聚合物体异质结太阳能电池的器件优化及光伏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济发展、人口数量激增,今后全世界能源消费总量将不断提高,而煤、天然气、石油等传统能源消费总量终有一天将会到达极限。能源危机的日益突显,使人类意识到寻找可再生能源的重要性。太阳能作为绿色、环境友好型能源的代表,成为各国学术界和工业界的研究热点。尽管无机硅太阳能电池具有高的光电转换效率,但由于其制造条件苛刻,生产成本高,不易加工及非柔性等缺点限制了其大规模民用化进程。而以聚合物材料为活性层的聚合物体异质结太阳能电池具有材料来源广、成本低、柔性、可大面积器件及制备工艺简单等特点而被人们广泛关注。
     聚合物体异质结太阳能电池器件性能与活性层给体材料的能级结构、带隙、对光的吸收、成膜性、分子量、载流子迁移率密切相关,此外还与如活性层复合薄膜表面形貌、活性层与电极的界面接触等器件优化过程密不可分。本论文主要围绕研究上述影响因素与聚合物体异质结太阳能电池器件性能的关系并以此展开工作。通过选择窄带隙宽吸收的共轭聚合物作为给体材料增加其对入射光的俘获,考察其分子结构与器件性能之间的关系;通过对器件活性层和电极界面进行修饰和采用不同溶剂、不同给受体掺杂比例、不同活性层厚度成膜等方法对器件进行优化并研究其与器件性能之间的关系;使用具有表面等离子体增强吸收效应的银圆盘纳米晶对阳极进行修饰,并以提高器件对光的捕获;论文的详细内容如下:
     1.在论文的引言部分详细对聚合物体异质结太阳能电池进行综述:包括研究发展历程、工作原理、器件结构、器件性能表征参数与测试仪器、器件性能影响因素等方面的大量研究工作。
     2.以噻吩单元代替苯单元作为桥联基团,将给电子基团芴与吸电子基团苯并噻二唑通过Heck偶联反应进行共聚,合成了一种新型的窄带隙聚芴共轭聚合物PF-TBT[poly(fluorenevinylenealt-4,7-dithienyl-2,1,3-benzothiadiazole)]。噻吩单元以其优良的光学性质、高的载流子迁移率、强的给电子能力和高的化学稳定性而被广泛的应用在聚合物体异质结太阳能电池中。PF-TBT具有宽的吸收光谱,其吸收带边接近700nm,光学带隙为1.82eV。我们以聚合物PF-TBT作为给体材料,富勒烯衍生物PC61BM[(6,6)-phenyl-C61-butyric acid methyl ester]为受体材料,制备了器件结构为ITO/poly(3,4-ethylenedioxythiophene):poly(styenesulfonate) (PEDOT:PSS)/PF-TBT:PC6,BM/LiF/Al的聚合物体异质结太阳能电池,系统地研究了PF-TBT的光物理性质,热学性质和电化学性质,利用空间电荷限制电流方法(SCLC)计算了聚合物的空穴载流子迁移率,利用原子力显微镜(AFM)和透射电子显微镜(TEM)分析了PF-TBT与PC61BM共混膜的表面形貌。在光强100mW/cm2AM1.5G模拟太阳光照射下,Jsc=3.97mAcm-2, FF=0.35, Voc=0.86 V,能量转换效率达1.18%。
     3.以聚苯撑乙烯类共轭聚合物PP-DBT [poly(phenylenevinylene-alt-4,7-diphenyl-2,1,3-benzothiadiazole)]为给体材料,富勒烯衍生物PC71BM [(6,6)-phenyl-C71-butyric acid methyl ester]为受体材料,制备了器件结构为ITO/PEDOT:PSS/PP-DBT:PC71BM/ZnO/Al的聚合物体异质结太阳能电池。对器件进行了一系列优化:对活性层的厚度、给体材料与受体材料掺杂比例进行调节;选择氯苯、氯仿、邻二氯苯为溶剂,考察其对活性层复合薄膜表面形貌的影响;采用ZnO纳米晶对活性层薄膜与电极界面进行修饰。利用空间电荷限制电流方法(SCLC)计算了聚合物PP-DBT的空穴载流子迁移率,利用透射电子显微镜(TEM)和原子力显微镜(AFM)分析了PP-DBT:PC71BM共混膜的表面形貌。在光强100mW/cm2AM1.5G模拟太阳光照射下,器件的Jsc=7.46mAcm-2, FF=0.50,Voc=0.90 V,能量转换效率达3.36%。
     4.利用静电自组装方法将具有局域表面等离子体共振效应的银纳米圆盘组装在ITO基底,并以聚噻吩衍生物P3HT[poly(3-hexylthiophene)]为给体材料,以富勒烯衍生物PC61BM为受体材料,制备了器件结构为[ITO/silver nanodisks/ PEDOT:PSS/P3HT:PC61BM/LiF/Al的太阳能电池,在光强100mW/cm2 AMI.5G模拟太阳光照射下,Jsc=9.24±0.09mAcm-2,FF=0.60±0.01, Voc=0.61±0.01V,能量转换效率达3.46±0.07%。通过银纳米圆盘的等离子体共振效应有效提高聚合物活性层中P3HT对入射光的俘获,与无银纳米圆盘修饰的器件相比,能量转换效率由原来的2.72±0.08%提升至3.46±0.07%。
As the global energy demand continues to increase every year, the limiting supply of today's main energy sources (i.e. oil, coal, natural gas) and their detrimental long-term effects on the natural balance on our planet, force people develop some renewable energy sources. Harvesting energy directly from the sunlight using photovoltaic (PV) technology is being widely recognized as an essential component of future global energy production. Although the photovoltaic cells based on inorganic materials have been proved to convert sunlight to electricity efficiently, the high cost for manufacture limits them to be widely used. Polymer solar cells, based on polymer materials as active layer, possess the advantage of plenty of choices for active layer, low cost, flexibility and easily being large-scale etc., which attracts great attention in recent years.
