高功率GaAs光电导开关的特性与击穿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电导开关(Photoconductive Semiconductor Switches简称PCSS's)具有耐压强度高、通流能力强、寄生电感电容小、开关速度快和皮秒时间精度等特性,使其在超高速电子学、大功率脉冲产生与整形技术领域(大功率亚纳秒脉冲源、超宽带射频发生器等)具有广泛的应用前景。特别是GaAs、InP等Ⅲ-Ⅴ族化合物半导体PCSS's中存在的高倍增模式(亦称非线性模式、或lock-on效应),使光电导开关的应用更为有效、方便、灵活。本文针对光电导开关理论和应用研究中存在的问题,采用理论计算和实验相结合的方法,对半绝缘GaAs光电导开关中的高场畴特性、高倍增模式的产生机理、开关的高电压强电流特性和击穿机制进行了较为系统、深入的研究,具体研究内容和结论如下:
     从实验上发现了光激发电荷畴的两种振荡模式:猝灭畴模式和延迟畴模式。分析指出两种振荡模式是由于开关电路自激振荡形成的交流场对开关偏置电场周期性动态调制引起的。在适当的触发光能和偏置电场条件下,电荷畴在渡越过程中,当开关电场低于电荷畴维持电场(维持电荷畴生存需要的最小电场)时,电荷畴将在到达阳极前湮灭,形成光激发电荷畴的猝灭畴模式,交流场周期性的调制,便形成猝灭畴振荡;若在适当的触发光能和偏置电场条件下,电荷畴在渡越过程中,当开关电场低于电荷畴的阈值电场、而高于维持电场时,电荷畴到达阳极湮灭后,新的电荷畴不能及时形成,只有当开关电场再次上升到阈值电场以上时,电荷畴才可再次形成,即电荷畴的形成被延迟,以上过程的不断重复便形成延迟畴振荡模式。在理论分析的基础上,结合相关实验,给出了光激发电荷畴的等效电路模型。利用等效电路模型对开关的猝灭畴振荡作了定量的计算,理论计算与实验基本一致。
     提出半绝缘GaAs光电导开关非线性模式的多畴理论模型,并在不同偏置电压条件下测量了半绝缘GaAs光电导开关的lock-on电场。理论计算表明高浓度的光生载流子可使电荷畴内的电场达到材料的本征击穿强度,使畴内发生伴有复合辐射的强烈碰撞电离,新的电荷畴可以由复合辐射再吸收激发的载流子不断的形成,在开关体内形成一定数量的光激发电荷畴;理论分析指出开关的lock-on电场是由于开关体内固定的电荷畴数量和畴内外稳定的电场分布引起的,开关的快速导通是由于种子畴(传播在电离区最前面的电荷畴)的传播速度相当于以光速和电子的饱和漂移速度交替运动引起的。依据半绝缘GaAs非线性光电导开关的产生机理,设计了由光电导开关与火花隙构成的串联型组合开关。利用组合开关两部分先后导通过程中电压的转移,使光电导开关的分压小于畴的维持电压,通过畴的猝灭,迫使开关关断,有效的抑制了lock-on效应。同时提高了开关的输出电流。
     通过开关电极刻蚀,研制了耐压高达32kV、通流能力达3.7kA的高功率半绝缘GaAs光电导开关。测量了开关不同触发条件下的通态电阻,对开关进行了耐压实验和寿命实验,在20kV/400A工作条件下,开关的寿命达350次。
     分析了开关的击穿机理。理论分析表明不同类型的击穿痕迹是由于不同的击穿机理引起的。贯通电极的丝状击穿痕迹是由于电子俘获形成的陷阱链导电路径导致电流剧增使开关热击穿而形成;阳极严重损坏的击穿是由于陷阱填充和转移电子效应引起阳极电场剧增导致的。依据相关实验和击穿机理,对两种不同的击穿类型分别进行了理论计算,计算结果与实验基本吻合。
Due to the characteristics of high voltage, high current, low inductance and capacitance, ultrafast switching, and picosecond temporal resolution, photoconductive semiconductor switches (PCSS's) have been widely used in ultrahigh speed electronics, the field of high power microwave generation, pulse forming and THz radiation. Especially because of presence of the high-gain mode (also known as nonlinear mode or lock-on effect) of III-V compound semiconductors (such as GaAs, InP, et al), the using of PCSS's is more effective, convenient, and flexible. Until now, several models have been proposed to explain the high-gain mode. However, the mechanism of the high-gain mode has not well been understood to date due to the great complexity of the dynamics of carriers in GaAs under high electric fields. Moreover the premature breakdown is critical issue, whose mechanism is not fully understood and is an important area of study. In this paper, the characteristic of high field domain in GaAs PCSS, the mechanisms of high gain mode, and the high-power characteristic and breakdown mechanism of GaAs PCSS's are investigated systemically and deeply. The PCSS's with the current as high as 3.7 kA and the electric power higher than 100 MW has been developed through the electrode etching technique.
     Two important oscillation modes of photoactivated charge domain, namely quenched domain mode and delayed domain mode have been observed experimentally. It is show the formations of the two oscillations are due to the interaction of the circuit self-excitation and transferred-electron oscillation in the bulk of switch. During the transit of the domain, the bias electric feld (larger than Gunn threshold) across the switch is modulated by the alternating current (AC) electric field, when the instantaneous bias electric field is swinging below the sustaining field (the minimum electric field required to support the domain), and then the quenched-domain mode is obtained. If the instantaneous bias electric field is swinging above the sustaining field and below Gunn threshold electric field during the transit of the domain, when the domain is extinguished at the anode, new doamin can not be formed immediately, this mode of oscillation is delayed domain mode. Based on the characteristic of Gunn domain and the circuit of PCSS, the equivalent circuit of the photoactivated charge domain is presented. The frequency of quenched domain oscillation mode is calculated quantitatively by making use of the equivalent circuit. The theoretical calculation is well agreement with experimental result.
