卫星平台与天线去耦合控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以具有可展开天线的同步轨道通信卫星为研究对象,解决卫星平台和挠性天线之间具有的动力学耦合问题。研究工作从理论层面提出了动力学去耦合控制的概念和方法,在工程应用层面,对卫星平台与挠性天线动力学去耦合控制的实现展开了深入细致的研究。
     在工程上,挠性卫星的姿态控制问题还没有彻底得到解决,已经提出的一些方法在具有大型挠性天线的卫星上应用均存在一些不足,所以需要研究新的方案。
     挠性卫星姿态动力学与控制问题的关键是卫星平台与挠性天线之间存在动力学耦合,并且这种耦合的动力学可控制性很差。在这种情形下,仅仅从控制器设计方面寻求提高姿态控制性能的收效是有限的。目前挠性卫星姿态控制的研究工作多数局限于此,所以不能解决问题。
     为了解决具有大型挠性天线卫星的控制问题,本文另辟蹊径,采取措施改变控制对象特性,提高被控制对象动力学的可控制性,从而获得更好的控制系统性能。具体工作如下:
     在深入分析挠性天线与卫星平台动力学特性的基础之上,提出了一个新的概念——动力学去耦合控制,并依据这个概念设计了一个用于连接挠性天线和卫星平台的机构——去耦机构。去合机构的引入在根本上改变了挠性卫星动力学的可控制性。
     针对具有去耦机构且带有大型挠性天线的卫星建立了动力学模型。推导证明了去耦机构确实能够降低系统动力学耦合。利用对比的方法分析了去耦合与非去耦合系统的能控性程度和能观性程度,定性说明了去耦合系统之所以能够改善卫星平台和挠性天线控制特性的原因。将卫星平台与挠性天线的动力学方程联立,计算去耦合控制系统的特征值迁移性,定量说明了系统控制特性的改善程度。
     按照工程实现的约束条件,完成了卫星姿态控制系统设计。控制系统采取了预补偿控制和去耦控制的结构。分别以天线相对于惯性空间的绝对角速度和天线相对卫星平台的相对转角为内外回路反馈信号,构成双回路控制系统,以低带宽外回路隔离天线振动,高带宽内回路抑制摩擦力矩。对整星系统的分析说明了此控制系统具有良好的去耦合特性。
     对去耦合控制与非去耦合控制进行控制性能仿真对比,仿真结果说明去耦合控制满足系统对指向精度和稳定度的要求。进一步,利用整星质心位置不确定条件下的动力学方程,并增加相应的非线性环节来构成较完善的仿真模型,以此为基础来验证去耦合控制系统在不确定因素影响下的有效性,并通过该模型中参数的大范围摄动来检验控制系统的鲁棒性。
     总之,论文针对具有大型可展开天线卫星开展了卫星平台与天线去耦合控制研究,提出了去耦合控制的新概念,设计完成了去耦合控制的新系统,获得了满意的结果。文中提出的新理论对于挠性卫星姿态控制具有一定的理论意义,所设计的控制系统对我国具有大型可展开天线卫星的工程应用具有一定的参考价值。
This dissertation is a pre-research project of civil aerospace, to study asynchronous orbit communication satellite with a deployable antenna, for solving thedynamics coupling problem of satellite platform and flexible antenna. Theoretically, thework starts with a new concept and control method of reducing dynamical coupling, theintensive research are carried out on engineering standard.
     In the view of engineering, flexible satellite attitude control problem has not beencompletely resolved as presented solutions all have some disadvantages to apply to thesatellite with large flexible antenna. It is needed to develop new solutions.
     The key nut of the flexible satellite attitude control is dynamical coupling ofsatellite platform and antenna, and coupling dynamics is always accompanied with poorcontrollability. Simply counting on controller design, to improve the performance ofattitude control system, is fruitless in this predicament. Unfortunately, current researchworks of flexible satellite attitude control are mostly localized to this way, so theproblem can not be resolved successfully.