     The photovoltaic performance of devices is strongly dependent on the band gap, energy levels, light harvesting, film forming ability, molecular weight, charge carrier mobility of donor and acceptor materials. In addition, the surface morphology of active composite layer and the interface modification between active layer and electrodes could also influence the power conversion efficiency of the solar cell.
     The thesis focus on how the above factors such as the band gap of materials, the surface morphology of active layer, the interface modificaton between active layer and electrodes affect the performance of solar cells. We used a low band gap donor-acceptor (D-A) conjugated polymer as donors and PC61BM as acceptor, meanwhile, we investigated the relation between the molecular structure and their device performance; we optimize the solar cell by interface modification, different acceptor material, solvents and blend ratios; We used the plasmonic silver nanodisks modificate the indium tin oxide (ITO) and fabricate the polymer solar cells. More details are now listed below.
     1. First of all, the important steps during the development history of polymer bulk-heterojunction (BHJ) solar cells, work principle, the device structure, characterization and related measure instruments are described, and we also reviewed the recent work focusing on synthesis of materials, device physics and related processing and so on.
     2. A new low band gap copolymer containing dialkylfluorene and 4,7-dithienyl-2,1,3-benzothiadiazole (TBT), poly(fluorenevinylene-alt-4,7-dithienyl-2,1,3-benzothiadiazole) (PF-TBT) was synthesized by Heck cross-coupling polymerization. The copolymer exhibited broad absorption band with an absorption edge close to 700 nm and optical band gap of 1.82 eV. Cyclic voltammetric study indicated that the relatively low HOMO energy level assured a higher open circuit voltage (Voc) when PF-TBT is used as donor material in photovoltaic cell. The Bulk heterojunction (BHJ) solar cell by using PF-TBT as donor and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as acceptor with the structure of ITO/ [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)](PEDOT:PSS)/copolymer: PC61BM/LiF/Al exhibited a Voc of 0.86 V, short-circuit current (Jsc) of 3.97 mA/cm2, fill factor (FF) of 0.35, and power conversion efficiency (PCE) of 1.18% under one sun of AM 1.5 solar simulator illumination (100mW/cm2).
     3. Bulk heterojunction organic photovoltaic cells using blends of [poly(phenylenevinylene-alt-4,7-diphenyl-2,1,3-benzothiadiazole)] and [6.6]-phenyl-C71-butyric acid methyl ester (PC71BM) as electron donor and acceptor were fabricated and characterized. By optimizing the donor/acceptor ratio and the thickness of the active layer, the choice of solvent (1,2-dichlorobenzene, chloroform and chlorobenzene) and using the interface modification of ZnO nanoparticles, the solar cells with the structure of ITO/PEDOT:PSS/PP-DBT:PC71BM/ZnO/Al exhibited a Voc of 0.96 V, short-circuit current (Jsc) of 7.46 mA/cm2, fill factor (FF) of 0.50, and power conversion efficiency (PCE) of 3.36% under one sun of AM 1.5 solar simulator illumination (100mW/cm2).
