基于高分辨率遥感的桉树林空间异质性与尺度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国的人工林发展过程中,桉树由于其适应性强、速生、丰产、用途广、适用性强、经济效益高等特点,已经成为了我国引种较为成功、发展较快的人工林速生树种之一。为了满足桉树林的集约化经营需求,我们需要及时、准确了解其资源的数量、质量及其消长动态等信息。遥感技术具有宏观性、周期性和先进快速等特点,使其广泛应用于森林资源调查与监测。其中高分辨率遥感除了获得地物的光谱信息,还能有效获取地物的几何结构和纹理信息,因此它在森林资源的遥感调查与监测中具有独特的优势。
     森林资源具有多尺度的层次结构,它的一个基本特征就是多尺度特征。不同层次的森林资源信息,一般只在特定的尺度下才出现。因此,在提取某一层次的森林资源信息时,需要确定最佳研究尺度,但由于森林类型的复杂性,以及由树龄、生长密度等引起的空间异质性,我们需要确定的不是最佳尺度,而是一个最佳尺度域。由于在砍伐时间上的差异,桉树林的树龄及生长密度存在空间差异,从而导致明显的空间异质性空间异质性是导致空间尺度效应的主要因素之一,森林资源信息特征的空间异质性随空间尺度如何变化?如果考虑空间异质性,能否消除尺度效应,进而提高林业遥感信息提取精度?
     以北部湾典型桉树林分布区为研究对象,尝试利用GeoEye-1高分辨率影像数据来识别和提取桉树林遥感信息。基于GeoEye-1影像的光谱特征和空间纹理特征并采用面向对象分类法来识别和提取桉树林信息,同时结合GeoEye-1影像模拟不同空间分辨率影像数据,通过分类精度来确定桉树林遥感识别的最佳尺度域。基于GeoEye-1影像模拟的不同空间分辨率影像数据,分析和讨论了不同尺度下桉树林遥感信息特征及其空间异质性的的空间尺度效应。结合空间异质性信息,尝试实现桉树林叶面积指数的精确制图。主要研究内容及主要研究结论如下:
     (1)提出了能有效定量描述任意区域大小(包括单个像元)的空间异质性空间异质性指数(SHI),空间异质性指数定义为中心像元分别与八邻域差的绝对值之和,整个图像或局部图像的空间异质性指数为这些区域所有像元的空间异质性指数均值。基于GeoEye-1影像模拟的不同空间分辨率影像,从不同分辨率影像中分别选择了300×300m的居民区、滩涂、桉树林和天然林样区,基于本文提出的空间异质性指数来定量描述不同地物类型的空间异质性特征,发现在某一特定的空间分辨率尺度下,居民区、森林植被、滩涂的空间异质性指数依次减小;随着空间分辨率的变化,不同地物类型的空间异质性指数均呈现降低趋势,但下降的幅度不一。以上研究结果与实际情况相一致,表明空间异质性指数能有效描述地表的空间异质性特征。
     (2)桉树林遥感信息特征存在明显的空间异质性。结合桉树林光谱特征、生物属性特征以及空间特征,分析了各自的空间异质性,并探讨了各自空间异质性随尺度的变化规律。在光谱特征中,分别分析了红光波段、近红外波段反射率,以及NDVI的空间异质性,发现它们均随着空间分辨率下降呈现明显的下降趋势,且空间分辨率越低,其下降的幅度越小。在生物属性特征中,以桉树林叶面积指数为例分析了其空间异质性特征,发现它的空间异质性特征随着空间分辨率的降低而减小。在空间纹理特征的尺度效应分析中,发现各纹理参数均随空间分辨率的变化而变化,且变化趋势不一,但其原因均是由于空间分辨率的降低,空间异质性减小,纹理变细且更为简单。各纹理参数图像的空间异质性则随着空间分辨率的降低均呈现为增大趋势。
     (3)高分辨率遥感影像具有识别和提取桉树林的能力,且空间分辨率越高,识别精度越高,桉树林遥感识别建议选用<15m分辨率影像。以2m分辨率的GeoEye影像为数据源,通过简单平均法模拟了5m、10m、15m、20m、30m分辨率影像序列,开展了对研究区内的典型地物,尤其是桉树林的识别与提取研究。研究结果表明:GeoEye影像能从研究区中有效识别与提取桉树林。通过采用面向对象分类法进行分类,它可以充分利用地物的光谱特征和空间几何特征,从而提高了桉树林的识别能力,其识别精度受空间分辨率控制,发现桉树林遥感识别选用的分辨率<15m为宜。
     (4)结合空间异质性信息,建立了桉树林叶面积指数尺度转换模型,它能显著地校正桉树林叶面积指数的反演结果,可实现叶面积指数精确制图。讨论了桉树林反射率特征、植被指数以及叶面积指数的空间尺度效应,对植被指数(以DVI和NDVI为例)和叶面积指数的空间尺度效应进行了理论推导和模拟,发现空间尺度效应产生的原因主要为空间异质性,另外还有算法的非线性效应,并基于GeoEye-1影像模拟的不同空间分辨率影像进行验证。基于高分辨率GeoEye-1影像,采用空间异质性指数来描述桉树林信息特征的空间异质性,发现空间异质性指数与桉树林信息特征的尺度误差之间存在显著相关关系,进而构建了叶面积指数尺度转换模型。结果表明,基于空间异质性指数的空间尺度转换模型可以有效校正粗分辨率LAI的尺度误差。
Eucalyptus is one of rapid growing species duiring the development of plantations in our country because of strong adaptability, rapid growth, high yield, wide useness, high economic benefit, and so on, which is successedfully introduced and fastly developed in our country. In order to meet the demand of intensive management, we timely, accurately need to know the amount, quanlity, the dynamic information on growth and decline of Eucalyptus. Due to the characteristics of macroscopy, periodicity, advancement, and rapidity, the remote sensing technology is widely used to survey and monitoring of forest resource. The high resolution remote sensing not only gets the spectral information on objects, but can obtain the geometric structure and textural feature. Therefore, it has the unique superiority on survey and monitoring of forest resource.