     To cope with the difficulty of controlling satellite with large flexible antenna, thiswork finds its way by taking measures to change the to be controlled object, to improveits dynamical controllability. Then, better conttrol performace is obtained. Specificworks are as follows.
     Fundamentally, upon deep investigating the characterisatic of dynamics of flexibleatenna and satellite platform, a new control method of reducing dynamical coupling isproposed. Based on this concept, a coupling-reduction-mechanism for flexible antennaconnected to satellite platform is designed. The introduction ofcoupling-reduction-mechanism fundamentally changes the dynamical controllability ofsatellite.
     Dynamical model of a satellite with large flexible antenna connected to platformby coupling-reduction-mechanism is established. Derivation proves thecoupling-reduction-mechanism can reduce the degree of dynamical coupling.Comparative analysis of coupling-reduction and coupling control shows the degree ofcontrollability and observability. This tells qualitatively the reason ofcoupling-reduction-mechanism makes the satellite platform and flexible antenna becontrolled more easily. By combining dynamics equations of the satellite platform andflexible antenna, the entire satellite eigenvalue mobility is calculated, which indicatesquantitively that the controllability has been greatly improved.
     In accordance with engineering implementation constraints, an attitude controlsystem using scheme of pre-compensation and coupling-reduction is designed. The antenna angular position measurement relative to the satellite platform is the outer loopfeedback signal, and the inner loop employs the angular velocity of the antenna withrespect to inertial space. This constitutes a dual loop control system. Low bandwidthouter loop is to isolate antenna vibration, and high bandwidth inner loop to suppressfriction torque. Analysis of entire satellite demonstrates that the control system has agreat coupling-reduction performance.
     The control performance of coupling-reduction and coupling control system iscompared. The simulation datum show that the coupling-reduction control methodcould meet the system pointing accuracy and stability requirements. Furtherly, by usingdynamics model under condition of the centroid position uncertainty and addingcorresponding nonlinear elements, a more real model is established, to validate theeffectiveness of coupling-reduction control system under the influence of uncertainfactors. The robustness of the control system is verified with parameters perturbation inwide range in the model.
     In conclusion, this work carrys out the reserch on coupling-reduction control tosatellites with large deployable antenna, a new concept of control to reduce dynamicscoupling is proposed, and the new control system of coupling-reduction with satisfatoryperformance is designed. The putout theories in this dissertation are of theoreticalsignificance for some flexible satellite attitude control, and the designed control systemhas certain practical referential value for national satellite with large deployable antennain engineering.
引文
[1]屠善澄.卫星姿态动力学与控制[M].北京:中国宇航出版社,2001:1,15-19,457.
    [2] Spangelo S C, Gilbert E G. Power Optimization of Solar-Powered Aircraft withSpecified Closed Ground Tracks[J]. Journal of Aircraft,201,50(1):232-238.
    [3] Fang H F, Knarr K, Quijano U, et al. In-space Deployable Reflect Array Antenna:Current and Future[C].49th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference, Schaumburg, IL,2008. AIAA2008-2209.
    [4] Tsuchiya K. Dynamics of a Spacecraft during Extension of Flexible Appendages[J]. Journal of Guidance and Control,1983,6(2):100-103.
    [5] Shi H, Yang B, Thomson M, et al. Coupled Elastic-Thermal Dynamics ofDeployable Mesh Reflectors[C].52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference, Denver, Colorado,2011. AIAA2011-2001.
    [6] Hyland D C,Junkins J L,Longman R W. Active Control Technology for LargeSpace Structures[J]. Journal of Guidance, Control, And Dynamics,1993,16(5):801-821.
    [7]马兴瑞,王本利,苟兴宇.航天器动力学——若干问题进展及应用[M].北京:科学出版社,2001:15-100.
    [8]王钦.航天器姿态和挠性附件动力学分析与仿真验证研究[D].长沙:国防科学技术大学,2011:2-4.
    [9]陈务军,关富玲,董石麟,等.空间可展开桁架结构展开过程分析的理论与方法[J].浙江大学学报(工学版),2000,34(4):382-387.