     4. We report the efficiency enhancement of polymer solar cells by incorporating a silver nanodisks self-assembled layer which was grown on the indium tin oxide (ITO) surface by the electrostatic interaction between the silver particles and modified ITO. Polymer solar cells with a structure of ITO (silver nanodisks)/PEDOT:PSS/ poly(3-hexylthiophene)(P3HT):PC6iBM)/LiF/Al exhibited an open circuit voltage (Voc) of 0.61±0.01V, short-circuit current density (Jsc) of 9.24±0.09mAcm-2, fill factor (FF) of 0.60±0.01, and power conversion efficiency (PCE) of 3.46±0.07% under one sun of simulated air mass 1.5 global (AM 1.5 G) irradiation (100mW/cm2). The PCE was increased from 2.72±0.08% to 3.46±0.07% as compared to the devices without silver nanodisks self-assembled layer, mainly resulting from the improved photocurrent density as a result of the excited localized surface plasmon resonance induced by the silver nanodisks.
引文
[1].United Nations Environment Programme (UNEP), Global environment outlook (GEO year book 2006). http://www.unep.org/geo/yearbook/yb2006/
    [2].Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power [J]. Journal of Applied Physics 1954,25,676-677.
    [3].Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W., Solar cell efficiency tables (version 31). Progress in Photovoltaics 2008,16, (1),61-67.
    [4].Shockley, W.; Queisser, H.J., Detailed Balance Limit of Efficiency of p-n Junction Solar Cells [J]. Journal of Applied Physics 1961,32, (3),510-519.
    [5].M.A.Green, Solar cells-Operating principles, technology and system applications, University of New South Wales, Sydney, (1992).
    [6].Jo, J.; Kim, S.-S.; Na, S.-I.;Yu, B.-K.; Kim, D.-Y. Time-Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells [J]. Advanced Functional Materials 2009,19,866-874
    [7].Peet, J.; Senatore, M.L.; Heeger, A.J.; Bazan, G.C. The Role of Processing in the Farication and Optimization of Plastic Solar Cells [J]. Advanced Materials 2009, 21,1521-1527
    [8].Walker, B.; Tamayo, A.B.; Dang, X.-D.; Zalar, P.; Seo, J.H.; Garcia, A. Tantiwiwat, M.; Nguyen, T.-Q. Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small-Molecule Bulk Heterojunction Solar Cells [J]. Advanced Functional Materials 2009,19,1-7
    [9].Winder, C; Sariciftci, N. S., Low bandgap polymers for photon harvesting in bulk heteroj unction solar cells [J]. Journal of Materials Chemistry 2004,14, (7), 1077-1086.
    [10].Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device Physics of Polymer:Fullerene Bulk Heteroj unction Solar Cells [J]. Advanced Materials 2007,19,1551-1566.
    [11].Giines. S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells [J]. Chemical Review 2007,107,1324-1338.
    [12].Thompson, B. C.; Frechet, J. M. J., Organic photovoltaics Polymer-fullerene composite solar cells [J]. Angewandte Chemie-International Edition 2008,47, (1), 58-77.
    [13].Li,Y.W.; Guo. Q.; Li, Z.F.; Pei, J.N.;Tian,W.J. Solution processable D-A small molecules for bulk-heterojunction solar cells [J]. Energy & Environmental Science 2010,3.1427-1436
    [14].Placencia, D.; Wang, W.N.; Shallcross, R. C.; Nebesny, K.W.; Brumbach, M.; Armstrong, N. R. Organic Photovoltaic Cells Based On Solvent-Annealed, Textured Titanyl Phthalocyanine/C60 Heterojunctions. [J]. Advanced Functional Materials 2009,19,1913-1921
    [15].Chen, H.Y.; Hou, J.H.; Zhang, S.Q.; Liang, Y.Y.; Yang, G.W.; Yang, Y.; Yu, L.P.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature Photonics 2009,3,649-653.
    [16].Huang, F.; Chen, K.-S.; Yip, H.-L.; Hau, S. K; Acton, O.; Zhang, Y.; Luo, J.D.; Jen, A. K-Y. Development of New Conjugated Polymers with Donor-л-Bridge-Acceptor Side Chains for High Performance Solar Cells [J]. Journal of the American Chemical Society,2009,131,13886-13887.
    [17].Hou, J.H.; Chen, H.Y.; Zhang, S.Q.;Li,G.;Yang, Y.; Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole [J]. Journal of the American Chemical Society 2008,130,16144-16145.
