并联式TBCC排气系统的气动设计、性能研究及初步优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先利用特征线法获得了二维非对称喷管型面的设计程序。设计过程中采用热理想气体模型,即Cp仅是温度的函数。考虑了燃气是混合气体的事实,其比热可根据燃气各个组分的比热得到。另外还讨论了不同余气系数下燃气比热随温度变化的规律。
     然后利用该程序,设计了一系列非对称喷管构形,讨论了不同非对称因子G和不同截短程度时喷管的性能,最后确定选择非对称因子G等于0.3,上壁面长度等于800mm,下壁面长度等于200mm的SERN截短型面,作为整个TBCC排气系统的基准型面。在此基础之上,构建了二维上下并联式TBCC排气系统的气动方案以及几何调节方案。
     其次,对该排气系统气动方案进行了详细的二维流场计算研究,通过对计算结果的分析,本文认为在涡轮发动机单独工作时,冲压通道必须打开,并且确定了各个马赫数下唇口板角度的最佳位置。利用非定常模型以及动网格技术,对模态转换过程0~30s进行了数值模拟。结果显示,整个过程中排气系统推力平稳增加,用以平衡飞行姿态调整导致的阻力增加,总的推力系数也随时间的推移而逐渐增加;升力则在t=5s左右达到最大值之后,在涡轮发动机加力关闭过程中,突然降低。在Ma=3.0~4.0飞行范围内,推力系数在Ma=3.25左右达到最高,此时最接近理想膨胀;且欠膨胀时升力性能较好。
     最后还根据非支配排序遗传算法编制了多目标优化程序,并将其和商用计算流软件Fluent以及网格划分软件ICEM相结合,构成了流场参数的多目标优化平台。利用该平台,对利用下唇口二次流喷射改善SERN低马赫工况下性能的问题进行了初步优化。
The designing program of SERN(Single Expansion Ramp Nozzle) was provided based on the Method of characteristics (MOC) in this paper. The thermally perfect gas model was used in the program,where Cp was only the function of temperature.The Cp of the gas could be obtained by the species of the mixture.There were different Cp value under the different air-residual-coefficient also.
     A series of two-dimensional SERN configurations were obtaind by the designing program.The performance of the nozzle under the different parameter G and different truncated degree was investigated.As a result,the countour with the G=0.3, 800mm upper wall and 200mm low flap was selected as the base contour of the TBCC exhaust system. Then the aerodynamic scheme and the geometry adjust scheme of a two-dimensional over/under TBCC exhaust system was constructed.
     The aerodynamic performance of the over/under TBCC exhaust system was investigated particular with the Fluent.The numerical results indicated that: when the turbine working alone,the ramjet dypass must be open, and the best position of the low flap for each Mach number was obtained also. The performance during the mode transition process of the exhaust system was investigated using unsteady model and dynamic mesh method. Results of the analysis indicated that the thrust of the over/under TBCC exhaust system increased steadily, the thrust coefficient increased slightly also. However, there appeared a great and sudden decrease in the lift of the exhaust system when the turbine afterburner was turned off. At the range of Ma=3.0 to Ma=4.0, thrust coefficient arrived its maximum at the Ma=3.25, when the SERN was closed to ideal expansion condition.The lift performance was better under the under-expanded condition.
     A multi-objective optimization program was obtained based on the nondominated sorting genetic algorithms(NSGA),and a optimization platform was constructed which integrate the NSGA module and the Fluent,ICEM software together.The platform was used in improving the off-design performance of the SERN by secondary injection at the tip of the low flap.
引文
[1]Sompol Suwanprasert,Analytical Design of a Liquid Hydrogen Fueled Turbofan-ramjet Engine for Flight Mach Numbers Zero to Five [D],Wichita,Kansas,U.S.A,Wichita State University in Partial Requirements for the Degree of Doctor of Philosophy, Decemer 1982
    [2]Nancy McNelis,Paul Bartolotta,Revolutionary Turbine Accelerator (RTA) Demonstrator [R],AIAA 2005-3052
    [3]王芳,高双林高超,声速巡航导弹理想动力系统—TBCC发动机及其关键技术[J],飞航导弹,2007,第11期,pp49-53
    [4]D.J Dusa, Exhaust nozzle system design considerations for turboramjet propulsion systems[R],ISABE 89-7077
    [5]David W.Lam,Use of the PARC code to estimate the off-design transonic performance of an over-under turboramjet nozzle[R], AIAA-95-2616
    [6]H.Herrmann,Propulsion aspects of hypersonic turbo-ramjet-engines with special emphasis on nozzle-afterbody integration[R],ASME,91-GT-395
    [7]M.J.左克罗,J.D.霍夫曼,气体动力学[M](王汝涌等译),北京:国防工业出版社,1984