    [10]曲广吉.航天器动力学工程.北京:中国科学技术出版社,2000:11-98.
    [11]缪炳祺,曲广吉,程道生.挠性卫星的动力学建模问题[J].中国空间科学技术,1999(5):35-40.
    [12] Likins P W, Wirsching P H. Use of Synthetic Modes in Hybrid CoordinateDynamic Analysis[J]. AIAA Journal,1968,6(10):1867-1872.
    [13] Likins P W. Dynamics and Control of Flexible Space Vehicles[R]. California:JetPropulsion Laboratory,1970. R32-1329.
    [14] Likins P W. Finite Element Appendage Equations for Hybrid Coordinate DynamicsAnalysis. International[J]. Journal of Solids and Structures,1972,8:709-731.
    [15] Hughes P C. Recent Advances in the Attitude Dynamics of Spacecraft withFlexible Solar Arrays[J]. Canadian Aeronautics and Space Journal,1973,19(4):165-171.
    [16] Modi V J. Attitude Dynamics of Satellites with Flexible Appendages-A BriefReview[J]. Journal of Spacecraft,1974,11(11):743-751.
    [17] Nurre G S, Ryan R S. Dynamics and Control of Large Space Structures[J]. Journalof Guidance, Control and Dynamics,1984,7(5):514-526.
    [18] Modi V J. An Approach to System Modes and Dynamics of the Evolving SpaceStation Freedom[J]. Acta Astronautica,1991,25(8-9):473-485.
    [19] Meirovitch L. Stemple T. Hybrid Equations of Motion for Flexible MultibodySystems using Quasi-coordinates[J]. Journal of Guidance, Control, and Dynamics,1995,18(4):678-688.
    [20] Kelkar A G. Mathematical Modeling of a Class of Multibody Flexible SpaceStructures[R]. NASA technical memorandum,1995:109-166.
    [21] Arun K B. Multibody Dynamics of Systems with Flexible Components[C].Proceeding International Symposium Advances in Aerospace Sciences&Engineering,1992:53-65.
    [22] Granda J J, Nguyen L, Hundal S S. Modeling the Completed Space Station a ThreeDimensional Rigid-flexible Dynamic Model to Predict Modes of Vibration andStress Analysis[C]. Infotech@Aerospace, Louis, Missouri,2011. AIAA2011-1535.
    [23] Yue B Z. Study on the Chaotic Dynamics in Attitude Maneuver of Liquid-FilledFlexible satellite[J]. AIAA Journal,2011,49(10):2090-2099.
    [24] Shi H, Yang B. A Nonlinear Dynamic Model and Free Vibration Analysis ofDeployable Mesh Reflectors[C].52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference, Denver, Colorado,2011. AIAA2011-1999.
    [25] Lafleur J M, Connolly J F. Integrating Flexibility into Human Space ExplorationArchitecture Design Decisions[C]. AIAA Space2012Conference&Exposition,Pasadena, California,2012. AIAA2012-5110.
    [26]刘暾,杨大明.挠性卫星动力学及姿态控制模型的建立[J].哈尔滨工业大学学报,1985,(A8):1-17.
    [27]刘暾,杨大明.带挠性附件卫星的模型化及截断[J].宇航学报,1989,(4):87-95.
    [28]刘暾,常亚武,杨大明.挠性空间飞行器的振动抑止控制[J].航天控制,1992,2:25-51.
    [29]黄文虎,王心清,张景绘,等.航天挠性结构振动控制的若干新进展[J].力学进展,1997,27(1):5-18.
    [30]刘延柱.带弹性附件n体自旋卫星的姿态稳定性[J].上海交通大学学报,1981,(1):121-129.
    [31]忻鼎亮,刘延柱.带挠性杆自旋卫星的姿态稳定性[J].上海交通大学学报,1982,(4):13-23.
    [32]洪嘉振,蒋丽忠.挠性多体系统刚-柔耦合动力学[J].力学进展,2000,30(1):15-20.