    [18].Servaites, J. D.; Yeganeh, S. T.; Marks, J. Ratner, M.A. Efficiency Enhancement in Organic Photovoltaic Cells:Consequences of Optimizing Series Resistance [J]. Advanced Functional Materials 2009,19,1-8
    [19].Qin, R.P.; Li, W.W.; Li, C.H.;Du, C.; Veit, C.; Schleiermacher, H.; Andersson, M.; Bo, Z.S.; Liu, Z.P.; Inganas, O.; Wuerfel, U.; Zhang, F.L. A Planar Copolymer for High Efficiency Polymer Solar Cells [J]. Journal of the American Chemical Society 2009,131,14612-14613.
    [20].Nam,C.-Y.; Su,D.; Black,C.T. High-Performance Air-Processed Polymer-Fullerene Bulk Heterojunction Solar Cells [J]. Advanced Functional Materials 2009,19,1-8
    [21].Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J., Efficient tandem polymer solar cells fabricated by all-solution processing. [J]. Science 2007,317, (5835),222-225.
    [22].Tang, C. W., Two-Layer Organic Photovoltaic Cell [J]. Applied Physics Letters 1986,48,(2),183-185.
    [23].Peumans, P.; Forrest, S. R., Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells [J]. Applied Physics Letters 2001,79, (1), 126-128.
    [24].Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron-Transfer from a Conducting Polymer to Buckminsterfullerene [J]. Science 1992,258, (5087),1474-1476.
    [25].Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells-Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science 1995,270, (5243),1789-1791.
    [26].Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C.,2.5% efficient organic plastic solar cells [J]. Applied Physics Letters 2001,78, (6),841-843.
    [27].Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of postproduction treatment on plastic solar cells [J]. Advanced Functional Materials 2003,13, (1), 85-88.
    [28].Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Advanced Functional Materials 2005,15, (10), 1617-1622.
    [29].Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nature Materials 2005.4, (11),864-868.
    [30].Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C., Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols [J]. Nature Materials 2007,6, (7),497-500.
    [31].Liang, Y.Y.; Feng, D.Q.; Wu, Y.; Tsai,S.-T.; Li, G.; Ray, C.; Yu, L.P. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties [J]. J. Am. Chem. Soc.2009,131,7792-7799
    [32].Liang,Y.Y.; Xu, Z.; Xia, J.B.; Tsai, S.-T.; Wu, Y.; Li,G.; Ray, C.; Yu, L.P. For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Advanced Materials 2010,22, E135-E138.
    [33].Coakley, K. M. and McGehee, M.D. Conjugated Polymer Photovoltaic Cells, [J]. Chemistry of Materials 2004,16,4533-4542
    [34].Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B., The Photovoltaic Response in Poly(P-Phenylene Vinylene) Thin-Film Devices. [J]. Journal of Physics-Condensed Matter 1994,6, (7),1379-1394.
    [35].Yu, G.; Zhang, C.; Heeger, A. J., Dual-Function Semiconducting Polymer Devices-Light-Emitting and Photodetecting Diodes [J]. Applied Physics Letters 1994,64,(12),1540-1542.
    [36].Antoniadis, H.; Hsieh, B. R.; Abkowitz, M. A.; Jenekhe, S. A.; Stolka, M., Photovoltaic and Photoconductive Properties of Aluminum Poly(P-Phenylene Vinylene) Interfaces [J]. Synthetic Metals 1994,62, (3),265-271.
    [37].Pettersson, L. A. A.; Roman, L. S.; Inganas, O., Modeling photocurrent action spectra of photovoltaic devices based on organic thin films [J] Journal of Applied Physics 1999,86, (1),487-496.
    [38].Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell [J]. Applied Physics Letters 1996,68, (22),3120-3122.
    [39].Kietzke, T.; Egbe, D. A. M.; Horhold, H. H.; Neher, D., Comparative study of M3EH-PPV-based bilayer photovoltaic devices [J]. Macromolecules 2006,39, (12),4018-4022.
    [40].Alam, M. M.; Jenekhe, S. A., Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers [J]. Chemistry of Materials 2004,16, (23),4647-4656.
    [41].Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Efficient Photodiodes from Interpenetrating Polymer Networks. [J]. Nature 1995,376, (6540),498-500.
    [42].Halls, J. J. M.; Friend, R. H., The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction [J]. Synthetic Metals 1997, 85, (1-3),1307-1308.