    [8]Hall,Transonic Flow in Two-Dimensional and Axially-Symmetric Nozzles[J],Quarterly Journal of Mechanics and Applied Mathematics,Vol.XV,Pt.4,1962,pp487-508
    [9]J.R.Kliegel and J.N.Levine,Transonic Flow in Small Throat Radius of Curvature Nozzles[J],Journal of American Institute of Aernoautics and Astronautics,Vol.7,No.7,July 1969,pp1375-1378
    [10]M. Goeing,Nozzle Design Optimization by Method-of-Characteristics[R],AIAA-90-2024
    [11]中国人民解放军总装备部军事训练教材编辑工作委员会,高低速风洞气动与结构设计[M],北京,国防工业出版社,2003
    [12]李念,张堃元,徐惊雷,二维非对称喷管数值模拟与验证[J],航空动力学报,北京,19(6),2004,pp802-805
    [13]王小平,曹立明,遗传算法——理论、应用与软件实现[M],西安,西安交通大学出版社,2002
    [14]Srinivas N.,Deb K.,Multiobjective function optimization using nondominated sorting genetic algorithms[J],Evolutionary Computation,1995,2(3):221-248
    [15]Deb K, Agrawal S.,Pratap A.,et al.,A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computaion,VOL.6,NO. 2, Appil, 2002
    [16]Gamble E,Haid D. Improving off-design nozzle performance using fluidic injection[R]. AIAA 2004-1206
    [17]H.Miyagi,H.Kimura, Combined cycle engine research in Japanese HYPR program[R] AIAA 98-3278
    [18]MizobataK,AraiT,SugiyamaH,Conceptual feasibil of reusable launch vehicles based on the ATREX engine[R],AIAA 99-4829
    [19]SatoT,TanatsuguN,HattaH,Development study of the ATREX engine for TSTO spaceplane[R], AIAA 2001-1839
    [20]JinhoLee,RobertJ,Buehrle,The GE-NASA RTA hyper-burner design and development[R],NASA TM-2005-213803
    [21]Paul A.Bartolotta,Nancy B.McNelis,High Speed Turbines_Development of a Turbine Accelerator (RTA) for Space Access[R],AIAA 2003-6943
    [22]T.Berens,Experimental and numerical analysis of a two-duct nozzle-afterbody model at supersonic Mach numbers[R], AIAA-95-6085
    [23]Marty Bradley,Kevin Bowcutt,Revolutionary Turbine Accelerator(RTA) two-stage-to-orbit(TSTO) vehicle study[R],AIAA 2002-3902
    [24]S.Jason Hatakeyamam,Kieth L.Mclver,Operability sensitivities of airbreathing and rocket propulsion for a two-stage-to-obit space operations vehicle[R],AIAA 2002-3903
    [25]Keivin Bowcutt,Mark Gonda,Steve Hllowell,Performance, operational and economic drivers of reusable launch vehicles[R],AIAA-2002-3901
    [26]Nathan Messersmith,Pratt&Whitey, Future High Mach Propulsion[R],AIAA 2003-2613
    [27]P.L.Moses,K.A.Bouchard,R.F.Vause,An airbreathing launch vehicle design with turbine-based lowspeed propulsion and dual mode scramjet high-speed propulsion[R],AIAA-99-4948
    [28]陈光,高超声速飞行与TBCC方案简介[J],航空发动机,2006年第32卷第三期,pp10-13
    [29]Lynn E.Snyder,Daric W.Escher,Turbine Based Combination Cycle (TBCC) propulsion subsystem integration[R],AIAA 2004-3649
    [30]Timothy Kokan,John R.Olds,A TSTO Hypersonic Vehicle Concept Utilizing TBCC and HEDM Propulsion Technologies[R],AIAA 2004-3728
    [31]Joseph M.Hank,Milton E.Franke,TSTO Reusable Launch Vehicles Using Airbreathing Propulsion[R].AIAA 2006-4962
    [32]Rene’Fernandez,D.R.Reddy,Thomas J.Benson,Design issues for turbine-based and rocket-basedcombined cycle propulsion system inlets[R],AIAA 98-3774
    [33]Patrick Biltgen,Jarret Lafleur,A single-stage-to-orbit, airbreathing,hypersonic propulsion system[R],AIAA 2004-3729
    [34]张艳慧,非对称大膨胀比喷管设计及性能分析[D],南京,南京航空航天大学硕士论文,2006
    [35]高媛,非支配排序遗传算法(NSGA)的研究与应用[D],杭州,浙江大学硕士学位论文,2006
    [36]张堃元,张荣学,徐辉,非对称大膨胀比喷管研究[J],推进技术,Vol.22,No.5,2001,pp380-382
    [37]陈兵,徐旭,蔡国飙,二维超燃冲压发动机尾喷管优化设计[J],推进技术,Vol.23,No.5,2002,pp433-437
    [38]陈兵,空间推进算法及超燃冲压发动机部件优化设计研究[D],北京,北京航空航天大学博士学位论文,2005
    [39]雷英杰,张善文等,Matlab遗传算法工具箱及应用[M],西安,西安电子科技大出版社,2005
    [40]周明,孙树栋,遗传算法原理及应用[M],北京,国防工业出版社,1999
    [41]张建东,TBCC发动机进气系统设计技术研究[D],西安,西北工业大学硕士学位论文,2007
    [42]诸惠明,涡轮冲压组合发动机基准概念方案研究[J],航空发动机,1997年第二期,pp1-12
    [43]T.A.Gronland,J.L.Cambier, Wallin,Nozzle/Afterbody Performance for Hypersonic Air-breathing Vehicles[R],AIAA 97-3166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700