    [33]周军,陈新海.大型挠性空间结构的极点配置变结构主动控制[J].宇航学报,1991,(4):58-63.
    [34]覃正著.多体系统动力学压缩建模[M].北京:科学出版社,2000.
    [35]李东旭.挠性卫星结构动力学[M].北京:科学出版社,2010.
    [36]周志成,曲广吉.星载大型网状天线非线性结构系统有限元分析[J].航天器工程,2008,17(6):33-38.
    [37]曹丽,周志成,曲广吉.星载大型天线展开过程挠性耦合动力学综合建模研究[C].全国机构振动与动力学学术研讨会.苏州,中国,2011:300-310.
    [38]王毅,吴德隆.航天挠性多体动力学及其发展[J].导弹与航天运载技术,1995(7):7-18.
    [39] Thomson W T. Theory of Vibration with Application[M]. Beijing:QingHuaUniversity Publish,2005.
    [40] Barboni R, Gaudenzi P, ManniniJ A. Parameter-Transfer Finite Element Methodfor Structural Analysis[J]. AIAA Journal,1993,31(5):923-929.
    [41] Stephens V M. A2100Commercial Satellites Integrated Mechanical Analysis[C].MSC Aerospace user conference, Newport beach, California:1997:1-14.
    [42] Sakamoto H, Miyazaki Y, Mori O. Transient Dynamic Analysis of Gossamer-Appendage Deployment Using Nonlinear Finite Element Method[J]. Journal ofSpacecraft and Rockets,2011,48(5):881-890.
    [43] Mackerle J. Smart Materials and Structures-a Finite-Element Approach: aBibliography (1986–1997)[J]. Modelling and Simulation in Materials Science andEngineering,1998,6(3):293-334.
    [44] Gabbert U, Koeppe F, Seeger F. Overall Design of Actively Controlled SmartStructures by the Finite Element Method[J]. Signal Proceeding, and Control inSmart Structures, Proceeding of SPIE Modeling,2001,43(26):113-121.
    [45] Hu P, Ni K, Xue L P, et al. Reduced Order Model Based Simulation ofAeroelastic(AE)/Aeroservoelastic (ASE) Dynamics Using ASTE-P Toolset[C].49th AIAA Aerospace Sciences Meeting including the New Horizons Forum andAerospace Exposition, Orlando, Florida,2011. AIAA2011-1227.
    [46] Kane T R, Ryan R R, Banerjee A K. Dynamics of a Cantilever Beam Attached to aMoving Base[J]. Journal of Guidance, Control and Dynamics,1987,10(2):139-151.
    [47] Zhao Z J, Ren G X. Multibody Dynamic Approach of Flight Dynamics andNonlinear Aeroelasticity of Flexible Aircraft[J]. AIAA Journal,2011,49(1),41-54.
    [48] Charmbalis G, Londono J, Cooper J E. Vibration Testing of Aeroelastic StructuresContaining Geometric Stiffness Nonlinearities[C].54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston,Assachusetts,2013. AIAA2013-1561.
    [49]杨正贤,孔宪仁,廖俊,等.大范围运动刚柔耦合系统动力学建模与仿真[J].航天环境工程.2011,28(2):141-146.
    [50]吴胜宝,章定国.大范围运动刚体-挠性梁刚柔耦合动力学分析[J].振动工程学报,2011,24(1):1-7.
    [51]白圣建.挠性航大器的刚柔耦合动力学建模与姿态控制[D].长沙:国防科技大学,2011:5-6,17-44.
    [52]娄振,王三民,郭家舜.可展天线臂与卫星间耦合振动特性研究[J].机械科学与技术,2009,28(9):1208-1212.
    [53]陈伟娜.挠性多体耦合时变系统频率与模态的摄动分析.长沙:中南大学,2009:8-54.
    [54]陆毓颖,刘铸永,洪嘉振.挠性卫星系统动力学耦合特性研究[J].空间科学学报,2012,32(4):550-554.
    [55] Gale A H, Likins P W. Influence of Flexible Appendages on Dual-Spin SpacecraftDynamics and Control[J]. Journal of Spacecraft and Rockets,1970,7(9):1049-1056.