    [43].Kietzke, T.; Horhold, H. H.; Neher, D., Efficient polymer solar cells based on M3EH-PPV [J]. Chemistry of Materials 2005,17. (26).6532-6537.
    [44].Dittmer, J. J.; Marseglia, E. A.; Friend, R. H., Electron trapping in dye/polymer blend photovoltaic cells. [J]. Advanced Materials 2000,12, (17),1270-1274.
    [45].Reiss, P.; Couderc, E.; Girolamo, J.D.; Pron, Adam,Conjugated polymers/ semiconductor nanocrystals hybrid materials-preparation, electrical transport properties and applications [J]. Nanoscale,2011,3,446-489.
    [46]. Zhou, Y.F.; Eck, M.; Kr€uger, M. Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers [J]. Energy & Environmental Science,2010,3,1851-1864
    [47].Gregg, B. A., Excitonic solar cells. [J]. Journal of Physical Chemistry B 2003, 107, (20),4688-4698.
    [48].Gregg, B. A.; Hanna, M. C., Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. [J]. Journal of Applied Physics 2003,93, (6), 3605-3614.
    [49].Barth, S.; Bassler, H., Intrinsic photoconduction in PPV-type conjugated polymers. [J]. Physical Review Letters 1997,79, (22),4445-4448.
    [50].Schweitzer, B.; Bassler, H., Excitons in conjugated polymers. [J]. Synthetic Metals 2000,109,(1-3),1-6.
    [51].Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B., The Photovoltaic Response in Poly(P-Phenylene Vinylene) Thin-Film Devices. [J]. Journal of Physics-Condensed Matter 1994,6, (7),1379-1394.
    [52].Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications [J]. Chemical Review 2009,109,5868-5923
    [53].Reiss, P.; Couderc, E.; Girolamo, J. D.; Pron, A. Conjugated polymers/ semiconductor nanocrystals hybrid materials-preparation, electrical transport properties and applications. [J]. Energy & Environmental Science DOI:10.1039/ c0nr00403k
    [54].Zhou, Y.F.; Eck, M.; Kruger, M.; Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers [J]. Nanoscale, DOI:10.1039/ c0ee00143k
    [55].Huynh, W. U.; J. J.; Alivisatos, A. P. Hybrid Nanorod-Polymer Solar Cells [J]. Science,2002,295,2425-2427
    [56].Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J. hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles [J]. Advanced Functional Materials 2006,16,1112-1116.
    [57].Mihailetchi, V. D., Device Physics of Organic Bulk Heterojunction Solar Cells, University of Groningen. PhD Thesis 2005.
    [58].Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C., Origin of the open circuit voltage of plastic solar cells [J]. Advanced Functional Materials 2001,11, (5),374-380.
    [59].Gadisa, A.; Svensson, M.; Andersson, M. R.; Inganas, O., Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative [J]. Applied Physics Letters 2004, 84, (9),1609-1611.
    [60].Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L., Design rules for donors in bulk-heterojunction solar cells-Towards 10 % energy-conversion efficiency [J]. Advanced Materials 2006,18, (6),789-794.
    [61].Scharber, M. C.; Schultz, N. A.; Sariciftci, N. S.; Brabec, C. J., Optical-and photocurrent-detected magnetic resonance studies on conjugated polymer/fullerene composites [J]. Physical Review B,2003,67, (8),085202.
    [62].Liu, J.; Shi, Y. J.; Yang, Y., Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices [J]. Advanced Functional Materials 2001,11, (6),420-424.
    [63].Van Duren, J. K. J.; Yang, X. N.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sieval, A. B.; Hummelen, J. C.; Janssen, R. A. J., Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance [J]. Advanced Functional Materials 2004,14, (5),425-434.
    [64].Zhang, F. L.; Gadisa, A.; Inganas, O.; Svensson, M.; Andersson, M. R., Influence of buffer layers on the performance of polymer solar cells [J]. Applied Physics Letters 2004,84, (19),3906-3908.
    [65].Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C; Rispens, M. T., Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells [J]. Journal of Applied Physics 2003,94, (10),6849-6854.
    [66].Wang, X. J.; Perzon, E.; Mammo, W.; Oswald, F.; Admassie, S.; Persson, N. K.; Langa, F.; Andersson, M. R.; Inganas, O., Polymer solar cells with low-bandgap polymers blended with C-70-derivative give photocurrent at 1 mu m [J]. Thin Solid Films 2006,511,576-580.
