采用空时分层结构的MIMO系统信号检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线多输入多输出(MIMO)技术可以显著提高系统容量,是下一代移动通信系统的关键传输技术。多输入多输出技术充分开发空间资源,利用多个天线实现多发多收,在不需要增加频谱资源和天线发送功率的情况下,可以成倍地提高信道容量。典型的空间复用技术是贝尔实验室的空时分层结构。本文对独立平坦衰落与频率选择性衰落信道环境中的MIMO信号检测技术进行了研究,在不降低频谱效率的前提下,力图通过提高检测算法性能改善系统的误比特性能,并降低信号检测的计算复杂度。研究着眼于采用空时分层结构的MIMO系统检测技术中若干关键技术,包括GOLDEN检测技术、均方根迭代检测技术、按序QR分解检测技术、自适应最小二乘按序判决反馈检测技术做了详细的研究,主要研究内容如下:
     针对常规V-BLAST检测算法在MIMO系统接收端进行检测时,需要进行大量伪逆运算导致检测复杂度增加的问题,提出了一种基于迭代QR分解的MMSE V-BLAST算法,把对信道矩阵求伪逆的过程转化为利用迭代QR分解近似逼近的过程,从而避免了伪逆运算,有效的降低了检测算法的复杂度。并且由于避免了伪逆运算而无需满足信道矩阵的行数必须大于或等于列数的要求,因而对于发射和接收端无需满足发射天线数必须小于或等于接收天线数的要求,扩展了系统的一般适应性。
     考虑到传统的均方根检测算法计算复杂度高。提出快速均方根V-BLAST检测算法,所提算法利用矩阵酉变换的性质,仅对信道矩阵进行一次排序,并且无需迫零向量,该算法在系统检测性能总体保持一致的情况下,计算复杂度下降,对于响应要求及时的系统有很好的适应性。
     用于多输入多输出通信系统检测的按序QR分解算法在多径瑞利慢衰落信道中系统复杂度低,但误码率较高。提出一种基于列正交变换的串行干扰消除算法,该算法对信道矩阵按列正交变换,避免了求上三角矩阵的运算,并且在判决信号过程中,将先判决出的信号通过信道后的输出向量作为干扰进行消除,从而避免了已判决信号对未判决信号的影响。
     在基于列正交变换的串行干扰消除算法基础上,借鉴并行处理的思想,提出并行QR分解检测算法,并对其检测性能进行了分析。所提算法首先对信道矩阵按列正交变换,并且利用矩阵酉变换的性质仅对信道矩阵进行一次排序,在判决信号过程中,采用部分判决信号反馈和接收信号干扰消除并行处理的检测算法。在低信噪比的情况下,由于避免了功率强度大的信号对其余信号产生干扰,所以此算法适用于信道条件恶劣的情况下。
     理论证明,利用修正的Gram Schmidt正交化方法对矩阵进行正交化的计算量大,而基于Householder变换的正交化方法的计算量大约为其2/3。因此,在MIMO系统检测时,考虑采用基于Householder变换的串行干扰消除算法。所提算法对信道矩阵进行Householder变换并且利用矩阵酉变换的性质仅对信道矩阵进行一次排序,在判决信号过程中,将先判决出的信号通过信道后的输出向量作为干扰进行消除,因而计算量降低。
     提出一种在MIMO频率选择性无线环境中得到高数据传输率的接收机结构。基于RLS按序串行干扰消除的MIMO判决反馈算法在应用迭代最小二乘算法得到的前馈数据向量中按序将已检测并判决出的信号进行消除,并将前馈数据向量合并到反馈数据向量中,避免了已判决出的信号对前馈数据向量的干扰,利用矩阵求逆公式,重新定义迭代过程中权重向量。使迭代过程均方根误差降低,检测性能提升。
     在基于RLS按序串行干扰消除的MIMO判决反馈算法的基础上,借鉴并行处理的思想提出了基于RLS并行干扰消除的MIMO判决反馈算法。所提算法在应用迭代最小二乘算法得到的前馈数据向量中运用并行干扰消除的方法将已检测并判决出的信号进行消除,并将前馈数据向量合并到反馈数据向量中。所提算法无需对信道矩进行排序,因而计算量降低;在低信噪比的情况下,由于避免了功率强度大的信号对其余信号产生干扰,所以此算法适用与信道条件恶劣的情况下。
     传统的最小二乘恒模算法(LSCMA)误差曲线不具对称性,是导致LSCMA算法收敛速度慢、收敛后均方误差大的主要原因。为此将LSCMA算法进行了改进,将其误差曲线定义为对数正态误差曲线,并在次基础上加入了判决条件。将运用改进的对数正态误差恒模算法得到的前馈数据向量合并到反馈数据向量中,并按序将已检测并判决出的信号进行消除,避免了已判决出的信号对接收数据向量的干扰。由于LSCMA算法利用了信号的恒模性质,因而比传统的RLS算法复杂度低,适用于快衰落信道。
Wireless multiple-input multiple-output (MIMO) antenna systems offer significant improvements in performance and capacity when used in wireless communications and have received much attention recently. The MIMO exploits the space resource to improve the channel capacity effectively without additional frequency spectrum and transmission power. A typical MIMO multiplexing technique is Bell laboratories layered space-time (BLAST) architecture. This dissertation makes researches on signal detection techniques for MIMO systems over independent flat fading channels and frequency-selective fading channels aiming at improving the performance of detecting algorithm, ameliorating the Bit Error Rate (BER) performance, and decreasing the computational complexity, without loss in spectrum efficiency. The study focused on some key signal detection technologies of MIMO system with space-time layered structure, such as GOLDEN detection technique, sorted QR decomposition detection technique, adaptive RLS ordered decision feedback equalization detection technique. The thesis work can be summarized as follows.