     Forest resources have multi-scale hierarchical structre, and multi-scale is one of fundamental characteristics. In general, forest resources information of one level always appears at some scale. Consequently, the optimal scale is needed to search when forest resources information of a level is extracted. We need to ascertain an optimal scale domain, not a single optimal scale due to the complexity of forest species, spatial heterogenicity caused by tree ages and growth density, and so on. Distinct spatial heterogenicity will appear because of the differenent time of cut, and the spatial difference in tree age and growth density of eucalyptus, Spatial heterogenicity is one of primary factors, which results in spatial scale effect. How to changes spatial heterogenicity of information on forest resource with the spatial scale? Can we remove the scale effect and improve the accuracy when forest remote sensing information is extracted if considering spatial heterogenicity?
     Typical area of eucalyptus forest in Beibu gulf was selected in the paper. In order to discriminate and extract remote sensing information of eucalyptus forest, high resolution remote sensing imagery data of GeoEye-1 was employed. The object oriented method was used to discriminate and extract remote sensing information of eucalyptus forest based on the spectral and spatial textural characteristics of eucalyptus forest. The optimal scale domain of eucalyptus forest remote sensing identification was tried to be found by means of classification accuracy based on the different spatial resolution imageries which modeled by using GeoEye-1 image. The spatial heterogenecity of remote sensing information features of eucalyptus forest was analyzed and discussed. In order that attempte to get more precise mapping of leaf area index of eucalyptus forest, spatial heterogenecity would be considered. Some conclusions as follows were come to:
     Firstly, the spatial heterogenecity index (SHI) was proposed, which is able to quantificationally describe the spatial heterogenecity of arbitrary area, involved individual pixel. It is defined as the sum of absolute difference between value of a pixel and its eight-neighbour pixels, and the average of spatial heterogenecity index of entire image or local image denote the SHI of those. Each 300 x 300m subset image was selected from residential area, tidal-flat area, eucalyptus forest and natural forest of GeoEye-1 image based on the different spatial resolution imageries which modeled by using GeoEye-1 image, respectively. The spatial heterogenecity of those subset images were quantitatively presented by means of spatial heterogenecity index in the paper proposed. The results showed that SHI of residential area, tidal-flat area and forest at some spatial resolution were declined, respectively, and the SHI of those objects were all decreased as the spatial resolution become coase, but the decreasing extent was not the same. The above research was the same as real world. Therefore it is suggests that SHI can effectively describe spatial heterogenecity feature of land surface.
     Secondly, there are significant spatial heterogenecity for remote sensing characteristics of eucalyptus. Spatial heterogenecity of spectral, biological and spatial properties of eucalyptus were analysized and the spatial heterogenecity of each feature change with spatial scale were also discussed. The red band reflectance, near infrared band reflectance and NDVI were chosen for spectral characteristics. The spatial heterogenecity of those spectral properties were all decreased, and the coaser spatial resolution, the less decreased extent of spatial heterogenecity. The leaf area index of eucalyptus was analysized for the biological feature, and its spatial heterogenecitywas also declined when the spatial resolution became coaser. Each textural parameters of eculyptus changed as spatial resolution changed, and the change trend didn't agree, but the reason was the same, i.e., when the spatial heterogeneciy became weaker, the texture changed into thinner and simpler. The spatial heterogeneciyt of each textural image became stronger with the spatial heterogenecity coaser.
     Thirdly, there have potential of discerning and extracting eculyptus by high resolution remote sensing, and the spatial resolution finer, the more accuracy. It was suggested that less than 15 meter for spatial resolution ws best in order to identify eucalyptus by remote sensing approach. The 5m,10m,15m,20m and 30m spatial resolution imageries were modeled by using simple average method based on GeoEye image at 2m spatial resolution, and then their cability to discern and extract typical objects, especial eucalyptus at study area, were assessed. The results showed that the GeoEye image data was able to effectively identify and extract eucalyptus forest. The object oriented method was employed to classify for GeoEye high resolution image, which can make use of spectral and spatial characteristics of objects, and then the cabiltiy of distinguishing eucalyptus were enchanced, which was controlled by the spatial resolution. In addition, when the spatial resolution is less than 15m, the remotely sensened image can effectively discriminate eucalyptus.
     Finally, considering spatial heterogenecity, the scale transformation models of leaf area index were established and the spatial scale error of eucalyptus leaf area index could be evidently corrected, and this will achieve the precise mapping of leaf area index. The spatial scale effects of reflectance, vegetation index and leaf area index were discussed, respectively, and the spatial scale effects of vegetation index, e.g., DVI and NDVI, and leaf area index were theoretically inferred and modeled. It was found that the spatila heterogenecity is one of primary factors that results in their spatial scle effects except non-linear effect of algorithm by validation using the modeled images at different spatial resolution. Based on the high resolution GeoEye image at spatial resolution, the spatial heterogenecity of eucalyptus forest was depicted by means of spatial heterogenecity index. The paper set up a spatial scale transformation model of leaf area index based on the significant correlation relationship between spatial heterogeneity index and scale error of properties of eucalyptus. The results showed that the model associated with spatial heterogeneity index could effectively correct the scale error of leaf area index of coarse resolution
引文
[1]Achard F, Estreguil C. Forest classification o f southeast Asia using NOAA AVHRR data. Remote Sensing of Environment.1995,54 (3):198-208.
    [2]Albert B.J., sTRAHLER a.h., Li X.W., Liang S.L.Clarke K.C. Radiometric measurements of gap probability in conifer tree canopies. Remote Sesnsing of Environmet,1990,34:179-192.
    [3]Angora A., H.R. Randriamanantena, A. Podaire et al. Upscale integration of normalized difference vegetation index:the problem of spatial heterogeneity. IEEE Transactions on Geoscience and Remote Sensing,1992b,30(2):326-337.
    [4]Anselin L. Local Indicators of Spatial Association-LISA. Geographical Analysis,1995,27:93-115. Aplin P. On scales and dynamic in observing the environment. International Journal of Remote Sensing. 2006,27(11):2123-2140.
    [5]Aplin P. On scales and dynamic in observing the environment. International Journal of Remote Sensing. 2006,27(11):2123-2140.
    [6]Arbia G., Benedetti R.. Espa G. Effect of the MAUP on image classification. Geographical System, 1996,3:123-141.
    [7]Asrar G., R.B Myneni, B.J. Choudhury. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation:a modeling study. Remote Sensing of Environment,1992a,41:85-103.
    [8]Atkinson P.M., Dunn, R. & Harrison A.R. Measurement error in reflectance data and its implications for regularizing the variogram, Int. J. Remote Sens.,1996,17:3735-3750
    [9]Baatz, M. and Schape. Multiresolution segmentation an optimization approach for high quality multi-scale image segmentation. In:St robl,J. and Blaschke, T. (eds.):Angewandte Geographische Information Sverarbeitung. Wichmann Verlag,2000.12-23.
    [10]Baheerathan S., Albregtsen F., Danislsen H. E. New texture features based on the complexity curve. Pattern Reeognition.1999,32:605-618.
    [11]Bian L. And S. J. Walsh. Scale dependencies of vegetation and topography in a mountainous environment of Montana. Professional Geographer,1993,45(1):1-11.
    [12]Blalock, H. Causal inferences in nonexperimental research. Chapel Hill:University of North Carolina Press,1964.
    [13]Bovik A.C., Clark M., Geisler W.S.. Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and.Maehine Intelligenee.1990.12(1):55-73
    [14]Broehard J., Khoudeir M., Augereau B. Invariant feature extraetion for 3D texture analysis using the autocorrelation function. Pattern Recognition.2001,22:759-768.
    [15]Brown L, Chen J M, Leblanc S G, et al. A shortwaveinfrared modification to the simple ration for LAI retrieval in boreal forest:An image and model analysis. Remote Sensing of Environment,2000,71: 16-25
    [16]Gilberto Camara, Max J. Egenhofer, Frederico T. Fonseca, Antonio Miguel Vieira Monteiro. What's in an image? In Daniel R. and Montello eds. Spatial information therory:foundation of geographic information science. Springer Berlin,2001:474-488.
    [17]Camille J. P., Paul M. D., Andre Z. Z.Discrimination of Eucalyptus canopy from airborne linescanner imagery using Markov random field modeling Environmental Modelling & Software.2008,23:56-71.
    [18]Cao C. and N.S.-N. Lam. Understanding the scale and resolution effects in remote sensing and GIS. In Quattrochi D.A. and M.F. Goodchild, eds. Scale in remote sensing and GIS. FL:CRC/Lewis Publisher, 1997:57-72.
    [19]Chang T.,KuoC. Texture analysis and classifieation with tree-structured wavelet transform. IEEE Trans. Image Proeess.1994,2:429-441.
    [20]Chen D., Stow D.A., Gong P. Examining the effeet of spatial resolution and texture window size on classification aceuraey:an urban environment case. International Journal of Remote Sensing.2004, 25(11):2177-2192.
    [21]Chen, J. M. Spatial scaling of a remote sensed surface parameter by contexture. Remote Sensing Environment,1999,69;30-42.
    [22]Chen, J.M. and T.A. Black. Defining leaf area index for non flat leaves. Plant Cell Environ..1992,15, 421-429
    [23]Chen, J.M. Quantifying Area Index using two gap size the effect of canopy architecture on optical measurements of Leaf analysis methods. IE EE Trans Geosci. Remote Sensing,1995,33 (3):777-787.
    [24]Clark, W.A.V. and K.L. Avery. The effects of data aggregation in statistical analysis. Geographical Analysis,1976,8:428-438.
    [25]Clausi D.A. ZhaoY. P. Rapid extraction of image texture by co-occurring using a hybrid data strueture. ComPuters & Geoseienees.2002,28:763-774,
    [26]Clausi D.A.,Jernigan M.E. Designing Gabor filters for optimal texture separability. Pattern Recognition. 2000,33:1835-1849.
    [27]Cliff A.D., Ord J.K.Spatial Process:models and applications.London:Pion,1981.
    [28]Cushnie J.L. The interactive effect of spatial resolution and degeree of internal variability within land-cover types on classification accuracies. International Journal of Remote Sensing. 1987:8(1):15-29.
    [29]Dale M.R.T. Lacunarity analysis of spatial pattern:a comparison. Landscape Ecology,2000,15:467-468.
    [30]Daughtry C.S.T., et al. A new technique to measure the spectral properties of conifer needles. Remote Sensing of Environment.1989,33:55-64.
    [31]Davison D, Achal S, Mah S, et a 1. Determ ination of tree species and tree stem densities in Northern Ontario forest using A irborne CASI data.Proceding of Fourth International A irborne Remote Sensing Conference and Exhibition, Ottario, Canada,1999,2:187-196.
    [32]Disney M.I., Lewis P., North P.R.J. Monte Carlo ray tracing in optical canopy reflectance modeling. Remote Sensing Review,2000,18:163-196.
    [33]eCognition, User Guide. Definiens Imaging GmbH, Munich.http://www. definiensimaging. com/ product.htm,2002.
    [34]Ferrier, G. Evaluation of apparent surface reflectance estimation methodologies. Inteoational Journal of Remote Sensing.1995,17(12):2291-2297
    [35]FoodyG M, Lucas R M, Curran P J, et al. Mapp ing tropical forest fractional cover from coarse spatia I reso lution remote sensing im agery. Plan t Eco.l 1997,131 (I):143-154.
    [36]Geary, R.C. The contiguity ratio and statistical mapping. Incorporated Statistician,1954.,5:115-145.
    [37]Gehlke, C.E. and K. Biehl. Certain effects of grouping upon the size of the correlation coefficient in census tract material. Journal of the American Statistical Association Supplement,1934,29:169-170.
    [38]Getis, A, Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics, Geographical Analysis,1992,24:189-206.
    [39]Goodchild M.F. and D.A. Quattrochi. Scale and, multiscaling, remote sensing and GIS. In Quattrochi D.A. and Goodchild M.F., eds. Scale in remote sensing and GIS. FL.CRC/Lewis Publisher,1997:1-11.
    [40]Goodenough D. G., Andrew D. K., Niemann O. Processing Hyperion and AL I for forest classification. IEEE Tran on Geoscience and Remote Sensing,2003,41 (6):1321-1331
    [41]Goodenough D. G., Bhogall A. S.. Monitoring forests with Hyperion and AL I Proc IGARSS Ⅲ, Tporonto, ON, Canada,2002:882-885
    [42]Goward S.N., et al. Visible-near infrared spectral reflectance of landscape components in western Oregon. Remote Sensing of Environment.1994,47:190-203
    [43]Goward S.N., Davis P.E., Fleming D., Miller L., Townshend J.R.G., Empirieal comparison of Landsat7 and IKONOS multispectral measurements for selected Earth Observation System (EOS) validation sites.Remote Sensing of Environment,2003,88:80-99.
    [44]Guerric L. M., Claire M., Wouter V., Flavio J. P., Danny L. S., Agnes B., Jose-Luiz S., Yann N.Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations. Remote Sensing of Environment.201 la,115:586-599.
    [45]Guerric L. M., Claire M., Yann N., Clovis G., Rodrigo H.,Jose-Luiz S., Jean-Paul L..MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass. Remote Sensing of Environment. 2011b,11:2613-2625.
    [46]GuPta R.K., Prasad S., Krishna Rao P.V. Evaluation of spatial upscaling algorithms for different land cover types. Advance Space Research,1998,22(5):625-628.
    [47]Haboudane D, Miller J R, Elizabeth Pattey, et al. Hyperspectral vegetation indices and novel algorithm forpredicting green LAI of crop canopies:Modeling and validation in the context of precision agriculture. Remote Sensing of Environment,2004,90:337-352.
    [48]Haralick R M.Statistical and Structural Approaches to Texture. Proc.IEEE,1979,67:786-804
    [49]Haralick, R.M., Shanmugam, K.,Dinstein, Its'Hak. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics,1973,3 (6):610-621.
    [50]Hawkins J.K. Textural properties for pattern recognition, In Picture Processing and Psychopictorics, Lipkin B.C. and Rosenfeld A., Eds., Academic Press, New York.,1970.
    [51]Hay G.J., K.O. Niemann and D.G. Goodenough Spatial thresholds, image-objects, and upscaling:a multiscale evaluation. Remote Sensing of Environment.1997,62:1-19.
    [52]Hellwich O, Wiedemann C. Object extraction from high-resolution multisensor image data. The 3rd International Conference on Fusion of Earth Data. Sophia Antipolis, France,2000.105-115.
    [53]Herman J.D., Waites J.E., Ponitz R.M., Etzler P., A temporal and spatial resolution remote sensing study of a Michigan Superfund site.Photogrammetric Engineering and Remote Sensing,1994, 60:1007-1017.
    [54]Hofmann P. Detcetion Inforrmal settlements from IKONOS image data using methods of object oriented image analysis:an example from CaPe Town (South Afriea).Remote Sensing of Urban Areas,2001:41-42.
    [55]Hu, Z., and Islam, S. A framework for analyzing and designing scale invariant remote sensing algorithm. IEEE Transactions on Geoscience and Remote Sensing,1997,35:747-755.
    [56]Huang, C., B. Wylie, L. Yang, C. Homer, and G. Zylstra. Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance. USGS EROS Data Center White Paper (http://landcover.usgs.gov/pdf/tasseled.pdf).
    [57]Huete A.R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment,1988,25: 295-309.
    [58]Iron J.R., B.L. Markham, R.F. Nelson et al. The effects of spatial resolution on the classification of Thematic Mapper data. International Journal of Remote Sensing.1985,6(8):1385-1403.
    [59]Jenet N.A., Brendan G.M., Kimberly P.V.N. Estimating forest biomass using satellite radar:an exploratory study in a temperate Australian Eucalyptus forest.Forest Ecology and Management, 2003,276:575-583.
    [60]Jin Z., Tian Q.J., Chen, J. M., and Chen M., Spatial Scaling between leaf area index maps of different resolutions. Journal of Environmental Management,2007,85(3):628-637.
    [61]Jobanputra R., Clausi D.A.. Preserving boundaries for image texture segmentation using grey level co-occurring probabilities. Pattern Recognition.2006,39:234-245.
    [62]John R, Smith and Shih-Fu Chang. Automated binary texture feature sets for image retrieval. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Proc., May 1996.
    [63]Johnson K. Segment-based land-use classification from SPOT satellite data. Photogrammetric Engineering& Remote Sensing,1994,60(1):47-53.
    [64]Justice C.O., Markham B.L.,Townshend J.R.G., Kennard R.L. Spatial degradation of satellite data.International Journal of Remote Sensing,1989,10:1539-1561.
    [65]Kauth, R. J. and Thomas, G. S.,1976, The tasseled cap -- a graphic description of the spectral-temporal development of agricultural crops as seen in Landsat, in Proceedings on the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, Indiana, June 29--July I,1976, (West Lafayette, Indiana:LARS, Purdue University),41-51.
    [66]Kershaw K.A. The use of cover and frequency in the detection of pattern in plant communities. Ecology,1957,38:291-299.
    [67]Kervrann C, Heitz F. A Markov random field model-based approaeh to unsupervised texture segmentation using local global spatial statistics. IEEE Transactions on Image Proeessing.1995, 4(6):856-862
    [68]Kolasa J., Pickett S.T.A. Ecological heterogeneity, New York:Springer-Verlag,1991.
    [69]Latty R.S. and R.M. Hoffer. Computer-based Classification accuracy due to the spatial resolution using per-point versus per-field classification techniques. Symposium of Machine Processing of Remotely Sensed Data.1981:384-392.
    [70]Li H., Reynolds, J. F. On definition and quantification of heterogeneity. Oikos,1995,73 (2):280-284.
    [71]Li X, Strahler A. Geometric-optical bidirectional reflectance modeling of a Conifer Forest Canopy. IEEE Trans. Geosci. Remote Sensing,1986,24:906-919.
    [72]Li X., Wang J.,Strahler A. Apparent reciprocity failure ine directional reflectance of structured. Progress in Natural Science,1999,9(10):747-752.
    [73]Liang S. Numberical experiments on spatial scaling of land surface albedo and leaf area index. Remote Sensing Reviews.2000,19:225-242.
    [74]Liu F. Periodicity, directionality and randomness:Wold Features for Image Modelling and Retrieval. IEEE Transaction on Pattern Analysis and Machine Intelligence.1996,18(7):722-733.
    [75]Liu F., Pieard R.W. Periodiity. directionality, and randomness:wold features for Perceptional Pattern recognition. Proeeedings of the International Conference on Pattern Recognition.1994,11:184-485.
    [76]Lobo A, Chie O Casterad A. Classification of mediterranean crops with multisensor data:Per-pixel versus per-object statistics and image segmentation. International Journal of Remote Sensing,1996, 17(12):2385-2400.
    [77]Lu P, Sumpf A, Kerle N, Casagli N..Object-oriented change detection for landslide rapid mapping. IEEE Transactions on Geoscience and Remote Sensing Letters,2011:70-705
    [78]Marceau D.J. and G.J. Hay. Scaling and modeling in forestry:Applications in remote sensing and GIS. Canadian Journal of Remote sensing,1999a,25(4):342-346.
    [79]Marceau D.J. The scale issue in the social and natural sciences. Canadian Journal of Remote sensing, 1999b,25(4):347-356.
    [80]Marceau D.J. and G.J. Hay. Remote sensing contributions to the scale issue. Canadian Journal of Remote sensing,1999c,25(4):357-366.
    [81]Markham B.L. and J.R.G. Townshend. Land cover classification accuracy as function of sensor spatial resolution. Proceedings of the 15th International Symposium on Remote Sensing of Environment. Ann Arbor,Michigan.1981:1075-1090.