    [67].Wang, X. J.; Perzon, E.; Delgado, J. L.; de la Cruz, P.; Zhang, F. L.; Langa, F.; Andersson, M.; Inganas, O., Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative [J]. Applied Physics Letters 2004,85, (21),5081-5083.
    [68].Wang, X. J.; Perzon, E.; Oswald, F.; Langa, F.; Admassie, S.; Andersson, M. R.; Inganas, O., Enhanced photocurrent spectral response in low-bandgap polyfluorene and C-70-derivative-based solar cells [J]. Advanced Functional Materials 2005,15, (10),1665-1670.
    [69].Zhang. F. L.; Perzon, E.; Wang, X. J.; Mammo, W.; Andersson, M. R.; Inganas, O., Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm [J]. Advanced Functional Materials 2005,15, (5),745-750.
    [70].Andersson, L. M.; Zhang, F. L.; Inganas, O., Stoichiometry, mobility, and performance in bulk heteroj unction solar cells [J]. Applied Physics Letters 2007, 91,(7),071108.
    [71].Sievers, D. W.; Shrotriya, V.; Yang, Y., Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells [J]. Journal of Applied Physics 2006,100, (11),114509.
    [72].Lacic, S.; Inganas, O., Modeling electrical transport in blend heteroj unction organic solar cells [J]. Journal of Applied Physics 2005.97, (12),124901.
    [73].Riedel, I.; Dyakonov, V., Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heteroj unction photovoltaic devices [J]. Physica Status Solidi a-Applied Research 2004,201, (6),1332-1341.
    [74].Schilinsky, P.; Waldauf, C.; Hauch, J.; Brabec, C. J., Simulation of light intensity dependent current characteristics of polymer solar cells [J]. Journal of Applied Physics 2004,95, (5),2816-2819.
    [75].Standard test conditions.http://ecotec-energy.com/gekuehlte photovoltaik/ bedingungen_e.htm
    [76].Blouin,N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Bellete te, M.; Durocher, G.; Tao, Y.; Leclerc, M. Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells [J]. Journal of the American Chemical Society 2008,130,732-742
    [77].Price, S. C.; Stuart, A. C.; Yang, L.Q.; Zhou, H.X.; You,W. Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells [J]. Journal of the American Chemical Society dx.doi.org/10.1021/ja1112595
    [78].Huo, L.J.; Hou, J.h.; Zhang, S.Q.; Chen. H.-Y.; Yang, Y. A Polybenzo[1, 2-b:4,5-b']dithiophene Derivative with Deep HOMO Level and Its Application in High-Performance Polymer Solar Cells [J]. Angewandte Chemie-International Edition,2010,49,1500-1503.
    [79].Zerza, G.; Brabec, C. J.; Cerullo, G.; De Silvestri, S.; Sariciftci, N. S., Ultrafast charge transfer in conjugated polymer-fullerene composites [J]. Synthetic Metals 2001,119, (1-3),637-638.
    [80].Mihailetchi, V. D.; van Duren, J. K. J.; Blom, P. W. M.; Hummelen, J. C. Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk, M. M., Electron transport in a methanofullerene [J]. Advanced Functional Materials 2003,13,(1),43-46.
    [81].Troshin, P. A.; Hoppe, H.; Renz, J.; Egginger, M.; Mayorova, J. Y.; Goryachev, A. E.; Peregudov, A. S.; Lyubovskaya, R. N.;Gobsch, G.; Sariciftci, N. S. Razumov, V. F., Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells [J]. Advanced Functional Materials 2009,19,779-788.
    [82].Ross, R. B.; Cardona, C. M.; Guldi, D. M.; Sankaranarayanan, S. G.; Reese, M. O.; Kopidakis, N.; Peet, J.; Walker, B.; Bazan, G. C.; Keuren, E. V.; Holloway, B. C.; Drees M., Endohedral fullerenes for organic photovoltaic devices [J]. Nature Materials 8,208-212 (2009)
    [83].Zhao,G.j.; He,Y.J.; Xu, Z.; Hou,J.H.; Zhang, M.J. Min,J.; Chen,H.-Y.; Ye,M.F. Hong,Z.; Yang, Y.; Li,Y.F., Effect of Carbon Chain Length in the Substituent of PCBM-like Molecules on Their Photovoltaic Properties [J]. Advanced Functional Materials 2010,20,1480-1487.
    [84].Zhao,G.J.; He,Y.J.; Li,Y.F.6.5% Effi ciency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C 60 Bisadduct by Device Optimization [J]. Advanced Materials 2010,22,4355-4358.
