EB/OL]. www.spectrolab.com.
    [65]G. Groot Gregory, R. John Koshel. Modeling the operating conditions of solarconcentrator systems [C]. Photonics for Solar Energy Systems,2006, Proc. of SPIEVol.6197:61970J-1-61970J-11
    [66]L. Piegl, W. Tiller. The NURBS Book [M].(2nd ed.) Berlin: Springer-Verlag,1997
    [67]Press, W. H., Teukolsky et al. Numerical Recipes in C: The Art of ScientificComputing [M]. Second Edition, Cambridge University Press.
    [68]Toth, D. L.. On Ray Tracing Parametric Surfaces [C]. SIGGRAPH’85Conference Proceedings19.1985.171-179
    [69]陈宝林.最优化理论与算法[M].第二版.北京:清华大学出版社,2005:281-287
    [70]J. C. Spall. Multivariate stochastic approximation using a simultaneousperturbation gradient approximation [J]. IEEE Trans. Automatic Control,1992,37(3):332-341
    [71]Pflug C. George. Optimization of Stochastic Models: The Interface BetweenSimulation and Optimization [M]. Boston: Kluwer Academic Publishers,1996:281-288
    [72]D. Buie. Sunshape distributions for terrestrial solar simulations [J]. Solar Energy,2003,74(2):113-122
    [73]K. J. Daun, D. P. Morton, J. R. Howell. Geometric Optimization of RadiantEnclosures Containing Specular Surfaces [J]. J. Heat Transfer,2003,125(5):845-851
    [74]Rubén Nú ez, Ignacio Antón, Gabriel Sala. Hybrid lighting-CPV, a new efficientconcept mixing illumination with CPV [J]. Opt. Express,2013,21(4):4864-4874
    [75]Chih-Hsuan Tsuei, Wen-Shing Sun, Chien-Cheng Kuo. Hybrid sunlight/LEDillumination and renewable solar energy saving concepts for indoor lighting [J]. Opt.Express,2010,18(S4): A640-A653
    [76]A. G. Imenes and D. R. Mills. Spectral beam splitting technology for increasedconversion efficiency in solar concentrating systems: A review [J] Sol. Energy Mater.Sol. Cells,2004,84(1-4):19-69.
    [77]刘华,卢振武.可横向分光的大接收角非成像式聚光系统[J].光学精密工程,2009,17(12):2881-2886
    [78]A. Barnett, D. Kirkpatrick, C. Honsberg. Very high efficiency solar cell modules[J]. Prog. Photovolt. Res. Appl.2009,17(1),75-83
    [79]M. A. Green, A. Ho-Baillie. Forty three percent composite split-spectrumconcentrator solar cell efficiency [J]. Prog. Photovolt. Res. Appl.2010,18(1),42-47
    [80]Jason H. Karp and Joseph E. Ford. Multiband Solar Concentrator usingTransmissive Dichroic Beamsplitting [J]. High and Low Concentration for SolarElectric Applications III,2008, Proc. of SPIE Vol.7043:70430F-1-70430F-8
    [81]Jason H. Karp, Eric J. Tremblay, Joseph E. Ford. Planar micro-optic solarconcentrator [J]. Opt. Express,2010,18(2):1122-1133
    [82]J. H. Karp, E. J. Tremblay, J. M. Hallas et al. Orthogonal and secondaryconcentration in planar micro-optic solar collectors [J]. Opt. Express,2011,19:A673-A685
    [83]郝雯雯,余桂英,胡兴.基于平板型导光板的太阳能聚光系统[J].激光与光电子学进展,2012,49:082202-1-082202-8
    [84]D. Moore, G. R. Schmidt, B. Unger. Concentrated photovoltaic stepped planarlight guide [C]. in International Optical Design Conference, OSA Technical Digest(CD)(OSA,2010), paper JMB46P
    [85]Joseph E. Ford, Jason Harris Karp, Eric Tremblay et al. System and Method forSolar Energy Capture and Related Method of Manufacturing. US2011/0226332,2011
    [86]Juan Carlos Martinez Anton, Oscar Pereles Ligero, Daniel Vazquez Molini et al.Light Collection and Concentration System. US2010/0116336,2010
    [87]Ties M. de Jong, Dick K. G. de Boer, Cees W. M. Bastiaansen Surface-relief andpolarization gratings for solar concentrators [J]. Opt. Express,2011,19(16):15127-15142
    [88]Ozgur Selimoglu, Rasit Turan. Exploration of the horizontally staggered lightguides for high concentration CPV applications [J]. Opt. Express,2012,20(17):19137-19147
    [89]Sebastien Bouchard, Simon Thibault. Planar waveguide concentrator used with aseasonal tracker [J]. Applied Optics,2012,15(28):6848-6854
    [90]张以谟.应用光学[M].北京:机械工业出版社,1982:606-608
    [91]K. Araki, T. Yano, Y. Kuroda.30kW concentrator photovoltaic system usingdome-shaped Fresnel lenses [J]. Opt. Express,2010,18(S1): A53-A63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700