     A model for lock-on effect in the semi-insulating (SI) GaAs PCSS's is proposed for the first time, and the lock-on field of SI-GaAs PCSS's has been measured under different bias voltages. When PCSS's operate in nonlinear mode, the ultrahigh electric field of domain induced by photogenerated carriers leads to strong impact ionization accompanied by electron-hole recombination radiation in the switch. Therefore new avalanche domains can be nucleated uninterruptedly by the carriers generated by absorption of recombination radiation which causes the effective carrier velocities to be larger than the saturation velocity. Lock-on field resulted from the length proportional number of domains and steadfast electric fields inside and outside the domains, and the recovery of lock-on effect is caused by the domain quenching. Based on the mechanism of nonlinear mode of SI-GaAs PCSS's, a combined switch consisted of a traditional PCSS and a spark gap is developed. Using the combined switch the lock-on effect is suppressed effectively, and compeared with single PCSS higher output current is obtained with the combined switch. The analysis shows the suppression of lock-on effect is caused by the voltage transferring from the PCSS to the spark gap. Due to ture-on process of the spark gap, the electric field across the bulk PCSS is decreased below the sustaining electric field of Gunn domain, leading to the extinguishing of the domains, and then the PCSS will enter open state because of recombination of nonequilibrium carriers.
     Through electrode etching, current as high as 3.7 kA has been generated using a single photoconductive semiconductor switch exited by a laser pulse with the energy of~8 mJ and under a bias of 28 kV, and the highest withstand voltage is up to 32 kV. The PCSS with electrode gap of 14 mm was fabricated from semi-insulating GaAs. Under different bias voltages the "on" resistances of the PCSS were measured. The longevity of the PCSS reached 350 shots at 20 kV and 400 A.
     The breakdown mechanisms of PCSS's have been investigated. The theoretical analysis indicates different breakdown traces correspond different breakdown mechanisms. (1) For the filament breakdown trace across the bulk of the PCSS, the electron-trapping breakdown theory is an important mechanism for the breakdown of GaAs PCSS. Due to capture process of electron traps for electrons, as the number of trapped electrons attains a threshold, a chain of trapped electrons will reach two electrodes of the PCSS, and all of the trapped electrons move to the anode along the chain, thereby a conductive path formed by hole traps has been buildup. Electrons flow rapidly from cathode to anode through the path, and then a current path is formed, which makes the current of PCSS increase sharply. Since the capacitors highly charged produce a very high current density along the conductive path, which causes the PCSS breakdown instantaneously, and a melted deep groove will be formed by the high current density. (2) For the breakdown of serious damage for the anode, the breakdown of PCSS's fabricated from indirect band-gap semiconductors is mainly caused by trap filled limited conduction model, however, for PCSS's fabricated from materials that exhibit the transferred-electron effect, such as GaAs, breakdown of the PCSS's is mainly caused by negative resistance inducing electric field enhancement at the anode boundary. Based on the mutuality experiments and the breakdown mechanisms, the breakdown time and breakdown voltage are calculated respectively for two different types of breakdown, and the theoretical calculations are well agreement with experimental results.
引文
【1】S. Jayaraman and C. H. Lee. Observation of two-photon conductivity in GaAs with nanosecond and picosecond light pulses. Applied Physics Letters,1972,20(10):392~394
    【2】J. A. Valdmanis, G. Mourou, and C. W. Gabel. Picosecond electro-optic sampling system. Applied Physics Letters,1982,41(3):211~212
    【3】Janis A.Valdmanis, Gerard A. Mourou, and C. W. Gabel. Subpicosecond electrical sampling. IEEE Journal of Quantum Electronics,1983, QE-19(4):664~667
    【4】D. H. Auston, K. P. Cheung, and P. R. Smith. Picosecond photoconducting Hertzian dipoles. Applied Physics Letters,1984,45(3):284~286
    【5】D. H. Auston. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters,1975, 26(3):101~103
    【6】P. LeFur and D. H. Auston. A kilovolt picosecond optoelectronic switch and Pockel's cell. Applied Physics Letters,1976,28(1):21~23
    【7】Chi. H., Lee. Picosecond optoelectronic switching in GaAs. Applied Physics Letters,1977,30(2):84~86
    【8】G. Mourou and W. Knox. High-power switching with picosecond precision. Applied Physics Letters, 1979,35(7):492~495
    【9】Chi H. Lee and Veerendra K. Mathur. Picosecond Photoconductivity and its applications. IEEE Journal of Quantum Electronics,1981, QE-17(10):2098~2112
    【10】C. S. Chang, V. K. Mathur, M. J. Rhee, and Chi H. Lee. Ultrafast optoelectronic switching in Blumlein pulse generator. Applied Physics Letters,1982,41(5):392~394
    【11】G. Mourou, W. H. Knox, and S. Williamson. High-power picosecond switching in bulk semiconductor. In Picosecond Optoelectronic Devices, C. H. Lee, New York, NY: Academic Press,1984, ch.7
    【12】W. C. Nunnally and R. B. Hammond.80-MW photoconductor power switch. Applied Physics Letters, 1984,44(10):980~982
    【13】C. H. Lee. Picosecond Optoelectronic Devices. New York, NY: Academic Press,1984, ch.12
    【14】F. J. Zutavern, G. M. Loubriel, B. B. Mckenzie, W. M. O'Malley, R. A. Hamil, L. P. Schanwald, and H. P. Hjalmarson. Photoconductive semiconductor switch (PCSS) recovery. Proc.7th IEEE Pulse Power Conf. (Monterey, CA,1989):365~367
    【15】G. M. Loubriel, M. W. O'Malley, and F. J. Zutavern. Toward pulsed power uses for photoconductive semiconductor switches:closing switches. Proc. 6th IEEE Pulsed Power Conf., Arlington, VA,1987: 145~148
    【16】Hanmin zhao, P. Hadizad, Jung H. Hur, and Martin A. Gundersen. Avalanche injection model for the lock-on effect in Ⅲ-Ⅴ power photoconductive switches. Journal of Applied Physics,1993,73(4): 1807~1812
    【17】Guillermo M. Loubriel, Fred J. Zutavern, Albert G. Baca, H. P. Hjalmarson, Tom A. Plut, Wesley D. Helgeson, Martin W. O'Malley, Mitchell H. Ruebush, and Darwin J. Brown. Photoconductive semiconductor switches. IEEE Transactions on Plasma Science,1997,25(2):124~130
    【18】J. F. Holzman, F. E. Vermeulen, and A. Y. Elezzabi. Generation of 1.2 ps electrical pulses through parallel gating in ultrathin silicon photoconductive switches. Applied Physics Letters,2001,79(25): 4249~4251
    【19】Wei Shi and Liqiang Tian. Mechanism analysis of periodicity and weakening surge of GaAs photoconductive semiconductor switches. Applied Physics Letters,2006,89(20):202103-1~202103-3
    【20】F. J. Leonberger and P. F. Moulton. High-speed InP optoelectronic switch. Applied Physics Letters, 1979,35(9):712~714
    【21】Pak S. Cho, Julius Goldhar, Chi H. Lee, Stephen E. Saddow, and Philip Neudeck. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices. Journal of Applied Physics,1995,77(4): 1591-1599
    【22】K. S. Kelkar, N. E. Islam, C. M. Fessler, and W. C. Nunnally. Silicon carbide photoconductive switch for high-power, linear-mode operations through sub-band-gap triggering. Journal of Applied Physics, 2005,98(9):093102-1~093102-6
    【23】Rahul Gunda, David S. Gleason, Kapil Kelkar, et al. Radio-frequency heating of GaAs and SiC Photoconductive switch for high-power applications. IEEE Transactions on Plasma Science,2006, 34(5):1697~1701
    【24】V. K. Mathur, C. S. Chang, Wei-Lou Cao, M. J. Rhee, and Chi H. Lee. Multikilovolt picosecond optoelectronic switching in CdS0.5Se0.5. IEEE Journal of Quantum Electronics,1982 QE-18(2): 205~209
    【25】R. K. F. Germer, K. H. Schoenbach, and S. G. E. Pronko. A bulk optically controlled semiconductor switch. Journal of Applied Physics,1988,64(2):913~917
    【26】Pak S. Cho, P.-T. Ho, Julius Goldhar, and Chi H. Lee. Photoconductivity in ZnSe under high electric fields. IEEE Journal of Quantum Electronics,1994,30(6):1489~1497
    【27】Z.C. Huang, C. R. Wie, I. Na, et al. High performance ZnSe photoconductors. Electronics Letters,1996, 32(16):1507~1509
    【28】Shingo Ono, Hidetoshi Murakami, Alex Quema, et al. Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses. Applied Physics Letters,2005,87(26): 261112-1~261112-3
    【29】Shangting Feng, P.-T. Ho, and Julius Goldhar. Potocondutive switching in diamond under high bias field. IEEE Transactions on Electron Devices,1990,37(12):2511~2516
    【30】E. I. Lipatov, V. S. Tarasenko. Optoelectronic switching in diamond and optical surface breakdown. Quantum Electronics,2008,38(3):276~279
    【31】R. P. Joshi, M. K. Kennedy, and K. H. Schoenbach. Studies of high field conduction in diamond for
    electron beam controlled switching. Journal of Applied Physics,1992,72(10):4781~4787
    【32】D. Krokel, D. Grischkowsky, and M. B. Ketchen. Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes. Applied Physics Letters,1989,54(11): 1046~1047
    【33】Masato Suzuki and Masayoshi Tonouchi. Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation. Applied Physics Letters,2005,86(5):051104-1~051104-3
    【34】S. M. Sze, Physics of Semiconductor Devices, 2nd edition. New York: Wiley,1981
    【35】A. A. Lebedev. Deep Level in silicon carbide.International Journal of High Speed Electronics and Systems,2006,16(3):779~823
    【36】R. E. Davis, Diamond films and coatings, New Jersey:Noyes Publications, 1992:4
    【37】Michael D. Pocha and Robert L. Druce.35-kV GaAs subnanosecond Photoconductive switches. IEEE Transactions on electron devices,1990,37(12):2486~2492
    【38】N. E. Islam, E. Schamiloglu, and C. B. Fleddermann, et al. Analysis of high voltage operation of gallium arsenide photoconductive switches used in high power applications. Journal of Applied Physics, 1999,86(3):1754~1758
    【39】S. Dogan, A. Teke, D. Huang, and H. Morko(?), et al.4H-SiC photoconductive switching devices for use in high-power applications. Applied Physics Letters,2003,82(18):3107~3109
    【40】R. Adam, M. Mikulics, and A. Forster, et al. Fabrication and subpicosecond optical response of low-temperature-grown GaAs freestanding photoconductive devices. Applied Physics Letters,2002, 81(18):3485~3487
    【41】L. Subacius and I. Kasalynas, and R. Aleksiejunas, et al. Fast optical nonlinearity induced by space-charge waves in dc-biased GaAs. Applied Physics Letters,2003,83(8):1557~1559
    【42】M. S. Mazzola, K. H. Schoenbach, and V. K. Lakdawala, et al. GaAs photoconductive closeing switches with high dark resistance and microsecond conductivity decay. Applied Physics Letters,1989, 54(8):742~744
    【43】M. Bieler, G. Hein, K. Pierz, and U. Siegner, et al. Spatial pattern formation of optically excited carriers in photoconductive switches. Applied Physics Letters,2000,77(7):1002~1004
    【44】Senpeng Sheng, Micheal G. Spencer, Xiao Tang, Peizhen Zhou, and Gary L. Harris. Polycrystalline cubic silicon carbide photoconductive switch. IEEE Electron Device Letters,1997,18(8):372~374
    【45】P. J. Stout and M. J. Kushner. Characteristics of an optically activated pulsed power GaAs(Si:Cu) switch obtained by two-dimensional modeling. Journal of Applied Physics,1995,77(7):3518~3522
    【46】I. V. Grekhov, S. V. Korotkov, and P. B. Rodin. Novel closing switching based on propagation of fast Ionization fronts in semiconductors. IEEE Transactions on Plasma Sciece,2008,36(2):378~382