    [85].Dittmer, J. J.; Lazzaroni, R.; Leclere, P.; Moretti, P.; Granstrom, M.; Petritsch, K.; Marseglia, E. A.; Friend, R. H.; Bredas, J. L.; Rost, H.; Holmes, A. B., Crystal network formation in organic solar cells [J]. Solar Energy Materials and Solar Cells 2000,61,(1),53-61.
    [86].Li, J. L.; Dierschke, F.; Wu, J. S.; Grimsdale, A. C.; Mullen, K. Poly(2,7-carbazole) and perylene tetracarboxydiimide:a promising donor/acceptor pair for polymer solar cells [J]. Journal of Materials Chemistry 2006,16, (1),96-100.
    [87].Kietzke, T.; Horhold, H. H.; Neher, D., Efficient polymer solar cells based on M3EH-PPV[J]. Chemistry of Materials 2005,17, (26),6532-6537.
    [88].Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H., Laminated fabrication of polymeric photovoltaic diodes [J]. Nature 1998,395, (6699),257-260.
    [89].Gommans, H.; Aernouts, T.; Verreet, B.; Heremans, P.; Medina, A.; Claessens, C. G.; Torres, T. Perfluorinated Subphthalocyanine as a New Acceptor Material in a Small-Molecule Bilayer Organic Solar Cell [J]. Advanced Functional Materials 2009,19,3435-3439.
    [90].Zhang, F. L.; Gadisa, A.; Inganas, O.; Svensson, M.; Andersson, M. R., Influence of buffer layers on the performance of polymer solar cells [J]. Applied Physics Letters 2004,84, (19),3906-3908.
    [91].Brabec, C. J.; Shaheen, S. E.; Winder, C.; Sariciftci, N. S.; Denk, P., Effect of LiF/metal electrodes on the performance of plastic solar cells [J].Applied Physics Letters 2002,80, (7),1288-1290.
    [92].Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma. W. L.; Gong, X.; Heeger, A. J., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer [J]. Advanced Materials 2006, 18, (5),572-576.
    [93].Zhang, F. L..; Ceder, M.; Inganas, O., Enhancing the photovoltage of polymer solar cells by using a modified cathode [J]. Advanced Materials 2007,19, (14), 1835-1838.
    [94].Yip, H.-L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K.-Y. Polymer Solar Cells That Use Self-Assembled-Monolayer-Modified ZnO/Metals as Cathodes [J]. Advanced Functional Materials,2008,20,2376-2382.
    [95].Park,S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates. N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J., Bulk heterojunction solar cells with internal quantum efficiency approaching 100% [J]. Nature Photonics 2009,3,297-303.
    [96].M. Niggemann, M. Riede, A. Gombert, K. Leo, Light trapping in organic solar Cells [J]. Phys. Status Solidi A 205(2008) 2862-2874.
    [97].D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, E. T. Samulski, Photonic Crystal Geometry for Organic Solar Cells [J]. Nano Letters 9(2009) 2742-2746.
    [98].T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, M. A. Baldo, Surface plasmon polariton mediated energy transfer in organic photovoltaic devices [J]. Applied Physics Letters,91(2007) 093506.
    [99].K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, Surface plasmon increase absorption in polymer photovoltaic cells [J]. Applied Physics Letters,91(2007) 113514.
    [100].F.-C. Chen. J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, M.H. Huang, Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles [J]. Appl. Phys. Lett.95(2009) 013305.
    [101].A.P. Kulkarni, K.M. Noone, K. Munechika, S.R. Guyer, D.S. Ginger, Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms [J].Nano Letters 10(2010) 1501-1505.
    [103].Morfa, A. J.; Rowlen, K. L.; Reilly III, T. H.; Romero, M. J.; van de Lagemaat, J., Plasmon-enhanced solar energy conversion in organic bulk heterojunction. [J]. Applied Physics Letters,92 (2008) 013504.
    [104].S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles [J]. Applied Physics Letters,93 (2008) 073307.
    [105].Van Duren, J. K. J.; Yang, X. N.; Loos. J.; Bulle-Lieuwma, C. W. T.; Sieval, A. B.; Hummelen, J. C.; Janssen, R. A. J., Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. [J]. Advanced Functional Materials,2004,14,425.
    [106].Hoppe, H.; Sariciftci, N. S., Morphology of polymer/fullerene bulk heterojunction solar cells [J]. Journal of Materials Chemistry 2006,16,45-61.