    [56] Bruno R J. Identification of Nonlinear Joints in a Truss Structure[C]. AIAA ASMEAdaptive Structures Forum, Hilton Head, USA,1994:402-410.
    [57]杨大明.空间飞行器姿态控制系统[M].哈尔滨:哈尔滨工业大学出版社,2000:1-5
    [58] Likins P W. Attitude Stability Criteria for Dual Spin Spacecraft. Journal ofSpacecraft and Rockets[J].1967,4(4):1638-1643.
    [59] Likins P W, Fleischer G E. Results of Flexible satellite Attitude Control StudiesUtilizing Hybrid Coordinates[J]. Journal of Spacecraft and Rockets,1971,8(3):264-273.
    [60] Meirovitch L, Calico R A. A Comparative Study of Stability Methods for FlexibleSatellites[J]. AIAA Journal,1973,11(1):91-98.
    [61] Hughes P C. Attitude Dynamics of a Three-Axis Stabilized Satellite with a LargeFlexible Solar Array[J]. Journal of the Astronautical Sciences,1972,10(3):166-189.
    [62] Mak P H, Tong M M, Jenkin A B. Dynamics and Control analysis of a Satellitewith a Large Flexible Spinning Antenna[R].1987:935-951. AAS87-482.
    [63] Yamashitaa T, Ogurab N. Improved Satellite Attitude Control Using a DisturbanceCompensator[J]. Acta Astronautica.2004,55(1):1375-1383.
    [64] Balas M J. Active Control of Flexible Systems. Journal of Optimization Theory andApplication[J],1978,25(3):415-436.
    [65] Yossi C, Clark J R. Control of Flexible Structure with Spillover using anAugmented Observer[J]. Journal of Guidance, Control, and Dynamics,1989,12(2):155-161.
    [66] Scrivener S, Thompson S. Survey of Time-optimal Attitude Maneuvers[J]. Journalof Guidance, Control, and Dynamics,1994,17(2):225-233.
    [67] Ballois S L, Duc G. H∞Control of an Earth Observation Satellite[J]. Journal ofGuidance, Controls, and Dynamics,1996,19(3):628-635.
    [68] Rotunno M, Basso M, Pome A B, et al. A Comparison of Robust Attitude ControlTechniques for a Solar Sail Spacecraft[C]. AIAA Guidance, Navigation, andControl Conference and Exhibit, San Francisco, California,2005. AIAA2005-6083.
    [69] Liu H, Zhang Y M, Yang Z H. Mixed H2/H∞Output Feedback Attitude Control forFlexible satellite[J]. Journal of Astronautic,2012,33(9):1255-1261.
    [70]毛剑琴,庆忠,张杰,等.结构振动控制的新进展[J].控制理论与应用,2001,18(5):643-649.
    [71] Bradford S C, Agnes G S, Ohara C M. Controlling Wavefront in LightweightActive Reflector Systems using Piezocomposite Actuator Arrays[C].54thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and MaterialsConference, Boston, Massachusetts,2013. AIAA2013-1525.
    [72] Zhang Y, Zhang J R, Zhai G. High imaging performance of optical payload byvibration isolation system[C]. AIAA Guidance, Navigation, and ControlConference, Minneapolis, Minnesota,2012. AIAA2012-5004.
    [73] Xing Z G, Zheng G T, Liu L K, et al. Pointing Control Design Synthesis andIntegrated Design with Structure for a Flexible Space Antenna Using Beacon[C].AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota,2012. AIAA2012-4846.
    [74] Orszulik R R, Shan J J. Vibration Control Using Input Shaping and AdaptivePositive Position Feedback[J]. Journal of Guidance, Control, and Dynamics,2011,34(4):1031-1044.
    [75]苗双全,丛炳龙,刘向东.基于输入成形的挠性卫星自适应滑模控制[J].航空学报,2013,34:1-9.