     An improved MMSE V-BLAST algorithm based on iterative QR decomposition is proposed to overcome the shortcoming of increasing system detection complexity caused by a lot of pseudo-inverses operations when detecting using MMSE detection algorithm in MIMO system receiver. The complexity is reduced and the performance is improved. The MMSE V-BLAST algorithm extended the system's adaptability, because of avoiding the pseudo-inverse operations and the system needn't satisfy the requirements that the number of transmitted antennas must less then that of received antennas.
     A fast square-root detection algorithm for V-BLAST was proposed. The algorithm aimed at the question of high complexity when traditional square-root detection algorithm detecting in MIMO receivers. It simplified the computing process of traditional square-root detection algorithm and proposed a parallel processing algorithm of judged signal's feedback and received signal's interference cancellation. The detection complexity of the algorithm was reduced, while the detection performances retain. It has good adaptability for the system with response in time.
     In view of the fact that the sorted QR decomposition (SQRD) algorithm for multiple input multiple output (MIMO) communication detection has a higher bit error rate when working in multi-path Rayleigh slow fading channels, the paper proposes a serial interference cancellation (SIC) algorithm for MIMO detection based on column orthogonal (CO) transform named COSIC. The COSIC algorithm transforms the channel matrix column orthogonally to avoid solving the upper triangular matrix. In the processing of judging signals, it takes the output of the judged signals which are transmitted by the channel matrix as interference to cancel and the detection performance is improved distinctly on the basis of increasing system time complexity a little.
     Theory proving, the complexity of the modified Gram-Schmidt method to decompose the channel matrix is high. The complexity of Householder transformation is as 2/3 times as it compared to the modified Gram-Schmidt method. An improved parallel detection algorithm based on Householder transform (HIP) is proposed. The HIP algorithm transforms the channel matrix column orthogonally based on Householder transform to avoid the operation of upper triangular matrix and sorted the channel matrix only once. In the processing of judging signals, it proposes a parallel processing algorithm of judged signals' feedback and received signals' interference cancellation and the complexity is reduced distinctly.
     We present a new receiver structure able to deliver high data rates in a multi-input-multi-output (MIMO) frequency selective wireless environment. The ordered successive interference cancellation MIMO decision feedback equalization based on recursive least square algorithm (RLS-OSIC-DFE) is obtained by canceling decided symbols from the received symbols successively with the decision feed-forward equalizer solution as a well known expression encountered in fast recursive least squares adaptive algorithms, and the decision feedback equalizer as a convolution of the decision feed-forward equalizer with the channel. The RLS-OSIC-DFE algorithm avoids the the interference of the decided symbols and improves the detection performance and the detection performance of proposed algorithm is improved dramatically.