    【47】R. P. Joshi and P. kayasit, et al. Simulation studies of persistent photoconductivity and filamentary conduction in opposed contact semi-insulating GaAs high power switches. Journal of Applied Physics,
    1999,86(7):3833~3843
    【48】B. A. Bell, A. G. Perrey, and R. A. Sadler. Gallium arsenide (GaAs)-based photoconductive switches for pulse generation and sampling applications in the nanosecond regime. IEEE Transactions on Instrumentation and Measurement,1989,38(1):92~97
    【49】F. Davanloo, C. B. Collins, and F. J. Agee. High-power photoconductive semiconductor switches treated with amorphic diamond coatings. IEEE Transactions on Plasma Science,2002.30(5): 1897~1904
    【50】A. Mar, G. M. Loubriel, and F. J. Zutavern, et al. Doped contacts for high-longevity optically activated, high-gain GaAs photoconductive semiconductor switches. IEEE Transactions on Plasma Science,2000, 28(5):1507~1511
    【51】L. Partain, D. Day, and R. Powell. Metastable impact ionization of traps model for lock-on in GaAs photoconductive switches. Journal of Applied Physics,1993,74(1):337~340
    【52】R. P. Brinkmann, K. H. Schoen, and D, C. Stoudt, et al. The lock-on effect in electron-beam-controlled. IEEE Transactions on Electron Devices,1991,38(4):701~705
    【53】R. P. Brinkmann, K. H. Schoen, and D, C. Stoudt, et al. Sudden breakdown of bulk semiconductor switches. Proc. SPIE,1993,1873:192
    【54】R. P. Brinkmann. Modeling of electron-beam-controlled semiconductor switches. Journal of Applied Physics,1990,68(1):318~323
    【55】M. A. Gundersen, J. H. Hur, and H. Zhao. Lock-on effect in pulsed-power semiconductor switches. Journal of Applied Physics,1992,71(6):3036~3038
    【56】W. T. White, C. G Dease, M. D. Pocha, and G. H. Khanaka. Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension. IEEE Transactions on Electron Devices,1990,37(12):2532~2541
    【57】C. D. Capps, R. A. Falk, and J. C. Adams. Time-dependent model of an optically triggered GaAs switch. Journal of Applied Physics,1992,74(11):6645~6654
    【58】J. L. Hudgins, D. W. Bailey, R. A. Dougal, and V. Venkatesan. Streamer model for ionization growth in a photoconductive power switch. IEEE Transactions on Power Electronics,1995,10(5):615~620
    【59】P. J. Stout and M. J. Kushner. Modeling of high power semiconductor switches operated in the nonlinear mode. Journal of Applied Physics,1996,79(4):2084~2090
    【60】K. Kambour, S. Kang, C. W. Myles, and H. P. Hjalmarson. Steady-state properties of lock-on current filaments in GaAs. IEEE Transactions on Plasma Science,2000,28(5):1497~1499
    【61】L. Q. Zu, Y. Lu, H. Shen, and M. Dutta. Delay time in GaAs high-power high-speed photoconductive switching devices. IEEE Photonics Technology Letters,1993,5(6):710~712
    【62】L. Q. Zu, Y. Lu, H. Shen, and M. Dutta. Temperature-dependent Delay time in GaAs high-power high-speed photoconductive switching devices. IEEE Photonics Technology Letters,1995,7(1):56~58
    【63】Zhengwei Du, Ke Gong, Fanbao Meng, and Zhongbing Yang. Delay time in GaAs high-power photocondutive switches. IEEE Photonics Technology Letters,1999,11(3):337-339
    【64】施卫.高倍增高压超快GaAs光电导开关中的光激发畴现象.半导体学报,1999,21(1):53~57
    【65】Shi Wei. Optically activated charge domain moedel for high-gain GaAs photoconductive switches. Chinese Journal of Semiconductors,2001,22(12):1481-1485
    【66】Jeffrey A. Oicles, Jon R. Grant, and Micheal H. Herman. Realizing the potential of photoconductive switching for HPM applications. SPIE,1995,2557(3):225-236
    【67】M. J. Rhee, T. A. Fine, and C. C. Kung. Basic circuits for inductive-energy pulsed power systems. Journal of Applied Physics,1990,67(9):4333-4337
    【68】E. E. Funk, E. A. Chauchard, M. J. Rhee, and Chi H. Lee.80-kW inductive pulsed power system with a photoconductive semiconductor switch. IEEE Photonics Technology Letters,1991,3(6):576-577
    【69】F. J. Zutavern, G. M. Loubriel, and W. D. Helqeson, et al. Optically-activated GaAs switches for compact accelerators and shout pulse sensors. Porc. 22th IEEE Power Modulator Symp.,1996:31~34
    【70】Robert J. Barker, Edl Schamiloglu编,《高功率微波源与技术》翻译组.高功率微波源与技术.北京:清华大学出版社,2005:2~38
    【71】G. Mourou, C. V. Stancampiano, and D. Blumenthal. Picosecond microwave pulse generation. Applied Physics Letters,1981,38(6):470-472
    【72】G. Mourou, C. V. Stancampiano, and A. Antonetti, et al. Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Applied Physics Letters,1981,38(6):295-296
    【73】A. P. Defonzo, M. Jarwala, and C. Lutz. Transiont response of planar integrated optoelectronic antennas. Applied Physics Letters,1987,50(17):1155-1157
    【74】H. A. Sayadian, M. G. Li, and C. H. Li. Generation of high-power broad-band microwave pulses by picosecond optoelectronic technique. IEEE Transactions on Microwave Theory and Techniques,1989, 37(1):43-50
    【75】W. C. Nunnally. High-power microwave generation using optically activated semiconductor switches. IEEE Transactions on Electron Devices.1990,37(12):2439~2448
    【76】R. L. Druce, M. D. Pocha, and K. L. Griffin, et al. Wideband microwave generation with GaAs photoconductive switches. Proc. 8th IEEE Int. Pulsed Power Conf., R. White and K. Prestwich, Eds., 1991,114-117
    【77】D. C. Stoudt, M. A. Richardson, and S. L. Moran. Demonstration of a frequency-agile RF source configuration using bistable optically controlled semiconductor switches (BOSS). Proc.10th IEEE Int. Pulsed Power Conf.,1995:360-365
    【78】G M. Loubriel, J. F. Aurand, M. T. Buttram, F. J. Zutavern, W. D. Helgeson, M. W. O'Malley, and D. J. Brown, High gain GaAs photoconductive semiconductor switches for ground penetrating radar, Proc. 22nd IEEE Int. Power Modulator Symp.,1996:165-168.
    【79】J. S. H. Schoenberg, J. W. Burger, J. S. Tyo, M. D. Abdalla, M. C. Skipper, and W. R. Buchwald. Ultra-wideband source using gallium arsenide photoconductive semiconductor switches. IEEE Transactions on Plasma Science,1997,25(2):327~334
    【80】N. E. Islam, E. Schamiloglu, J. S. H. Schoenberg, and R. P. Joshi. Compensation mechanisms and the response of high resistivity GaAs photoconductiv switches during high-power applications. IEEE Transactions on Plasma Science,2000,28(5):1512~1519
    【81】K. S. Kelkar, N. E. Islam, C. M. Fessler, and W. C. Nunnally. Design and characterization of silicon carbide photoconductive switches for high field applications. Journal of Applied Physics,2006, 100(12):124905-1~124905-5
    【82】R. Gunda, D. S. Gleason, K. Kelkar, P. Kirawanich, W. C. Nunnally, and N. E. Islam. Radio-frequency heating of GaAs and SiC photoconductive switch for high-power applications. IEEE Transactions on Plasma Science,2006,34(5):1697~1701
    【83】许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,1999:1~10
    【84】M. V. Exter, C. Fattinger, and D. Grischkowsky. High-brightness terahertz beams characterized with an ultrafast detector. Applied Physics Letters,1989,55(4):337~339
    【85】J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston. Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas. Optics Letters,1990,15(6):323~325
    【86】X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston. Generation of femtosecond electromagnetic pulses from semiconductor surfaces. Applied Physics Letters,1990,56(11):1011~1013
    【87】X.-C. Zhang, Y. Jin, T. D. Hewitt, and T. Sangsiri. Magnetic switching of THz beams. Applied Physics Letters,1993,62(17):2003-2005
    【88】N. Froberg, M. Mack, B. B. Hu, X.-C. Zhang, and D. H. Auston,500 GHz electrically steerable photoconducting antenna array. Applied Physics Letters,1991,58(5):446~448
    【89】A. G. Markelz and E. J. Heilweil. Temperature-dependent terahertz output from semi-insulating GaAs photoconductive switches. Applied Physics Letters,1998,72(18):2229~2231
    【90】M. Tani, K.-S. Lee, and X.-C. Zhang. Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55μm pobe. Applied Physics Letters,2000,77(9): 1396~1398
    【91】Bradley Ferguson and Xi-Cheng Zhang. Materials for terahertz science and technology. Nature Materials.2002,1(1):26~33
    【92】J. Lloyd-Hughes, S. K. Merchant, and L. Fu, et al. Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs. Applied Physics Letters,2006,89(23): 232102-1~232102-3
    【93】B. Salem, D. Morris, Y. Salissou, V. Aimez, S. Charlebois, M. Chicoine and F. Schiettekatte. Terahertz emission properties of arsenic and oxygen ion-implanted GaAs based photoconductive pulsed sources.
    J. Vac. Sci. Technol. A,2006,24(3):774~777
    【94】K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, and M. M. Fejer, et al. Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme. Proc. SPIE,2007,6455:645509-1~ 645509-9
    【95】Y. M. Zhu, T. Unuma, K. Shibata, and K. Hirakawa. Femtosecond acceleration of electrons under high electric fields in bulk GaAs investigated by time-domain terahertz spectroscopy. Applied Physics Letters,2008,93(4):042116-1~042116-3
    【96】F. J. Zutavern, G. M. Loubriel, and H. P. Hjalmarson, et al. Properties of high gain GaAs switches for pulsed power applications. Proc. 11th IEEE Int. Pulsed Power Conf.,1997:595~964
    【97】F. J. Zutavern, J. C. Armijo, and S. M. Cameron, et al. Optically activated switches for low jitter pulsed power applications. Proc.14th IEEE Int. Pulsed Power Conf.,2003:591~594
    【98】F. J. Zutavern et al. Photoconductive, semiconductor switch technology for short pulse electromagnetics and lasers, Proc. IEEE Int. Pulsed Power Conf., Monterey, CA,1999:295~298.
    【99】F. J. Zutavern, S. F. Glover, K. W. Reed, and M. J. Cich, et al. Fiber-optically controlled pulsed power switches. IEEE Transactions on Plasma Science,2008,36(5):2533~2540
    【100】William Charles Nunnally. Critical component requirement for compact pulse power system architectures. IEEE Transactions on Plasma Science,2005,33(4):1262~1267
    【101】施卫,赵卫,张显斌,李恩玲.高功率亚纳秒GaAs光电导开关的研究.物理学报,2002,51(4):867~872
    【102】Shi Wei, Jia Wanli, and Ji Weili. Ultra-wideband electromagnetic radiation from GaAs photoconductive switches. Chinese Journal of Semiconductors,2005,26(1):11~15
    【103】施卫,纪卫莉,赵卫,用光电导开关产生超宽带电磁辐射研究,电子学报2004,32(11):2980~2982
    【104】施卫,马德明,赵卫.用光电导开关产生稳幅ps量级时间晃动超快电脉冲的研究.物理学报,2004,53(6):1716~1720
    【105】Wei Shi(施卫),Jingzhou Xu, and X.-C. Zhang. Terahertz generation from Si3N4 covered photoconductive dipole antenna. Chinese Optics Letters,2003,1(5):308~310
    【106】Shi Wei, Jia Wan-Li, and Hou Lei, et. al. Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna. Chinese Physics Letters,2004,21(9):1842~1844
    【107】Shi Wei, Hou Lei. Theoretical study of field intensity of THz radiation from large-aperture photoconductive antennas. Chinese Physics Letters,2006,23(10):2867~2870
    【108】施卫,张显斌,贾婉丽等.用飞秒激光触发GaAs光电导体产生THz电磁波的研究.半导体学报,2004,25(12):1735~1738
    【109】Shi Wei, Zhao Wei, Sun Xiao-wei, and Lam Yee Loy. Transit properties of high power ultra-fast photoconductive semiconductor switch. Chinese Journal of Semiconductors,2000,21(5):421~426
    【110】Wei Shi, Liqiang Tian, and Zheng Liu, et al. 30 kV and 3 kA semi-insulating GaAs photoconductive semiconductor switch. Applied Physics Letters,2008,92(4):043511-1~043511-3
    【111】Shi wei, Zhao Wei, Liang Zhen-Xian, and Sun Xiao-Wei. Time-dependent analysis of high-gain triggering in semi-insulating GaAs photoconductive switches. Chinese Physics Letters, 2001,18(11): 1479~1480
    【112】Shi Wei, Chen Er-Zhu, Zhang Xian-Bin, and Li Qi. Monopole charge domain in high-gain gallium arsenide photoconductive switches. Chinese Physics Letters,2002,19(8):1119~1121
    【113】Wei Shi and Liqiang Tian. Mechanism analysis of periodicity and weakening surge of GaAs photoconductive semiconductor switches. Applied Physics Letters,2006,89(20):202103-1~202103-3
    【114】Liqiang Tian and Wei Shi. Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches. Journal of Applied Physics,2008,103(12): 124512-1~124512-7
    【115】Liqiang Tian and Wei Shi. Multiple charge domains model for the lock-on effect in GaAs power photoconductive switches. Journal of Physics D: Applied Physics,2008,41(11):115107-1~115107-4
    【116】Tian Liqiang and Shi Wei. Mechanism of current oscillations in gallium arsenide photoconductive semiconductor switches. Chinese Phisics Letters,2008,25(7):2511~2513
    【117】施卫,贾婉丽,纪卫莉,刘锴.光电导开关工作模式的蒙特卡罗模拟.物理学报,2004,53(6):1716~1720
    【118】Tian Liqiang and Shi Wei. Delayed-dipole domain mode of semi-insulating GaAs photoconductive semiconductor switches. Chinese Journal of Semiconductors,2007,28(6):819~822
    【119】Tian Liqiang and Shi Wei. Quenched-domain mode of photo-activated charge domain in semi-insulating GaAs devices. Chinese Journal of Semiconductors,2008,29(10):1913~1916
    【120】施卫,田立强.半绝缘GaAs光电导开关的击穿特性.半导体学报,2004,25(6):691~696
    【121】田立强,施卫.王馨梅等.高压超大电流光电导开关及其击穿特性研究.物理学报,2009,58(2):1219~1223
    【122】石顺祥,杨德顺,王永昌等.一种高效微带型光电导开关超短电脉冲产生器.电子学报,1994,22(11):17~21
    【123】石顺祥,王永昌.新型光导开关瞬时特性的研究.西安电子科技大学学报.1995,22(1):8-13
    【124】鲍吉龙,许长存,石顺祥,过巳吉Blumlein型高效率微带光电导开关研究.中国激光,1996,A23(11):995~1000
    【125】石顺祥,万贤军.光导开关中深能级杂质对输出脉冲影响的研究.光子学报,1997,26(10):946~949
    【126】石顺祥,万贤军.非线性光导开关输出脉冲延迟时间的研究.光学学报,1998,18(3):365~368
    【127】张同意,石顺祥,赵卫,孙艳玲,杨斌洲.高效率微带线光导开关非线性特性的实验研究.光子学报,2000,29(3):209~212
    【128】龚仁喜,张一门,石顺祥,张玉明,孙艳玲,一种新型的光控光导半导体开关解析模型.光学学报,2001,21(1):101~105
    【129】张同意,石顺祥,龚仁喜,孙艳玲,非线性光导开关快速导通特性.光学学报,2002,22(3):327~331
    【130】龚仁喜,张一门,石顺祥,张同意高压GaAs光导开关的锁定及延迟效应机理分析.光学学报,2001,21(11):1372~1376
    【131】张同意,石顺祥,赵卫,龚仁喜,孙艳玲.深能级杂质对光导半导体开关非线性特性的影响.光子学报,2003,32(1):121~123
    【132】Tong-Yi Zhang, Shun-Xiang Shi, and Wei Zhao. Generation of short electrical pulses by photoconductive semiconductor switches triggered with a high-power laser diode. Proc. SPIE,2007, 6279:627946-1~627946-6
    【133】刘鸿,阮成礼.本征砷化镓光导开关中的流注模型.科学通报,2008,53(18):2181~2185
    【134】R. L. Druce, M. D. Pocha, K. L. Griffin and B. J. O'Bannon. Subnanosecond high voltage photoconductive switching in GaAs. Proc. SPIE,1378,1990:43~54.
    【135】W. V. Roosbroeck and H. C. Casey. Transport in relaxation semiconductors. Physical Review B,1972, 5(6):2145~2275
    【136】B. T. Cavicchi and N. M. Haegel. Experimental evidence for relaxation phenomena in high-purity silicon. Physical Review Letters,1989,63(2):195~198
    【137】N. Derhacobian and N. M. Haegel. Experimental study of transport in a trap-dominated relaxation semiconductor. Physical Review B,1991,44(12):12745~12760
    【138】N. M. Haegel. Relaxation semiconductors:in theory and in practice. Physics A,1991, 53(10):4-8
    【139】M. S. Mazzola, R. A. Roush, D. C. Stodudt et al. Evaluation of transport effects on the performance of a laser-controlled GaAs switch.8th IEEE Pulse Power Conf,1991:37~40
    【140】G. M. Loubriel, W. D. Helgeson D. L. Mclaughlin, et al. Triggering GaAs lock-on switches with laser diode arrays. IEEE Transaction on Electron Devices,1991,38(4):692~695
    【141】G. M. Loubriel, F. J. Zutavern, W. D. Helgeson, et al. Physics and Applications of the lock-on effect. IEEE Pulse Power Conf,1992:33~36
    【142】Michael Shur, GaAs devices and Circuits, New York:Plenum Press,1987:15.
    【143】S. M. Sze. Semiconductor devices physics and technology. New Jersey:Murray Hill,1983
    【144】H. W. Thim. Computer study of bulk GaAs devices with random one-dimensional doping fluctuations. Journal of applied Physics,1967,37(7):3797~3804
    【145】Nunnally W. C., et al. Photoconductive power switches. Los Alamos National Laboratory Report, 1983, LA,1759-MS,
    【146】E. J. Ryder. Mobility of holes and electrons in high electric fields. Physical Review,1953, 90(5):766~769
    【147】E. Erlbach and J. B. Gunn. Physical Review Letters, Noise Temperature of Hot Electrons in Germanium.1962,8(7):280~282
    【148】K. G. McKay and K. B. McAfee. Electron Multiplication in Silicon and Germanium. Physical Review, 1953,91(5):1079~1084
    【149】R. W. Smith. Current Saturation in Piezoelectric Semiconductors. Physical Review Letters,1962,9(3): 87~90
    【150】L. Esaki. New Phenomenon in Magnetoresistance of Bismuth at Low Temperature. Physical Review Letters,1962,8(1):4~7
    【151】J. B. Gunn. Microwave oscillations of current in Ⅲ-Ⅴ semiconductors. Solid State Communications, 1963,1(4):88~91
    【152】J. B. Gunn. Instabilities of current in Ⅲ-Ⅴ semiconductors. IBM Journal of Research and Development,1964,8(2):141~159
    【153】A. Carpio, P. Hernando, and M. Kindelan. Numerical study of hyperbolic equations with integral con-straints arising in semiconductor theory. SIAM J. Numer. Anal.,2001,39(1):168~191
    【154】Qiang Tian and Benkun Ma. Mode locking in the Gunn effect. Physical Review B, 1997,55(23): 15390~15392
    【155】Y. D. Glinka, D. Maryenko, and J. H. Smet. Thickness-tunable terahertz plasma oscillations in a semiconductor slab excited by femtosecond optical pulses. Physical Review B,2008,78(3):035328-1~ 035328-10
    【156】S. Chung and N. Balkan. The anatomy of Gunn laser. Journal of Applied Physics,2008,104(7): 073101-1~073101-9
    【157】S. Spasov, G. Allison, A. Patane, et al. High field electron dynamics in dilute nitride Ga(AsN). Applied Physics Letters,2008,93(2):022111-1~022111-3
    【158】P. Zhang, J. Zhou, M. W. Wu. Multivalley spin relaxation in the presence of high in-plane electric fields in n-type GaAs quantum wells. Physical Review B,2008,77(23):235323-1~235323-10
    【159】T. Hyart, K. N. Alekseev, E. V. Thuneberg. Bloch gain in dc-ac-driven semiconductor superlattices in the absence of electric domains. Physical Review B,2008,77(16):165330-1~165330-13
    【160】Y. W. Lee, B. J. Kim, J. W. Lim, et al. Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film. Applied Physics Letters,2008,92(16):162903-1~162903-3
    【161】H. Kroemer. Proposed negative-mass microwave amplifier. Physical Review,1958,109(5): 1856~1856
    【162】B. K. Ridley, T. B. Watkins. Negative resistance and high electric field capture rate in semiconductors. Journal of Physics and Chemistry of Solids,1961,22(12):155~158
    【163】B. K. Ridley, T. B. Watkins. Possibility of Negative Resistance effects in semiconductors. Proceedings
    of The Physical Society London,1961,78(500):293~304
    【164】C. Hilsum. Transferred electron amplifiers and oscillators. Proceedings of The Institute of Radio Engneers,1962,50(2):185~189
    【165】H. Kroemer. Theory of the Gunn effect. Proceedings of The IEEE,1964,52(12):1736~1736
    【166】A. R. Hutson, Mechanism of Gunn effect from a pressure experiment. Physical Review Letters,1965, 14(16):639~641
    【167】王家骅,李长健,牛文成.半导体器件物理.北京:科学出版社,1983:449
    【168】P. N. Butcher, W. Fawcett, and C. Hilsum. A simple analysis of stable propation in Gunn effect. British Journal of Applied Physics,1966,17(7):841~850
    【169】W. Heinle. Principles of a phenomenological theory of Gunn-effect domain dynamics. Solid-State Electronics,1968,11(6):583~598
    【170】W. Heinle. Diagram of Gunn-effect phenomena. Electronics Letters,1966,2(11):417~419
    【171】H. Kroemer. External negative conductance of a semiconductor with negative differential mobility. Proc. IEEE,1965,53(9):1246~1246
    【172】T. Ohmi and K. Murayama. Characteristics of Gunn oscillators with lengths comparable to high-field domain widths. Proc. IEEE,1968,56(12):2190~2191
    【173】F. J. Zutavern, G. M. Loubriel, M. W. O'Malley, L. P. Shanwald, W. D. Helgeson, D. L. McLaughlin, B. B. McKenzie. Photoconductive semiconductor switch experiments for pulsed power applications. IEEE Transactions on Electron Devices,1990,37(12):2472~2477
    【174】R. A. Dougal, J. L. Hudgins, and D. W. Bailey. Optical figure of merit for high gain photoconductive switching. IEEE Power Modulator Symposium,1992:301~304
    【175】G. M. Loubriel, F. J. Zutavern, and H. P. Hjalmarson, et al. Measurement of the velocity of current filaments in optically triggered high gain GaAs switches. Applied Physics Letters,1994,64(24): 3323~3325
    【176】F. J Zutavern, G. M. Loubriel, M. T. Buttram, M. W. O'Malley, et al. High Power Light Activated Semiconductor Switches with Sub-nanosecond Rise Times. IEEE Microwave Syrnp.,1992:377~380
    【177】F. J. Zutavern, G. M. Loubriel, M. W. O'Malley, et al. Recovery of high-field GaAs photoconductive semiconductor switches. IEEE Transactions On Electron Devices,1991,38(4):696~700
    【178】R. P. Brinkmann. Nonlinear behavior of optically activated switches at high electrical fields. IEEE Power Modulator Symposium,1992:316~319
    【179】W. R. Donaldson. Optical probing of field dependent effects in GaAs photoconductive switches. IEEE Pulsed Power Conference,1991:45~49
    【180】施卫,梁振宪.高倍增超快高压GaAs光电导开关触发瞬态特性分析.电子学报,2000,28(2):20~23