    [82]Martin M E, Newman S D, Abet J D, et al. Determ ining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment,1998,65:249-254.
    [83]Martin M. E., Newman S. D., Abet J.D., et al. Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment.1998,65 (5):249-254.
    [84]Marina M, Karl s, Hermarm K.Edge and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery. Pattern recognition.2004,(37):1619-1628.
    [85]Meentemeyer V. and E.O. Box. Scale effects in landscape studies. In Landscape heterogeneity and disturbance. M.G. Turner,eds. Springer-Verlag,1987:15-34.
    [86]Meentemeyer V. Geographical perspectives of space, time, and scale. Landscape Ecology. 1989,3:163-173.
    [87]Miller J.R., et al. Season patterns in leaf reflectance red edge characterics. International Journal of Remote Sensing.1990,11(10):1775-1795.
    [88]Moody A., woodeoekC.E. Scale-dependent errors in the estimation of land-cover proportions: implications for global land-cover datasets.Photogrammetric Engineering & Remote Sensing.1994, 60:585-594.
    [89]Moellering, H., Tobler,W. Geographical variance, Geographical Analysis,1972,4:34-50.
    [90]Nilson, T, Kuusk, A. A reflectance model for the homogeneous plant canopy and its inversion. Remote Sensing of Environment,1989,27:157-167.
    [91]O'Neil E.G., R.V. O'Neil, R.J. Norby. Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environmental Pollution,1991,73:271-284.
    [92]Openshaw S. and P. Taylor. A million or so correlation coefficients:three experiments on the modifiable areal unit problem. In:Wrigley N, ed. Statistical application in the spatial scicences, London: Qion.1979:127-144.
    [93]Openshaw S. The modifiable areal unit problem, Concepts and techniques in modern geography,1984, (CATMOG),38. Geo Abstracts Ltd, Norwich, England
    [94]Parada L. M. and Xu Liang. Optimal multiscal Kalman filter for assimilation of near-surface soil moisture into land surface models. J. Geophys. Res.,2004,109,D24109.
    [95]Parkkinen j., Selkainaho K. Detecting texture periodicity from the co-occurrence matrix. Pattern Recognition Letter.1990,11:43-50.
    [96]Peddle D. R. Jahnson R.L., Cihlar J., Latifovicb R. Large area forest classification and biophysical parameter estimation using the 5-Scale canopy reflectance model in Multiple-Forward-Mode. Remote Sensing of Environment,2004,89:252-263.
    [97]Pickett R.M. Visual analysis of texture in the detection and recognition of objects. In Picture Processing and Psychopictorics, Lipkin B.C. and Rosenfeld A., Eds., Academic Press, New York.,1970.
    [98]Pinkard E.A., Patel V., Mohammed C. Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter.Forest Ecology and Management, 2006,223:211-217.
    [99]Plotnick R.E., Gardner R.H., Hargrove W.W., Pretegaard K., Perlmutter M. Lacunarity analysis:a General technique for the analysis of spatial patterns. Phys. Rev.1996,53:5461-5468.
    [100]Plotnick R.E., Gardner R.H., O'Neill R.V. Lacunarity indices as measures of landscape texture. Landscape Ecology,1993,8:201-211.
    [101]Pun C. Rotation-invariant texture feature for image retrieval. Computer Vision and Image Understanding.2003,89:24-43.
    [102]Qi Y., Wu J. Effects of changing Spatial Resolution on the Results of Landscape Pattern Analysis Using Spatial Autocorrelation Indices, Landscape Ecology,1996,11:39-49
    [103]Raffy M. Heterogeneity and change of scale in models of remote sensing:spatializationof multispectral models. International Journal of Remote Sensing,1994,15(12):2359-2380.
    [104]Richardson A. J., Wiegand C. L.Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing.1977,43 (12) 1541-1552.
    [105]Rouse J.W., Haas R.H., Schell JA., Deering D.W. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite-1 Symposium,1974, Greenbelt:NASA SP-351,3010-3017.
    [106]Sadowski F.G., Sarno J.E.. Additional studies of forest classification accuracy as influenced by Multispectral Scanner spatial resolution. ERIM 122700-4-R. Environmental Research Institute of Michigan, Ann Arbor, Michigan,1976.
    [107]Sadowski F.G., Malila W.A., Sarno J.E., et al. The influence of Multispectral Scanner spatial resolution on forest feature classification. Proceedings of the 11th International Symposium on Remote Sensing of Environment,25-29 April,1977, Ann Arbor:1279-1288.
    [108]Sanderson E.W., M. Zhang, S.L. Ustin et al. Geostatistical scaling of canopy water content in a California salt marsh. Landscape Ecology.1998,13:79-92.
    [109]Shunlin Liang, Quantitative remote sensing of land surfaces. John Wiley & Sons, Inc.2004.
    [110]Simon H.A. The organization of complex systems. In Pattee H.H. eds. Hierarchy theory:the challenge of complex systems. George Braziller, New York, Cambrige,1973:1-27.
    [111]Sivakumar K. Morphologically constrained GRFs:applications to texture synthesis and analysis. IEEE Trans. PAMI.1999,21(2):148-153.