     On the basis of the RLS-OSIC-DFE, We present a parallel interference cancellation MIMO decision feedback equalization based on recursive least square algorithm (RLS-PIC-DFE) by using the parallel processing. It is obtained by canceling decided symbols from the received symbols parallelly with the decision feed-forward equalizer solution as a well known expression encountered in fast recursive least squares adaptive algorithms, and the decision feedback equalizer as a convolution of the decision feed-forward equalizer with the channel. The RLS-PIC-DFE algorithm avoided sorting the channel matrix and reduced the complexity. While with low SNR, it avoided the interference caused by the signal of high power. It is suitable for the bad channel condition.
     The error curves of LSCMA have no symmetry and it is the main cause of slow convergence and large mean square error. Then we proposed the LSCMA and defined the error curves as a novel lognormal error function and added a decision condition. It is obtained by canceling decided symbols from the received symbols successively with the decision feed-forward equalizer solution as a well known expression encountered in improved log-normal error function based on CMA (ILNCMA-OSIC-DFE) adaptive algorithms. The decision feedback equalizer replaces a convolution of the decision feed-forward equalizer with the channel. The ILNCMA-OSIC-DFE algorithm avoids the interference of the decided symbols and improves the detection performance. Because the LSCMA used the constant modulus property, it is suitable for fast fading channel.
引文
1. Wolniansky P W, Foschini G J, Golden G D, and et al. V-BLAST:An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel [A]. IEEE ISSSE 1998 [C], Pisa, Italy,1998:295-300.
    2. Rappaport T S.无线通信原理及应用,蔡涛等译[M],北京:电子工业出版社,1999,50-142
    3. Proakis J G. Digital Communications [M], New York:Me Graw-Hill,1999.
    4. Telatar I E. Capacity of multi-antenna Gaussian channels [J]. Tech. Rep., AT&T Bell Labs., 1995.
    5. Foschini G J, Gans M J. On limits of wireless communication in a fading environment when using multiple antennas [J]. Wireless Personal Communications,1998,6(3): 311-335.
    6. Fincke U, Pohst M. Improved methods for calculating vectors of short length in alattice, including a complexity analysis [J]. Applied Mathematics and Computations,1985,44(4): 463-471.
    7. Agrell E, Eriksson T, Vardy A, and et al. Closest point search in lattices [J]. IEEE Transcation on Information Theory,2002,48(8):2201-2214.
    8. Viterbo E, Boutros J. A universal lattice code decoder for fading channels [J]. IEEE Transcation on Information Theory,1999,45(7):1639-1642.
    9. Damen O, Chkeif A, Belfiore J-C. Lattice code decoder for space-timecodes [J]. IEEE Communications Letters.2000,4(5):161-163.
    10. Damen M O, Abed-Meraim K, Lemdani M S. Further results on the sphere decoder [A]. in Proc. IEEE International Symposium on Information Theory, ITST [C]. Washington, USA, 2001:333.
    11.高群毅,肖立民,周世东,许希斌.OFDM系统中一种信道估计频域插值算法闭[J].清华大学学报,2006,46(10):1715-1718.
    12. Abe T, Matsumoto T. Space-time turbo equalization in frequency-selective MIMO channels [J]. IEEE Transactions on Vehicular Technology,2003,52(3):469-475.
    13. Abe T, Tomisato S, Matsumoto T. A MIMO turbo equalizer for frequency-selective channels with unknown interference [J]. IEEE Transactions on Vehicular Technology,2003, 52(3):476-482.
    14. Wang X, Poor H V, Iterative (Turbo) soft interference cancellation and decoding for coded CDMA [J]. IEEE Transactions on Communications,1999,47(7):1046-1061.
    15. Sehlegel C, Grant A. Concatenated space-time coding [A]. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications [C]. California, USA,2001,1: 139-143.
    16.Zhu H D, Boroujeny B F, Schlegel C. Pilot embedding for joint channel estimation and data detection in MIMO communication systems [J]. IEEE Communications Letters,2003, 7(1):30-32.
    17. Foschini G J, Golden G D, Valenzela A. Simplified processing for high spectral efficiency wireless communications emplying multi-element arrays[J]. IEEE Transactions on Selected Areas in Commununications,1999,17(11):1841-1852.