    [76]李小凤,郭雷,张玉民.基于有模型振动干扰观测器的挠性卫星复合控制方法
    [C].中国宇航学会深空探测技术专业委员会第九届学术年会论文集,2013:515-520.
    [77]王永,姚太克,陈光.密集模态挠性结构振动的自适应逆控制[J].振动与冲击,2011,30(10):73-77,97.
    [78] Markley F L, Bauer F H, Deily J J, et al. Attitude Control System Conceptual forGeostationary Operational Environment Satellite Spacecraft Series[J]. Journal ofGuidance, Control and Dynamic,1995,18(2):20-35.
    [79]程绪铎.带挠性轴太阳帆板与航天器中心刚体耦合动力学研究[J].吉林大学学报(理学版),2003,41(3):342-346.
    [80]刘锦阳,洪嘉振.卫星太阳电池阵的刚-柔耦合动力学[J].空间科学学报,2004,24(5):367-372.
    [81]王钦,何星星,文援兰.带挠性附件的航天器结构-姿态耦合动力学[J].上海航天,2011,2:12-16.
    [82]邹凡.大变形刚-柔耦合系统的动力学仿真和实验研究[D].上海:上海交通大学.2010:14-55.
    [83] Eising R. Between Controllable and Uncontrollable[J]. System and Control Letters,1984,4(5):263-264.
    [84] Vaz A F, Davison E J. A Measure for decentralized assignability of eigenvalues[J].System and Control Letters,1988,10(3):191-199.
    [85] Vaz A F, Davison E J. On the Quantitative Characterization of ApproximateDecentralized Fixed Modes Using Transmission zeros. Mathematics of Control,Signal and Systems,1989,2(3):287-302.
    [86] Hughes P C. Skelton R E. Controllability and Observability for Flexible satellite[J].Journal of Guidance and Control.1980,3(5):452-459.
    [87] Roh H S, Park Y J. Actuator and Exciter Placement for Flexible Structures[J].Journal of Guidane, Control and Dynamics,1991,20(5):850-856.
    [88] Viswanathan C N, Longman R W, Likins P W. A Degree of ControllabilityDefinition: Fundamental Concepts and Application to Modal Systems[J]. Journalof Guidance, Control and Dynamics,1984,7(2):222-230.
    [89] Schmitendorf W E. An Exact Expression for Computing the Degree ofControllability[J]. Journal of Guidane, Control and Dynamics,1984,7(4):502-504.
    [90] Williams T. Degree of Controllability for Close Modes of Flexible Spacestructures[C]. Proceedings of the30th Conference on Decision and Control,Brighton, England,1991:1627-1628.
    [91] Williams T, Cheng X. Degrees of Controllability and Observability for CloseModes of Flexible Space Structures[J]. IEEE Transctions on Automatic Control,1999,44(9):1791-1795.
    [92] Tibert G. Deployable Tensegrity Structures for Space Applications[D]. Sweden:Royal Institute of Technology,2002.
    [93] Hedgepeth J M. Pactruss Support Structure for Precision Segmented Reflectors[R].NASA Contractor report, NASA-CR-181747,1989.
    [94] Escrig F, Valearcel J P. Geometry of Expandable Space Structures.[J]. InternationalJournal of Space Structures,1993,8(1/2):71-84.
    [95] Gantes C, Conner J J, Logcher R D. A Systematic Design Methodology forDeployable Struetures[J]. International Journal of Space Structures,1994,9(2):67-86.
    [96]王景泉.通信卫星天线技术的新发展[J].中国航天.1996,5:16-19.
    [97] Ahmad G, Mohsin S A. High Frequency Techniques for Reflector AntennaAnalysis[C]. Proceeding of3rd IEEE-ICEE2009, Lahore, Pakistan,2009:1-6.
    [98] Ahmad G. Comparative Optical Analysis of Offset Reflector Antenna in GRASP[C].Proceedings of World Academy of Science, Engineering and Technology, Paris,France,2008:34-37.
    [99]侯国勇.桁架式展开结构设计、分析及试验[D].杭州:浙江大学.2008:1-20.