    [112]Somers B., Verbesselt J., Ampe, E.M. Sims N., Verstraeten W.W., Coppin P. Spectral mixture analysis to monitor defoliation in mixed-aged Eucalyptus globulus Labill plantations in southern Australia using Landsat 5-TM and EO-1 Hyperion data. International Journal of Applied Earth Observation and Geoinformation.2010,12:210-211
    [113]Suits, G.HI The calculation of the directional reflectance of a vegetative canopy. Remote Sensing of Environment,1972,2:117-127.
    [114]Tamura H., Mori, S., Yamawaki, Takashi. Texture features corresponding to visual perception. IEEE Trans. On Systems, Man and Cybernetics,1978,8(6):460-473
    [115]Tan T.N., Constantinides A.G. Texture feature extraction based on primitive analysis. International Conference on Acoustics, Speech, and Signal Processing. Glasgow UK,1989:1683-1686.
    [116]TangY.Y., TaoY., Lam E.C.M. New method for feature extrcetion based on fractal behavior. Pattern Recognition Letters.2002,35(5):1071-1081.
    [117]Tesfamichael S.G., Ahmeda F., van Aardt J.A.N., Blakeway F. A semi-variogram approach for estimating stems per hectare in Eucalyptus grandis plantations using discrete-return lidar height data.
    [118]Thomas K.,Timothy A. W.,James B. M., Mary A. F. A comparison o f multispectra I and multitempora 1 information in high spatial resolution im age ry for classification of individual tree species in a temperate hardwood forest. Remote Sensing of Environment.2001,75(1):100-112.
    [119]Tian, Y, Woodcock, C. E., Wang, Y, Privette, J. L., Shabanov, N. V., Zhou, L., Buermann, W., Dong, J., Veikkanen, B., Hame, T., Ozdogan, M., Knyazikhin, Y., and Myneni, R. B.. Multiscale analysis and validation of the MODIS LAI product I. uncertainty assessment. Remote Sensing of Environment, 2002,83:414-430.
    [120]Toll D.L.Preliminary study of information extraction from Landsat TM data for asuburban/regional test site.Proeeedings of the landsat-4 Science Characterization Early Results Symposium, Greenbelt, Maryland, NASA,1985a,4:387-402.
    [121]Toll D.L. Effect of Landsat Thematic Mapper sensor Parameters on Land cover classification..Remote Sensing of Environment,1985b,17:129-140.
    [122]Trevor G. J., Nicholas C. C., Tara S..Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada Remote Sensing of Environment.2010,114:2841-2852.
    [123]Turner D P, Cohen W B, Kennedy R E, et al. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites.Remote Sensing of Environment,1999,70: 52-68.
    [124]Turner D.P., Ollinger S., Smith J.L., Krankina O., Gregory M. Scaling net primary Production to a MODIS footprint in supportof Earth observing system Product validation. International Journal of Remote Sensing,2004,25(10):1961-1979.
    [125]USGS. SLC-off Gap-Filled Products Gap-Fill algorithm methodology. http://landsat.usgs.gov/documents/L7SLCGapFilledMethod.pdf,2011年5月30日
    [126]Van der MeerF., Bakker W., Seholte K. Scaling to the MERIS Resolution:Mapping accuracy and sptial variability.Geoearto International.2000,15:39-49.
    [127]Verhoef w. Light scattering by leaf layers with application to canopy reflectance modeling:the SAIL modeling. Remote Sensing of Environment,1984,16:125-141.
    [128]Walsh S.J., A. Moody, T.R. Allen et al. Scale dependence of.NDVI and its relationship to mountainous terrain. In Quattrochi D.A. and M.F. Goodchild, eds. Scale in remote sensing and GIS. Lewis Publisher, 1997:27-55.
    [129]Wang Quan, Adiku S, Tenhunen J, et al. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment,2005,94:24-255
    [130]Williams D.L. A comparison of spectral reflectance properties at the needle, branch, and canopy level for selected conifer species. Remote Sensing of Environment.1991,35:79-93.
    [131]Woodcock C.E. and A.H. Strahler. The factor of scale in remote sensing. Remote Sensing of Environment.1987,21:311-332.
    [132]Woods J. Two-dimensional discrete Markovian fields. IEEE Transactions on Information Theory.1972,18(2):232-240.
    [133]Wu J. Hierarchy and scaling:extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing,1999,25(4):367-380.
    [134]Wu J., Dennis E. Multiscale Analysis of Landscape Heterogeneity:Scale Variance and Pattern Metrics Geographic Information Science,2000,6 (1):6-19
    [135]Yinghai K., Lindi J. Q., Jungho I.Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sensing of Environment 2010,114:1141-1154
    [136]Zarco-Tejada P. J., J. R. Miller, T. L. Noland Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing,2001,39(7):1491-1507.
    [137]Zhang G., Ma Z. Texture feature extraction and description using Gabor wavelet in content-based medical image retriecal. In:Proceeding of the 2007 International Conference on Wavele tAnalysis and Pattern Recognition, Beijing, China,2007:169-173.
    [138]Zhang, Y., Guindon, B.,& Cihlar, J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sensing of Environment,2002,82, 173-187.
    [139]柏延臣,葛咏,王劲峰.遥感信息的不确定性研究.北京:地质出版社,2004.
    [140]布和敖斯尔,马建文,王勤学,金子正美,福山龙次.多传感器不同分辨率遥感数字图像的尺度转换.地理学报,2004,59(1):101-110.