    18. Simon S, Huu T H, Jean-Yves C, Sebastiem R. A space-frequency-time diversity scheme for MIMO-OFDM systems [A]. Canadian Conference on Electrical and Computer Engineering[C]. Saskatoon Inn Saskatoon, Saskatchewan Canada,2005:1375-1379.
    19.江涛.新的低复杂度降低OFDM信号峰均功率比的压缩扩张技术[J].电子学报,2005,33(7):1218-1221.
    20. Antonio P I, Ana I, Miguel A L. On power allocation strategies for maximum signal to noise and interference ratio in an OFDM-MIMO system [J]. IEEE Transactions on Wireless Communication,2004,3(3):808-820.
    21.Medhard M. The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel [J]. IEEE Transactions on Information Theory,2000, 46(3):933-946.
    22. Mukkavilli K, Sabharwal A, Erkip E. On beamforming with finite rate feedback in multiple antenna systems [J]. IEEE Transactions of Information Theory,2003,49(10): 2562-579.
    23. Shengli Z, Georgios B. Giannakis. Optimal transmitter eigen-beamforming and space-time block encoding based on channel mean feedbadk [J]. IEEE Transactions on Signal Procesing,2002,50(10):2599-2614.
    24. Shengli Z, Georgios B. Giannakis. Adaptive modulation for multiantenna transmissions with channel means feedbaek [J]. IEEE Transactions on Wireless Communicaitons,2004, 3(5):1626-1636.
    25. Daniel P, Palomar, Miguel A L, John M C. Optimum linear joint transmit-receive processing for MIMO channels with QoS constraints [J]. IEEE Transactions on Signal Processing,2001,52(5):1179-1198.
    26. Jafar S A, Goldsmith A J. Transmitter optimization and optimality of beamfoming for multiple antenna systems with imperfect feedbaek [J]. IEEE Transactions on Wireless Communication,2004,3(4):1165-1175.
    27. Foschini G J, Gans M J. On limits of wireless communication in fading environment when using multiple antennas [J]. Wireless Personal Communication,1998,6:311-335.
    28.Telatar I E. Capacity of multi-antenna Gaussian channels [J]. European Transactions on Telecommunication,1999,10:585-595.
    29. Gorokhov A, Gore D A, Paulraj A J. Receive antenna selection for MIMO spatial multiplexing:Theory and algorithms [J]. IEEE Transactions on Signal Processing,2003: 51(11):2796-2807.
    30. Molisch A, Win M, Winter J. Capacity of MIMO systems with antenna selection [A]. in Proc. IEEE International Conference Communications [C]. Helsinki, Finland,2001: 570-574.
    31. Gore D, Heath R W. Transmit selection in spatial multiplexing systems [J] IEEE Communication Letters,2002,6(11):491-493.
    32. Gore D, Heath R, Paulraj A. Statistical antenna selection for spatial multiplexing systems [A]. IEEE Int. Conf. on Communications [C],2002,1(28):450-454.
    33.Nabar R, Bolcskei H, Paulraj A. Transmit optimization for spatial multiplexing in the presence of spatial fading correlation [A]. Proc. IEEE Globecom. Conference [C].2001: 131-135.
    34. Heath J R W, Paulraj A J. Antenna selection for spatial multiplexing systems based on minimum error rate [A]. IEEE International Conference on Communications [C],2001,7: 2276-2280.
    35.Gharavi-Alkhansari M, Gershman A B. Fast antenna subset selection in MIMO systems [J]. IEEE Transactions on Signal Processing,2004,52(2):339-347.
    36. Gore D A, Paulraj A J. MIMO antenna subset selection with space-time coding [J]. IEEE Transactions on Signal Processing,2002:2580-2588.
    37. Golub G H, C.F. Van L. Matrix computations [M]. Baltimore:The Johns Hopkins University Press,1996.
    38.Kuo L, Wen M Y. The complex householder transform [J]. IEEE Transactions on Signal Processing,1997,45(9):2374-2376.
    39. Dohler M, Aghvami H. On the approximation of MIMO capacity [J].IEEE Transactions Wireless Communication,2005,4(1):30-34.
    40. Smith P, Shafi M. An approximate capacity distribution for MIMO systems [J]. IEEE Transactions On Communication,2004,52(6):887-890.
    41. Grant A. Rayleigh fading multiple-antenna channels [J]. Sginal Porcessing (Special Issue on Space-Ttme Coding (Part Ⅰ)),2002,2002(3):316-329.