    [100]Ando K, Mistsugi J, Senbokuya Y. Analyses of Cable Membrane StructureCombined with Deployable Truss. Computers&Structures,2000,74(1):21-39.
    [101]Murphey T W. Historical Perspectives on the Development of DeployableReflectors[C].50th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference. Palm Springs, California,2009:4-7.
    [102]刘明治,高桂芳.空间可展开天线结构研究进展[J].宇航学报,2003,24(1):82-87.
    [103]Yonezawa K, Homma M. Attitude Control on ETS-VIII Mobile CommunicationSatellite with Large Deployable Antenna[C].21st International CommunicationsSatellite Systems Conference and Exhibit,2003. AIAA2003-2216.
    [104]Wang S J, Cameron J M. Dynamics and Control of a Large Space Antenna[J].Journal of Guidance,1984,7(1):69-76.
    [105]Agrawal B N, Gran R. Aittitude Control of Flexible Commucations Satellites[J].AIAA91-2651-CP:478-487.
    [106] Nurre G S, Ryan R S, Scofield H N, et al. Dynamics and Control of Large SpaceStructures[J]. Journal of Guidance,1984,7(5):514-526.
    [107]Charbonnel C. H∞Controller Design and μ-Analysis: Powerful Tools for FlexibleSatellite Attitude Control[C]. AIAA Guidance, Navigation, and ControlConference, Toronto, Ontario Canada,2010. AIAA2010-7907.
    [108]Nakamura T, Bando N, Sakai S, et al. Vibration Suppression Effect ofTranslational Motion Control for Asymmetric Flexible Satellite[C]. The11th IEEEInternational Workshop on Advanced Motion Control, Nagaoka, Japan,2010:667-672.
    [109]Skelton R E, Likins P W. Orthogonal Filters for Modal Error Compensation in theControl of Norigid Spacecraft[J]. Journal of Guidance and Control,1978,1(1):41-49.
    [110]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,1998:137-313.
    [111]仝茂达.线性系统理论和设计[M].第2版.合肥:中国科学技术大学出版社,2012:200-260.
    [112]Marin G D, Bryson A E. Attitude Control of a Flexible satellite[J]. Journal ofGuidance and Control,1980,3(1):37-41.
    [113]Marco P, Stefano D, Mirco Z. Accuracy Analysis of a Pointing Mechanism forCommunication Applications[J]. IEEE Transactions on Instrumentation andMeasurement,2009,5(10):3499-3509.
    [114]Week O D, Hollister W. Challenges and Solutions for Low-area-dencity(LAD)Spacecraft Components Application to Ultra-thin Solar Panel Technology[C].Defense&Civil Space Programs Conference and Exhibit, Braun Center,Huntsville,1998. AIAA98-5142.
    [115]Ferri A A, Heckt B S. Analytical Investigation of Damping Enhancement UsingActive and Passive Structural Joints[J]. Journal of Guidance, Control, andDynamics,1992,15(5):1258-1264.
    [116]王广雄.控制系统设计[M].北京:宇航出版社,1991:240-241,140-207.
    [117]周奇慧,李建好,许兴斗.双通道旋转变压器粗、精机零位偏差设计[J].微特电机,2011,(5):79-80.
    [118]徐殿国,王宗培,王雅云.旋转变压器轴角数字转换系统的误差分析[J].仪器仪表学报,1993,14(3):231-237.
    [119]Hanselman D C. Resolver Signal Requirements for High Accuracy Resolver-to-Digital Conversion[J]. IEEE Transactions on Industrial Eleectroncs.1990,31(6):486-493.
    [120]刘丽丽.音圈电机位置伺服控制系统的研究[D].哈尔滨:哈尔滨工业大学,2010:17-21.
    [121]黄文虎,邵成勋.多柔体系统动力学[M].北京:科学出版社,1996:74-100.
    [122]徐小胜,于登云,曲广吉.用于惯性完备性降阶的模态恒等式研究[J].航天器工程,2003,12(2):23-34
    [123]游斌弟.星载天线动态指向精度动力学分析与控制[D].哈尔滨:哈尔滨工业大学,2011:19-41.
    [124]Hughes P C. Modal Identities for Elastic Bodies, with Application to VehicleDynamics and Control[J]. Journal of Applied Mechanics.1980,47:177-184.
    [125]李俊峰,张雄,任革学,等.理论力学[M].北京:清华大学出版社,2006:204-205,272-279.
    [126]周成刚.大挠性空间桁架的结构阻尼振动控制技术研究[D].长沙:国防科学技术大学,2008:1-33.
    [127]葛升民.挠性结构控制问题研究[D].哈尔滨:哈尔滨工业大学.1991:1-41.
    [128]刘暾,赵钧.空间飞行器动力学[M]..哈尔滨:哈尔滨工业大学出版社,2003:261-264.
    [129]Tarokh M. Measures For Controllability and Eigenvalue Mobility[C]. Proceedingof the29th Conference on Decision and Control. Honolulu, Hawaii December,1990:1143-1148.
    [130]李曦雯.广义分散控制系统的分散可配置测度和特征值迁移性[D].天津:天津大学,2004:37-56.
    [131]章仁为.静止卫星的轨道和姿态控制[M].北京:科学出版社,1987:112-117.
    [132]张剑.含摩擦伺服系统的建模与控制研究[D].合肥:中国科学技术大学,2011:1-9.
    [133]程颢.飞轮控制系统研究与设计[D].哈尔滨:哈尔滨工业大学,2009:26-30.
    [134]邹玉定.三轴稳定地球卫星外形、结构布局的力学设计[J].中国空间科学技术,1982,5:35-42.
    [135]阎绍泽.航天器中含间隙机构非线性动力学问题及其研究进展[J].动力学与控制学报.2004,2(2):48-52.
    [136]张惠峰.空间可展天线精度测量、热分析、可靠性分析及间隙影响研究[D].杭州:浙江大学,2010:80-105.
    [137]刘维明.间隙对天线结构系统固有频率的影响[J].无线电工程,1998,28(4):1-9.
    [138]杨玉龙,关富玲.可展析架天线形面精度理论分析[J].空间科学学报,2009,29(5):529-533.
    [139]郑军,陈宏,李于衡. GEO卫星能源分系统状态切换时间精确预报算法[J].上海航天,2011,5:30-33
    [140]徐福祥.卫星工程概论[M].北京:中国宇航出版社,2002:720-800.
    [141]Thornton E A, Kim Y K. Thermally Induced Bending Vibrations of a FlexibleRolled-Up Solar Array[J]. Journal of Spacecraft and Rockets,1993,30(4):438~448.
    [142]Murogona M, Thornton E A. Buckling and Quasistatic Thermal-StructuralResponse of Asymmetric Rolled-Up Solar Array. Journal of Spacecraft andRockets,1998,35(2):147-155.
    [143]Hunt J W, Ray J C. Fine Pointing Performance of the STEREO Observatories[C].AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii,2008. AIAA2008-6264.
    [144]Reijneveld J, Chooukroun D. Attitude Control of the Delfi-n3Xt Satellite[C].AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota,2012. AIAA2012-5043.
    [145]Three-Axis Attitude Control of a Satellite in Zero Momentum Mode Using a TitledWheel Methodology[C]. AIAA Guidance, Navigation, and Control Conference,Minneapolis, Minnesota,2012. AIAA2012-4752.
    [146]Nobari N A, Misra A K. Attitude Dynamics and Control of Satellites with FluidRing Actuators, Journal of Guidance, Controal and Dynamics.2012,35(6):1855-1864.
    [147]徐福祥“.风云一号”B卫星姿态控制系统[J].中国空间科学技术,1997,3:2-8.
    [148]谢任远,吴德安.基于RBF网络辨识的挠性卫星姿态自适应控制[J].上海航天.2009,(2):40-44.
    [149]李友善.自动控制原理[M].第2版.北京:国防工业出版社,1989:72-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700