    【181】Hanmin Zhao, Jung H. Hur, Peyman Hadizad, and Martin A. Gundersen. Lock-on effect in GaAs
    photoconductive switches. SPIE,1992:274~280
    【182】P. N. Butcher, W. Fawcett, and N. R. Ogg. Effect of field dependent diffusion on stable domain propagation in the Gunn effect. Brit. J. Appl. Phys.,1967,18(6):755~759
    【183】J. E. Carroll and R. A. Giblin. A low-frequency analog for a Gunn-effect oscillator. IEEE Transaction on Electron Devices,1967, ED-14(10):640~456
    【184】沈学础.半导体光谱和光学性质.北京:科学出版社,2002:367
    【185】赵圣之.非线性光学.山东济南:山东大学出版社.2007:236
    【186】T. M. Lifshits, F. Y. Nad. Photoconductivity in germanium alloyed with V group elements when photon energies are lower than admixture ionization energy. Doklady Akademii Nauk Sssr,1965, 162(4):801~809
    【187】S. M. Kogan, T. M. Lifshits. Photoelectric spectroscopy-new method of analysis of impurities in semiconductors. Physica Status Solidia-Applied Research,1977,39(1):11~39
    【188】X. Liu, B. Shi, G. Jia, and Z. Chen, et al. Hemispherical semi-insulating GaAs double-frequency absorption photodetector operating at 1.3 μm wavelength. Aplied Physics Letters,2007,90(10): 101109-1-101109-3
    【189】H. Garcia and R. Kalyanaraman. Convolution theorem for nonlinear optics. Aplied Physics Letters, 2007,91(11):111114-1~111114-3
    【190】R. Herda, T. Hakulinen, S. Suomalainen, and O. G. Okhotnikov. Cavity-enhanced saturable and two-photon absorption in semiconductors. Aplied Physics Letters,2005,87(21):211105-1~211105-3
    【191】H. P. Hjalmarson, G. M. Loubriel, and F. J. Zutavern, et al. A collective impact ionization theory of lock-on. Proc.12th IEEE Pulse Power Conf.,1999:299~302
    【192】S. N. Vainshtein, V. S. Yuferev, and J. T. Kostamovaara. Picosecond range switching of a GaAs avalanche transistor due to bulk carrier generation by avalanching Gunn domains. SPIE,2004,5352: 382-393
    【193】H. W. Thim. Computer Study of Bulk GaAs Devices with Random One-Dimensional Doping Fluctuations. Journal of Applied Physics,1968,39(8):3898~3904
    【194】N. E. Islam, E. Schamiloglu, C. B. Fleddermann. Characterization of a semi-insulating GaAs photoconductive semiconductor Switch for ultrawide band high power microwave applications. Appl. Phys. Lett.,1998,73(14):1988~1990
    【195】袁乃昌,阮成礼,林为干.皮秒光导开关的研制及其应用.电子与信息学报,1994,16(5):518~522
    【196】施卫,梁振宪,冯军,徐传冀,高压超快GaAs光电导开关的耐压设计与绝缘保护.高电压技术,1998,24(1):12~16
    【197】M. O. Manasrech, W. C. Mitchel, D. W. Fischer. Far-infrared absorption from shallow acceptors and its relationship to the persistent photocurrent in semi-insulating GaAs. Semicond. Sci. Technol.,1990, 5(9):994~996
    【198】W. Jost, M. Kunzer, and U. Kaufmann, K. Koehler, J. Schneider, H. C. Alt. AsGa antisite defects in LT GaAs as studied by magnetic and magneto-optical techniques. Semiconductor Science and Technology, 1992,7(11):1386~1389
    【199】F. J. Zutavern. Presentation at 1988 workshop on "Optically and electron beam controlled semiconductor switches". Norfolk, VA,1988:23~24
    【200】E. Harari. Conduction and trapping of electrons in highly stressed ultrathin films of thermal SiC>2. Applied Physics Letters,1977,30(11):601~603
    【201】徐波,王占国,万寿科等.EL2光淬灭过程中光电导增强现象原因新探.半导体学报,1994,15(5):322~328
    【202】J. Jimenez, P. Hernandez, J. A. de. Saja and J. Bonnafe. Optically induced long-lifetime photoconductivity in semi-insulating bulk GaAs. Phys. Rev. B,1987,35(8):3832~3842
    【203】M. Pavlovic, B. Santic, D. I. Desnica-Frankovic, N. Radic, T. Smuc and U. V. Desnica. The impact of deep levels on the photocurrent transients in semi-insulating GaAs. Journal of Electronic Materials, 2003,32(10):1100~1106
    【204】Z-Q. Fang and D. C. Look, Infrared quenching and thermal recovery of thermally stimulated current spectra in GaAs. Applied Physics Letters,1991,59(1):48~50
    【205】A. L. Lin, E. Omelianovski and R, H. Bube. Photoelectronic properties of high-resistivity GaAs:O. Journal of Applied Physics,1976,47(5):1852~1858
    【206】G. Vincent, D. Bois and A. Chantre. Photoelectric memory effect in GaAs. Journal of Applied Physics, 1982,53(5):3643~3649
    【207】A. Mitonnean and A. Mircea. Auger de-excitation of a metastable state in GaAs. Solid State Commun., 1979,30(3):157~162
    【208】E. R. Weber and J. Schneider. AsGa antisite defects in GaAs. Physica B,1983,116(2):398~403
    【209】小崎正光.高电压与绝缘技术.北京:科学出版社,2001,15(5):41
    【210】B. G Bosch, H. R. W. Engelmann. Gunn-effect electronics. Pitman:Bath,1975:256
    【211】M. Kiyama, M. Tatsumi, M. Yamada. Electric-field-enhanced electron capture coefficient of EL2 level in semi-insulating GaAs. Applied Physics Letters,2005,86(1):012102-1~012102-3
    【212】H. L. Au, C. C. Ling, B. K. Panda, T. C. Lee, C. D. Beling, S. Fung. EL2 Deep donor state in semi-Insulating GaAs revealed by frequency dependent positron mobility measurements. Physical Review Letters,1994,73(20):2732~2735
    【213】M. A. Lampert, P. Mark. Current Injection in Solids. New York: Academic 1970:91
    【214】S. K. Ghandhi. Semiconductor Power Devices. New York:Wiley,1977:12
    【215】K. C. Kao, W. Hwang. Electrical Transport in Solids. Beijing: Science Press,1991:183
    【216】J. S. Heeks. Some properties of the moving high-field domain in gunn effect Device. IEEE Transactions on Electron Devices,1988,13(1):68~79
    【217】B. W. Knight and G. A. Peterson. Theory of gunn effect. Physical Review,1967,155(2):393~404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700