    42. Shin H, Lee J H. Closed-form formulas for egrodic capacity of MIMO Rayleigh fading channels [A]. In Porc. EIEE ICC [C],2003,5:2990-3000.
    43.Tarokh V, Seshadri N, Calderbank A. space-time codes for high data rate wireless communication:performance criterion and code construction [J]. IEEE Transactions on Information Theory,1998,44(2):744-765.
    44. Sharma N, Papadias C B. Improved quasi-orthogonal code constellation rotation [J]. IEEE Transactions on Communication s,2003,51(3):332-335.
    45. Hong Y L, Wei L W. Improved design criterion space-time trellis-codes under block fading channels [A]. International Conference on Communication Technology Proceedings,2003, 2:1111-1113.
    46.BOhnke R, WUbben D, KUhn V. Reduced Complexity MMSE Detection for BLAST Architectures [A]. Global Telecommunications Conference [C]. San Francisco,2003,4: 2258-2262.
    47. Wai W K, Tsui C Y, and Cheng R S. A low complexity architecture of the V-BLAST system [A]. WCNC [C], Chicago, USA,2000:310-314.
    48.Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas [J]. Wireless Personal Communications,1998,6(3):311.
    49. WUbben D, BOhnke R, Rinas J. Efficient algorithm for decoding Layered Space-Time Codes [J]. IEEE Electronic Letters,2001,37(22):1348-1350.
    50.Benjebbour A, Murata H, Yoshida S. Comparison of Ordered Successive Receivers for Space-Time Transmission [A]. IEEE Vehicular Technology Conference [C], Atlantic, USA, 2001,4:2053-2057.
    51.汪晋宽,薛桂芹,刘志刚,等.基于部分信道状态信息的多模式天线选择算法[J].东北大学学报(自然科学版),2006,27(4):386-389.
    52. Biglieri E, Taricco G, Tulino A. Decoding space-time codes with BLAST architectures. IEEE Transactions on Signal Processing,2002,50(10):2547-2552.
    53. Golden G D, Foschini G J, Valenzuela R A. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture [J]. Electronics Leters, 1999,35(1):14-15.
    54. Golub G H and Van Loan C F. Matrix Computations [M]. Baltimore:Johns Hopkins University Press,1996 3rd edition
    55. Hassibi B. An efficient square-root algorithm for BLAST [A]. ICASSP 2000 [C]. Istanbul, Turkey,2000:556-560.
    56. Telatar I E.Capacity of multi-antenna Gaussian channels [J]. European Transaction on Telecommunications.1999,10:585-595.
    57. Zhu H F, Lei Z D, Francois P S. An improved square-root algorithm for BLAST [J]. IEEE Signal Processing 2004,9,11(9):772-775.
    58. Hassibi B, Vikalo H. On the sphere-decoding algorithm I. Expected complexity [J]. IEEE Transaction on Signal Processing,2005,53(8):2806-2818.
    59. Vikalo H, Hassibi B. On the sphere-decoding algorithm II. Generalizations, second-order statistics, and applications to communications [J]. IEEE Transaction on Signal Processing, 2005,53(8):2819-2834.
    60.王赞,汪晋宽,解志斌.一种改进的按序QR分解MIMO检测算法[J].信息与控制, 2008,37(2):150-154.
    61.王赞,汪晋宽,宋昕,解志斌.基于迭代QR分解的MMSE V-BLAST算法[J].东北大学学报,2008,29(1):65-68.
    62. Narasimhan R. Spatial multiplexing with transmit antenna and constellation selection for correlated MIMO fading channels [J]. IEEE Transactions on Signal Processing,2003, 51(11):2829-2838.
    63. Chun Y C, Vaidyanathan P P. MIMO Radar Space-Time Adaptive Processing Using Prolate Spheroidal Wave Functions [J]. IEEE Transactions on Signal Processing,2008, 56(2):623-635.
    64. Wang Y, Wang J K, Xie Z B. Fast Square-Root Detection Algorithm for V-BLAST[C]. Wicom2007, Shanghai,2007,1340-1343.
    65.Borgmann M, Bolcskei H. On the capacity of noncoherenMIMO-OFDM systems [A]. in Proc.IEEE International SymInformation Theory [C]. Adelaide, Australia,2005:651-655.
    66. Jiang, M, Akhtman J, Hanzo L. Iterative Joint Channel Estimation and Multi-User Detection for Multiple-Antenna Aided OFDM Systems [J]. IEEE Transactions on Wireless Communications,2007,6(8):2904-2914.
    67. Hochwald B M, Marzetta T L. Unitary space-time mo multiple-antenna communications in Rayleigh flat fading [J]. IEEE Transactions on Information,2000,46(2):543-564.
    68. Stuber G L. Barry J R. Broadband MIMO-OFDM wireless communications [J]. Proceedings of the IEEE,2004,92(2):271-294.
    69.傅祖芸.信息论——基础理论与应用[M].北京:电子工业出版社,2001.
    70. Jayaweera S K. V-BLAST Based Virtual MIMO for Distributed Wireless Sensor Networks [J]. IEEE Transactions on Communications.2007,55(10):1867-1872.
    71. Yoshimoto A, Hattori T. Area Coverage of a Multi-Link MIMO System with Water Filling Power Allocation Strategy [A]. Vehicular Technology Conference [C]. Maryland, USA, 2007:1137-1141.
    72. Choi S, Ko Y C, Powers E J. Optimization of Switched MIMO Systems Over Rayleigh Fading Channels [J]. IEEE Electronics Letters,2007,56(1):103-114.
    73. Gans M J, Amitay N, Yeh Y S.Outdoor BLAST measurement 2.44G/Hz:calibration and initial results [J]. IEEE Journal of Selected Areas in Communications,2002,20(3): 570-583.
    74. Adjoudani A, Beck E C, Burg A P. Prototype experience BLAST over third-generation wireless system [J]. IEEE Journal of Selected Areas in Communications,2003,21(3): 440-451.
    75. Sellathurai M, Haykin S. T-BLAST for wireless communications:first experimental results [J]. IEEE Transactions on Vehicular Technology,2003,52(3):530-535.
    76. Garrett D C, Davis L M, Woodward G K.19.2 Mbit/s 4×4 BLAST/MIMO detector with soft ML outputs [J]. IEEE Electronics Letters,2003,39(2):233-235.
    77. Wang Y, Wang J K, Xie Z B. Adaptive MIMO Successive Interference Cancellation Decision Feedback Equalization RLS algorithm for V-BLAST[C]. IWSDA2007, Chengdu, 2007,261-265.
    78. Sellathurai M, Haykin S. Turbo-BLAST for wireless communications:theory and experiments [J]. IEEE Transactions on Signal Processing,2002,50(10):2538-2546.
    79. Sellathurai M, Haykin S. Turbo-BLAST:performance evaluation Rayleigh-fading environment [J]. IEEE Journal of Selected Areas in Communications,2003,21(3): 340-349.
    80. Sellathurai M, Foschini G J. Stratified diagonal layered space-time signal processing and information theoretic aspects [J]. IEEE Transactions on Signal Processing,2003,51(11): 2943-2954.
    81. Si Z C, Tong Z, Yan X. Relaxed K-Best MIMO Signal Detector Design and VLSI Implementation [J]. IEEE Transactions on very Large Scale Integration (VLSI) Systems, 2007,15(3):328-337.
    82.Forenza A, McKay M R, Pandharipande A, Heath R W, Collings I B. Adaptive MIMO Transmission for Exploiting the Capacity of Spatially Correlated Channels [J]. IEEE Transactions on Vehicular Technology,2007,56(2):619-630.
    83. Fu Y, Tellambura C, Krzymien W A. Transmitter Precoding for ICI Reduction in Closed-Loop MIMO OFDM Systems [J]. IEEE Transactions on Vehicular Technology, 2007,56(1):115-125.
    84. Peel C B, Swindleburst A L. Capacity-optimal training for space-time modulation over a time-varying channel [A]. in Proc.IEEE International Conference on Communications [C]. Washington, USA:2003,5:3036-3040.
    85. Hassibi B, Hochwald B M. Optimal training in space-time systems [A]. in Proc. Asilornar Conference on Signals, Systems, and Computers, CA, USA:2000,743-747.
    86. Hochwald B M, Marzetta T L, Richardson T J. Systematic desispace-time constellations [J]. IEEE Transactions on Information Theory.2000,46(2):1962-1973.