    [107].Hoven, C. V.; Dang, X.-D.; Coffin, R. C.; Peet, J.; Nguyen, T.-Q.; Bazan, G. C., Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives [J]. Advanced Materials, 2010,22,E63-E66.
    [108].Moul, A. J.; Allard, S.; Kronenberg, N. M.; Tsami, A.; Scherf, U.; Meerholz, K., Effect of Polymer Nanoparticle Formation on the Efficiency of Polythiophene Based "Bulk-Heterojunction" Solar Cells [J]. Journal of Physical Chemistry C, 2008,112 (33), pp 12583-12589
    [109].Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J.M.;Michels, M. A. J.; Janssen, R. A. J., Nanoscale morphology of high-performance polymer solar cells [J]. Nano Letters 2005,5,579-583.
    [110]Jo, J.; Na, S.-I.; Kim, S.-S.; Lee, T.-W.; Chung, Y.; Kang, S.-J.; Vak, D.; Kim, D.-Y., Three-Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells [J]. Advanced Functional Materials,2009,19,2398-2406.
    [111]J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J.Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells [J]. Journal of the American Chemical Society 2008,130,3619-3623.
    [112].Hoven, C.V.; Dang, X.-D.; Coffin, R. C.; Peet, J.; Nguyen, T.-Q.; Bazan, G. C., Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives [J]. Advanced Materials, 2011,22,E63-E66.
    [113]. Chu, T.-Y.; Lu, J.P.; Beaupre, S.; Zhang, Y.G.; Pouliot, J.-R.; Wakim, S.; Zhou, J.Y.; Leclerc, M.; Li, Z.; Ding, J.F.; Tao, Y., Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:20,30-d]silole Copolymer with a Power Conversion Efficiency of 7.3%[J]. Journal of the American Chemical Society, dx.doi.org/10.1021/ja2003
    [1].Peumans, P., Uchida, S.& Forrest, S. R. Efficient bulk-heterojunction photovoltaic cells using small-molecular-weight organic thin films [J]. Nature 425,158-162 (2003).
    [2].Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells [J]. Advanced Functional Materials,2007,19,1551-1566.
    [3].Giines, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells [J]. Chemical Review,2007,107,1324-1338.
    [4].Thompson, B. C.; Frechet, J. M. J. Polymer-Fullerene Composite Solar Cells [J]. Angewandte Chemie-International Edition,2008,47,58-77.
    [5].Chen, H.Y.; Hou, J.H.; Zhang, S.Q.; Liang, Y.Y.; Yang, G.W.; Yang, Y.; Yu, L.P.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature Photonics 2009,3,649-653.
    [6].Xia, P. F.; Lu, J. P.; Kwok, C. H.; Fukutani, H.; Wong, M. S.; Tao, Y. Synthesis and properties of monodisperse multi-triarylamine-substituted oligothiophenes and 4,7-bis(2'-oligothienyl)-2,1,3-benzothiadiazoles for organic solar cell applications [J]. Journal of Polymer Science Part A:Polymer Chemistry 2009,47,137-148.
    [7].Wen, S.P.; Pei, J.N.; Zhou, Y.H.; Xue, L.L.; Xu, B.; Li, Y.W.; Tian, W.J. Synthesis and Photovoltaic Properties of Poly(pphenylenevinylene) Derivatives Containing Oxadiazole [J]. Journal of Polymer Science Part A:Polymer Chemistry 2009,47,1003-1012.
    [8].Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. [J]. Science 2007,317,222-225.
    [9].Yip, H.-L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K.-Y. Polymer Solar Cells That Use Self-Assembled-Monolayer-Modified ZnO/Metals as Cathodes [J]. Advanced Materials,2008,20,2376-2382.
    [10].Qiao, Q.Q.; Mcleskey, J.T. Organic/Inorganic Polymer Solar Cells Using a Buffer Layer from All-Water-Solution Processing [J]. Applied Physics Letters, 2005,86,153501.
    [11].Li, Y. W.; Xue, L. L.; Xia, H. J.; Xu, B.; Wen, S. P.; Tian, W. J. Synthesis and properties of polythiophene derivatives containing triphenylamine moiety and their photovoltaic applications [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46,3970-3984.
    [12].(a) Blouin, N.; Michaud, A.; Gendron, D.;Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells [J]. Journal of the American Chemical Society,2008,130,732-742. (b) Yen, W. C.; Pal, B.; Yang, J. S.; Hung, Y. C.; Lin, S. T.; Chao, C. Y.; Su, W. F. