聚吡咯—钴氧化物的制备及其催化H_2O_2电还原性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化氢(H2O2)作为氧化剂的燃料电池具有结构简单、能量密度大、可在无氧条件下工作等很多优点,常用作水下电源和空间电源。目前过氧化氢基燃料电池阴极电还原的催化剂主要是贵金属,因其价格昂贵、资源稀缺而增加了燃料电池的成本。聚吡咯(ppy)类过渡金属催化剂,由于其特殊的结构和独特的性质,表现出良好的催化活性和稳定性,有望取代贵金属而成为阴极氧还原电催化剂,近年来成为学术界关注的焦点课题。
     通过一种无需热解的简单方法合成了一种钴-聚吡咯-碳(Co-ppy-C)复合材料,并使用X射线衍射分析(XRD)、透射电镜(TEM)、扫描电镜(SEM)等手段对其进行表征。XRD图谱表明所制备的材料中含有尖晶石构型的p-Co(OH)2。扫描电镜和透射电镜表征表明该催化剂的粒径大约为20-30 nm。以循环伏安法测试了Co-ppy-C电极在氢氧化钾(KOH)溶液和硫酸(H2S04)溶液中对H202电还原的催化性能,结果表明Co-ppy-C电极在3.0 mol·dm-3KOH溶液中具有非常高的催化活性和稳定性。当H202浓度为0.4mol·dm-3、电极电势为-0.4 V时,Co-ppy-C电极表面的电流密度达到了-45 mA·cm-2;而Co-ppy-C电极在酸性溶液中的催化性能较差,当H202浓度为0.4 mol·dm-3、电极电势为0.0 V时,Co-ppy-C电极表面的电流密度仅为-45 mA·cm-2。
     采用恒电流法制备导电聚吡咯修饰C0304纳米线电极,研究不同聚合时间和不同吡咯单体浓度对所制备的导电聚吡咯修饰C0304纳米线电极催化性能的影响,得出聚合时间为10 s,吡咯单体浓度为0.10 mol·dm-3时,催化效果最好。与未被修饰的Co304纳米线电极相比,聚吡咯修饰的C0304纳米线电极表现出更好的催化活性与稳定性。Co-ppy-C电极在3.0 mol·dm-3 KOH溶液中,当H202浓度为0.4 mol-dm-3、电极电势为-0.4 V时,Co-ppy-C电极表面的电流密度达到了-120 mA·cm-2,相比未被聚吡咯修饰的C0304电极大15 mA·cm-2。
     作为一种非铂催化剂,聚吡咯-过渡金属催化剂在催化活性与稳定性上都已显示出诱人的应用前景,通过进一步优化催化剂的成分与制备工艺,有望替代铂基催化剂,推动H202基燃料电池技术的产业化进程。
The fuel cells using H2O2 as oxidant have simple structure, high energy density and can operaite without air. Therefore, the fuel cell using H2O2 as oxidant is good candidates of underwater and space power. Current cathode catalysts for Fuel cells using hydrogen peroxide as oxidant are noble metals, but they are so expensive and scarce that they will raise the costs of the fuel cells largely. Ppy-based transitional metal catalyst demonstrates excellent catalytic activity and durability with the special structure and characteristics, and is regarded as a kind of promising cathode catalyst, much attention has been paid to it in recent years.
     In this paper, we synthesized a cobalt-polypyrrole-carbon (Co-ppy-C) composite via a simple chemical method, without resorting to pyrolysis. It was characterized by X-diffraction spectroscopy (XRD)、transmission electron microscopy (TEM)、scanning electron microscopy (SEM). XRD pattern indicated that the structure of the Co-ppy-C includedβ-Co(OH)2. SEM and TEM characterization show that the Co-ppy-C nanoparticle with dimension of 20-30 nm. The performance for hydrogen peroxide electro-reduction in KOH solution and H2SO4 solution were investigated by cyclic voltammogram and chronoamperometry test. Results revealed that Co-ppy-C electrodes exhibit high activity and good stability for electrocatalytic reduction of H2O2 in 3.0 mol·dm-3 KOH solution. A current density of as high as-45 mA-cm-2 was achieved on the Co-ppy-C electrode when hydrogen peroxide concentration was 0.4 mol·dm-3 the potential was-0.4V; Co-ppy-C electrodes exhibit low activity in H2SO4 solution. A current density of as high as-45 mA-cm-2 was achieved on the Co-ppy-C electrode when hydrogen peroxide concentration was 0.4 mol·dm-3、the potential was 0.0 V.
     Constant current was adopted to obtain conducting polypyrrole chemically modified Co3O4 nanowires electrodes under same conditions. The polymerization time and dopant concentration were studied, it demonstrated that the polypyrrole modified Co3O4 nanowires electrodes were formed by 0.1 mol·dm-3 pyrrole for 10 s show better activity. Comparing to the Co3O4 nanowires electrode, these polypyrrole modified electrodes show better activity and greater stability. In 3.0 mol-dm-3 KOH solution, the polypyrrole modified Co3O4 nanowires electrode show the current density of-120 mA-cm-2, which is 15 mA-cm-2 higher than the Co3O4 nanowires electrodes without polypyrrole show.
     From above obtained results, it can be concluded that the Co-ppy-C and the polypyrrole modified Co3O4 nanowires catalyst have demonstrated a rather promising possibility to substitute commercialized platinum catalyst. It is belived that these achievements in this research has given a certain contribution to the development of the fuel cell using H2O2 as oxidant.
引文
[1]毛宗强.燃料电池[M].北京:化学工业出版社,2005:107-113页
    [2]衣宝廉.燃料电池-高效、环境友好的发电方式[M].北京:化学工业出版社,2002:1页
    [3]Zarbom S. An aluminum-hydrogen peroxide power source[A]. In:Proceedings of the 4th Intersociety Energy Conversion Conference.1969,904 P
    [4]Yang W Q, Yang S H, Sun W, et al. Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells[J]. Journal of Electrochimica Acta,2006,52(1):9-14 P
    [5]Yang W Q, Yang S H, Sun W, et al. Nanostructured silver catalyzed nickel foam cathode for an aluminum-hydrogen peroxide fuel cell[J]. Journal of Power Sources, 2006,160(2):1420-1424 P
    [6]David J B, John J R. Aluminum-hydrogen peroxide fuel-cell studies[J]. Journal of Applied Energy,2003,74:113-124 P
    [7]Hasvold (?), Johansen K H, Mollestad O, et al. The alkaline aluminium/hydrogen peroxide power source in the Hugin Ⅱ autonomous underwater vehicle[J]. Journal of Power Sources,1999,80(1-2):254-260 P
    [8]Hasvold (?), Forseth S. Power sources for autonomous underwater vehicles[J]. Journal of Power Sources,2006,162(2):935-942 P
    [9]Medeiros M G, Bessette R R, Deshenes C M, et al. Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles[J]. Journal of Power Sources,2004, 136(2):226-231 P
    [10]Bessette R R, Medeiros M G, Patrissi C J, et al. Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications[J]. Journal of Power Sources,2001,96(1):240-244 P
    [11]Dow E G, Bessette R R, Seeback G L, et al. Enhanced electrochemical performance in the development of the aluminum/hydrogen peroxide semi-fuel cell[J]. Journal of Power Sources,1997,65(1-2):207-212 P
    [12]Medeiros M G, Dow E G. Magnesium-solution phase catholyte seawater electrochemical system[J]. Journal of Power Sources,1999,80(1-2):78-82 P
    [13]Medeiros M G. Bessette R R, Deschenes C M. et al. Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing[J]. Journal of Power Sources,2001,96(1):236-239 P
    [14]Bessette R R, Cichon J M, Dischert D W, et al. A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell[J]. Journal of Power Sources,1999,80: 248-253 P
    [15]Brodrecht D J, Rusek J J. Aluminum-hydrogen peroxide fuel-cell studies [J]. Journal of Applied Energy,2003,74:113-124 P
    [16]Miley G H, Luo N, Mather J, et al. Direct NaBH4/H2O2 fuel cells[J]. Journal of Power Source,2007,165(2):509-516 P
    [17]Raman R K, Prashant S K, Shukla A K. A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack[J]. Journal of Power Sources,2006,162(2):1073-1076 P
    [18]Choudhury N A, Raman R K, Sampath S. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant[J]. Journal of Power Sources,2005,143(1-2):1-8 P
    [19]Gu L, Luo N, Miley G H. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell[J]. Journal of Power Sources,2007,173(1): 77-85 P
    [20]De Le'on C P, Walsh F C, Rose A, et al. A direct borohydride-acid peroxide fuel cell[J]. Journal of Power Sources,2007,164(2):441-448 P
    [21]Raman R K, Shukla A K. A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover[J]. Journal of Fuel Cells,2007,7:225-231 P
    [22]Raman R K, Choudhury N A, Shukla A K. A high output voltage direct borohydride fuel cell[J]. Electrochemical and Solid-State Letters,2004,7(12):488-491 P
    [23]Sung W, Choi J. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution[J]. Journal of Power Sources,2007,172(1):198-208 P
    [24]Bewer T, Beckmann T, Dohle H, et al. Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution[J]. Journal of Power Sources,2004,125(1):1-9 P
    [25]Prater D N, Rusek J J. Energy density of a methanol/hydrogen peroxide fuel cell[J]. Journal of Applied Energy,2003,74:135-140 P
    [26]Urbach H B, Bowen R J. Efficiency of hydrazine-peroxide fuel cells[J]. Journal of The Electrochemical Society,1970.117:1594-1600 P
    [27]Tartakovsky B, Guiot S R. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors[J]. Journal of Biotechnology Progress,2006,22: 241-246 P
    [28]Pizzariello A, Stred'ansky M, Miertus S. A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix[J]. Journal of Bioelectrochemistry,2002,56: 99-105 P
    [29]Ramanavicius A, Kausaite A, Ramanaviciene A, et al. Biofuel cell based on direct bioelectrocatalysis[J]. Journal of Biosensors and bioelectronics,2005,20:1962-1967 P
    [30]Raman R K, Shukla A K. Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyin and lead sulfate electrodes with application in direct borohydride fuel cells[J]. Journal of Applied Electrochemistry,2005,35:1157-1161 P
    [31]Cao D X, Sun L M, Wang G L, et al. Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium[J]. Journal of Electroanalytical Chemistry, 2008,621:31-37 P
    [32]Bockris J O, Oldfield L F. The oxidation-reduction of hydrogen peroxide at inter metal electrodes and mercury cathodes[J]. Journal of Transactions of the Faraday Society, 1954,51:249-259 P
    [33]Savinova E R, Wasle S, Doblhofer K. Structure and activity relations in the hydrogen peroxide reduction at silver electrodes in alkaline NaF/NaOH electrolytes[J]. Journal of Electrochimica Acta,1998,44:1341-1348 P
    [34]Iwakura C, Matsuda Y, Tamura H. Cathodic reduction of H2O2 on silver in alkaline solution[J]. Journal of Electrochimica Acta,1971,4:471-477 P
    [35]Flatgen G, Wasle S, Lubke M, et al. Autocatalytic mechanism of H2O2 reduction on Ag electrodes in acidic electrolyte:experiments and simulations[J]. Journal of Electrochimica Acta,1999:4499-4506 P
    [36]Fetner N, Hudson J L. Oscillations during the electrocatalytic reduction of hydrogen peroxide on a platinum electrode[J]. Journal of Physical Chemistry,1990:6506-6509 P
    [37]Lingane J J, Lingane P J. Chronopotentiometry of hydrogen peroxide with a platinum wire electrode[J]. Journal of Electroanalytical Chemistry,1963:411-419 P
    [38]Mukouyama Y, Nakanishi S, Konishi H, et al. Electrochemical oscillations of a new type in an H2O2+H2SO4 Pt-electrode system, appearing by addition of small amounts of halide ions[J]. Journal of Electroanalytical Chemistry,1999:156-165 P
    [39]Li X, Heryadi D, Gewirth A A. Electroreduction activity of hydrogen peroxide on Pt and Au electrodes[J]. Langmuir,2005:9251-9259 P
    [40]Eickes C, Weil K G., Doblhofer K. Faradaic impedance studies of the autocatalytic reduction of H2O2 on Ag electrodes in HClO4[J]. Journal of Physical Chemistry Chemical Physics,2000:5691-5697 P
    [41]Strbac S, Adzic R R. Oscillatory phenomena in oxygen and hydrogen peroxide reduction on the Au(100) electrode surface in alkaline solutions [J]. Journal of Electroanalytical Chemistry,1992 (1-2):355-364 P
    [42]Merkulova N D, Zhutaeva G V, Shumilova N A, et al. Reactions of hydrogen peroxide on a silver electrode in alkaline solution [J]. Journal of Electrochimica Acta,1973 (2): 169-174 P
    [43]李旭光,高颖,冯玉英等.炭载过氧化物酶-11电极对O2和H2O2还原的电催化性能[J].应用化学.2002,19(3):285-289页
    [44]Liu H, Zhang L, Zhang J, et al. Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes[J]. Journal of Power Sources,2006,162(1):743-752 P
    [45]Cere S, Vazquez M, deSanchez S R. Surface redox catalysis and reduction kinetics of hydrogen peroxide on copper-nickel alloys[J]. Journal of Electroanalytical Chemistry,1999:31-38 P
    [46]Velzen C J V, Oostveen J M, Sluyters-rehbach M, et al. Hydrogen isotape and temperature effect upon oxygen and hydrogen peroxide reduction at the mercury electrode[J]. Journal of Electroanalysis Chemistry,1985:175-183 P
    [47]Zecevic S, Drazic D M, Gojkovic S. Oxygen reduction on iron-IV the reduction of hydrogen peroxide as the intermediate in oxygen reduction reaction in alkaline solutions[J]. Journal of Electrochimica Acta,1991 (1):5-14 P
    [48]Matsumoto F, Uesugi S, Koura N, et al. Enhancement of electrochemical reduction of hydrogen peroxide and observation of current oscillatory phenomena during its reduction on a mercury adatom-modified Au electrode[J].Journal of Electroanalytical Chemistry,2003:71-80 P
    [49]Vazquez M V, deSanchez S R, Calvob E J, et al. The electrochemical reduction of hydrogen peroxide on polycrystalline copper in borax buffer [J]. Journal of Electroanalytical Chemistry,1994 (1-2):179-187 P
    [50]Calvo E J, Schiffrin D J. The reduction of hydrogen peroxide on passive iron in alkaline solutions[J]. Journal of Electroanalytical Chemistry,1984 (1-2):257-275 P
    [51]Miao X M, Yuan R, Chai Y Q, et al. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode[J]. Journal of Electroanalytical Chemistry,2008:157-163 P
    [52]Diasa V L N, Fernandes E N, Silva L M S d, et al. Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(II)-2,4,6-tris (2-piridil)-1,3,5-triazine complex adsorbed on a graphite electrode[J]. Journal of Power Sources,2005,104(1):10-17 P
    [53]Zhang J, Anson F C. Electrochemistry of the Cu(II) complex of 4,7-diphenyl-1, 10-phenanthrolinedisulfonate adsorbed on graphite electrodes and its behavior as an electrocatalyst for the reduction of O2 and H2O2[J]. Journal of Electroanalytical Chemistry,1992, (1-2):323-341 P
    [54]Martel D, Kuhn A. Electrocatalytic reduction of H2O2 at P2Mo18O626-modified glassy carbon[J]. Journal of Electrochimica Acta,2000:1829-1836 P
    [55]付亚琴,李晓芳,孙长青等.共价键合铁卟啉有序多层膜电极的组装及其对H2O2的电催化还原[J].高等化学学报.2002,23(11):2055-2059页
    [56]何天白.功能高分子与新技术[M].北京:化学工业出版社,2005:54-67页
    [57]Mogi I, Watanabe K. Magneto-electropolymerization of conducting polypyrrole[J]. Journal of Physical Chemistry B,1998:246-247 P
    [58]邢存章.有机化学[M].济南:山东大学出版社,2001:73-77页
    [59]焦剑.高聚物结构、性能与测试[M].北京:化学工业出版社,2003:87-94页
    [60]闻荻江,万影,陈刚等.具有共轭结构的导电聚合物及其应用[J].物理.2000,1(1):28-32页
    [61]Jasinski R. A new fuel cell cathode catalyst[J]. Journal of Nature,1964:1212 P
    [62]汤婕,唐有根,刘东任等.钻卟啉的合成及其对氧化还原的电催化性能[J].催化学报.2006,27(6):501-505页
    [63]Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Journal of Nature.2006,443(7):63-66 P
    [64]Zhao H B, Li L, Yang Y M, et al. Synthesis and charactertzation of bimetallic Pt-Fe/polypyrrole-carbon catalyst as DMFC anode catalyst[J]. Journal of Eletrochemistry Communications.2008,10(6):876-879 P
    [65]Zhao H B, Li L, Yang J, et al. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications [J]. Journal of Power Sources.2008,184(2): 375-380 P
    [66]Reddy A L M, Rajalakshmi N, Ramaprabhu S, et al. Cobat-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells[J]. Journal of Carbon. 2008,46(1):2-11 P
    [67]Manoharan R, Goodenough J B. Oxygen reduction on CrCO2 bonded to a proton-exchange membrane[J]. Journal of Electrochemical Acta.1995,40(3):303-307 P
    [68]Hayashi M, Uemura H, Shimanoe K, et al. Enhanced Electrocatalytic Activity for Oxygen Reduction over Carbon Supported LaMnO3 Prepared by Reverse Micelle Method[J]. Journal of Electrochemical and Solid-State Letters.1998,1(6):268-270 P
    [69]Suresh K, Panchapagesan T S, Patil K C, et al. Synthesis and prperties of La1-xSrxFeO3[J]. Journal of Solid State Ionics.1999,126(3/4):299-305 P
    [70]Liu Y, Ishihara A, Mitsushima S, et al. Zirconium Oxide for PEFC Cathodes[J]. Journal of Electrochemical and Solid-State Letters.2005,8(8):400-402 P
    [71]Liu Y, Ishihara A, Mitsushima S, et al. Transition Metal Oxides as DMFC Cathodes Without Platinum[J]. Journal of Electrochemical Society.2007,154(7):644-669 P
    [72]Conga H, Guadarramaa V G, Gautier J L, et al. NixCo3-xO4 Mixed Valence Oxide Nanoparticles/Polypyrrole Composite Electrodes for Oxygen Reduction[J]. Journal of New Materials for Materials for Electrochemical Systems.2002,5(35)
    [73]Martel D, Cong H N, Gautier J L, et al. Induced effect of transparent substrate composition on polypyrrole thin film[J]. Journal of Materials Science.2008,43(16): 5579 P
    [74]Malviya M, Singh J P, Lal B, et al. Transport behaviour of Cl-in composite films of polypyrrole and CoFe2O4 obtained for oxygen reduction[J]. Journal of New Materials for Materials for Electrochemical Systems.2005,8(3):223 P
    [75]孙治荣.电化学还原脱氯用GC负载Pd-Ni电极的制备及表征[J].化工学报.2008,59(5):1271-1277页
    [76]Cao L, Xu F, Liang Y Y, et al. Preparation of the novel nanocomposite Co(OH)/ ultra-stable Yzeolite and its application as a supercapacitor with high energy density [J]. Journal of Advanced Materials.2004,16(20):1853-1857 P
    [77]Ma R, Takada K, Fukuda K, et al. Phase transitions-Topochemical synthesis of monometallic (Co2+-Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets[J]. Journal of Angewandte Chemie-International Edition.2008,47:86-89 P
    [78]黄可龙.锂离子电池原理与关键[M].北京:化学工业出版社,2008:23页
    [79]吴宇平.锂离子电池-应用与实践[M].北京:化学工业出版社,2004:206页
    [80]Jiang S P, Lin Z G, Tseung A C C. Homogeneous and heterogeneous catalytic reactions in cobalt oxide/graphite air electrodes Ⅱ. homogeneous role of Co(II) ions during oxygen reduction on Co3O4/graphite electrodes [J]. Journal of The Electrochemical Society,1991,137(3):764-769 P
    [81]Shen P K, Tseung A C C. Development of an aluminium/sea water battery for subsea applications [J]. Journal of Power Sourses,1994,47(1-2):119-127 P
    [82]郭林.钴氧化物纳米催化剂的制备及对N2O的分解[J].环境科学学报.1998,18(5):457-461页
    [83]赵旭,王子忱,赵敬哲等.球形二氧化钛的制备[J].功能材料.2000,3:303-305页
    [84]于维平,黄东等.电沉积-烧结制备C0304锂离子电池负极及电性能[J].材料热处理学报.2005,125(4):1-3页
    [85]丁古巧,李亚东等.纳米C0304前驱体的室温固相反应工艺研究[J].中国粉体技术.2003,3:33-35页
    [86]Palmas S, Ferrara F, Vacca A, et al. Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium[J]. Journal of Electrochimica Acta,2007,53: 400-406 P
    [87]Jaouen F, Charreteur F, Dodelet J P. Fe-based catalysts for oxygen reduction in PEMFCs-Importance of the disordered phase of the carbon support[J]. Journal of the Electrochemical Society.2006,153(4):A689-A698 P
    [88]Zhang L, Zhang J, Wang W H. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions[J]. Journal of Power Source.2006,156(2):171-182P
    [89]Chang H, Bard A J. Scanning tunneling microscopy studies of carbon-oxygen reactions on highly oriented pyrolytic graphite [J]. Journal of American Chemistry Society.1991,113(15):5588-5596 P
    [90]Bowling R J, McCreery R L, Pharr C M, et al. Sbservation of kinetic heterogeneity on highly ordered pyrolytic graphite using electrogenerated chemiluminescence [J]. Journal of Analytical Chemistry.989,61:2763-2766 P
    [91]McDermott M T, Kneten K, McCreery R L, et al. Anthraquinonedisulfonate adsorption, electron-transfer kinetics, and capacitance on ordered graphite electrodes: the important role of surface defects[J]. Journal of Physical Chemistry.1992,96(7): 3124-3130 P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700