    87. Shokrollahi A, Hassibi B, Hochwald B M. Representatio theory for high-rate multiple-antenna code design [J]. IEEE Transactions on Information Theory,2001,47(6): 2335-2367.
    88. Hughes B L. Optimal space-time constellation from group [J]. IEEE Transactions on Information Theory,2003,49(2):401-410.
    89. Alamouti S M. A simple transmit diversity technique communications [J]. IEEE Journal of Selected Areas in Communications,1998,16(8):1451-1458.
    90. Tarokh V, Jafarkhani H, Calderbank A R. Space-time block orthogonal designs [J]. IEEE Transactions on Information Theory,1999,45(5):145.
    91. Chen X, Zhou K, Aravena J L. A new family of unitary spacwith a fast parallel sphere decoder algorithm [J]. IEEE Transactions on Information Theory,2006,52(1):115-140.
    92.郭业才,韩迎鸽,饶伟,张艳萍.基于对数正态误差函数的变步长盲均衡新算法[J].系统仿真学报,2007,19(6):1224-1226.
    93.Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit errcoding and decoding: Turbo-codes (1) [A]. in Proceedings of the IEEE Communication Conference [C], Geneva, Switzerland,1993:1064-1074.
    94. Lampe L H J, Schober R. Bit-interleaved coded differential modulation [J]. IEEE Transactions on Communications,2002,50(9):1429-1439.
    95.Bahceci I, Duman T M. Combined turbo coding and unitary modulation [J]. IEEE Transactions on Communications,2002,50(8):1244-1249.
    96.Ungerboeck G. Channel coding with multilevel/phase signals [J]. IEEE Transactions on Information Theory,1982,28(1):56-67.
    97.Viterbi A J, Wolf J K, Zehavi E. A pragmatic approach to modulation [J]. IEEE Transactions on Communications,1989,27(7):11-19.
    98. Zehavi E.8-PSK trellis codes for a Rayleigh channel [J]. IEEE Transactions on Communications,1992,40(5):873-884.
    99. Li T, Letaief K B. Bit-interleaved trellis coded unitary space-time with iterative decoding [A]. in Proceedings IEEE Wireless Commun Networking Conference [C], Florida, USA, 2002:84-88.
    100. Stefanov A, Duman T M. Turbo-coded modulation for systems with receiver antenna diversity over block fading channels:system mod approaches, and practical considerations [J]. IEEE Journal of Selected Areas in Communications,2001,19(5):958-968.
    101. Vanichchanunt P, Sangwongngam P, Nakpeerayuth S.APP dem Turbo coded differential unitary space-time modulation [A]. in International Conference on Communications, [C]. Seoul, Korea,2005:2906-2910.
    102. Sun Q, Cox D C. Training-based channel estimation for continuous flat fading BLAST [A]. IEEE ICC [C], Helsinki, Finland,2002:325-329.
    103. Victor E D, Dayong Z. Hybrid Filtered Error LMS Algorithm:Another Alternative to Filtered-x LMS [J]. IEEE Transactions on Circuits and Systems —I:regular papers,2006, 53(3):653-661.
    104. Tsuyoshi K, Kazuhiko F, Hiroshi S. Adaptive MAP Receiver via the EM Algorithm and Message Passings for MIMO-OFDM Mobile Communications [J]. IEEE journal on Selected Areas in Communications,2006,24(3):437-447.
    105. Stephen L, Kostas P, Subbarayan P. Self-Matching Space-Time Block Codes for Matrix Kalman Estimator-Based ML Detector in MIMO Fading Channels [J]. IEEE Transactions on Vehicular Technology,2007,56(4):2130-2142.
    106. Choi J, Yu H, Lee Y H. Adaptive MIMO Decision Feedback Equalization for Receivers With Time-Varying Channels [J]. IEEE transactions on Signal Processing,2005, 53(11):4295-4303.
    107. Hai T S, Zhi D. Iterative Transceiver Design for MIMO ARQ Retransmissions With Decision Feedback Detection [J]. IEEE Transactions on Ssignal Processing,2007,55(7): 3405-3416.
    108. Shuang Q W, Ali A. Low-Complexity Optimal Estimation of MIMO ISI Channels With Binary Training Sequences [J]. IEEE Signal Processing Letters,2006,13(11): 657-660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700