    [141]陈健,倪绍祥,李静静,吴彤.植被叶面积指数遥感反演的尺度效应及空间变异性.生态学报,2008,26(5):1502-1508.
    [142]陈永富,王振琴,张玉贵等.专家系统在TM遥感图像分类中的应用研究林业科学研究,1995,9(4):344-347.
    [143]陈玉福,董鸣.生态学系统的空间异质性.生态学报,2003,22(2):346-352.1995,54(3):198-208.
    [144]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析.北京:清华大学出版社,2004.
    [145]范闻捷,闫彬彦,徐希孺.尺度转换规律与同步反演作物播种面积和叶面积指数.中国科学D辑,2010,40(12):1725-1732.
    [146]宫鹏,浦瑞良,郁彬.不同季相针叶树种高光谱数据识别分析.遥感学报,1998,2(3):211-217.
    [147]国家自然科学基金委员会地球科学部.地球科学“十一”发展战略.北京:气象出版社,2006.
    [148]何志斌,赵文智.黑河下游荒漠河岸林典型样带植被空间异质性.冰川冻土,2003,25(5):591-596.
    [149]李小梅,谭炳香,李增元,张秋良CHRIS高光谱图像森林类型分类方法比较研究.遥感技术与应用,2010,25(2):227-233.
    [150]李小文,王锦地strahler A.H非同温黑体表面上Planck定律的尺度效应.中国科学(E),1999b,29(5):422-426.
    [151]梁士楚,董鸣,王伯荪等.红树植物木榄种群分布格局关联维数的研究.海洋科学,2003,27(6):51-54.
    [152]刘丽娟,庞勇,范文义,李增元,李明泽.整合机载CASI和SASI高光谱数据的北方森林树种填图研究遥感技术与应用.2011,26(2):129-136.
    [153]刘明亮,唐先明,刘纪远,庄大方.基于Ikm格网的空间数据尺度效应研究.遥感学报,2001,5(3):183-192.
    [154]刘晓峰,段洪涛,马荣华.太湖水体遥感反演参数的空间异质性.湖泊科学.2010,22(3):367-374.
    [155]刘艳,王锦地,周红敏,薛华柱.黑河中游试验区不同分辨率LAI数据处理、分析和尺度转换.遥感技术与应用,2010,25(6):805-813.
    [156]牛春盈,江万寿,黄先锋.谢俊峰面向对象影像信息提取软件Feat ure Analyst和eCognition的分析与比较.遥感信息,2007,2:66-70.
    [157]潘辉,黄石德,张金文等.试论福建省桉树人工林的生态问题及其对策.中国生态农业学报,2009,17(3):605-609.
    [158]庞勇,李增元,陈尔学,等.激光雷达技术及其在林业上的应用.林业科学,2005,41(3):129-136.
    [159]庞正轰.关于桉树人工林生态问题的讨论.广西林业,2008,5:26-29.
    [160]苏理宏,李小文,黄裕霞.遥感尺度问题研究进展.地球科学进展,2001,16(4):544-548.
    [161]谭炳香,李增元,陈尔学,庞勇,武红敢.高光谱遥感森林信息提取研究进展.林业科学研究,2008,21(增刊):105-111.
    [162]田庆久,金震宇.森林叶面积指数遥感反演与空间尺度转换研究.遥感信息,2006,4:5-11.
    [163]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用.北京:电子工业出版社,2006.
    [164]万华伟,王锦地,屈永华,焦子锑,张颢.植被波谱空间尺度效应及尺度转换方法初步研究.遥感学报,2008,12(4):538-545.
    [165]王莉雯,卫亚星,牛铮.净初级生产力遥感估算模型空间尺度转换.遥感学报,2010,14(6):1082-1089.
    [166]王立海,赵正勇,杨旗.利用GIS对吉林针阔混交林TM遥感图像分类方法的初探.应用生态学报.2006,17(4):577-582.
    [167]王立海,赵正勇.基于BP神经网络的针阔混交林TM遥感图像自动分类技术研究.林业科学.2005, 41(6):94-100.
    [168]项东云,陈健波,刘建,叶露.广西桉树资源和木材加工现状与产业发展前景.广西林业科学,2008,37(4):175-178.
    [169]杨永恬,田昕,冯仲科,等.遥感混和分类算法及其在森林分类中的应用.测绘科学,2004,29(4):55-56.
    [170]曾海云.桂平市晚稻生育期农业气象分析.广西农业科学.2010,41(5):505-507.
    [171]张景雄.空间信息的尺度、不确定性与融合.武汉:武汉大学出版社.2008.
    [172]张万昌,钟山,胡少英.黑河流域叶面积指数(LA 1)空间尺度转换.生态学报,2008,28(6):2495-2503.
    [173]张颖,焦子锑,杨华,王锦地,苏理宏,闫广建,赵红蕊,李小文.直方图尺度效应研究.中国科学D辑,200232(4):307-316.
    [174]章毓晋.图像分割.北京:科学出版社,2001.
    [175]赵红蕊,王锦地,王华.再论BRDF互易原理的尺度效应.自然科学进展.2003,11:1210-1212.
    [176]赵英时等.遥感应用分析原理与方法.北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700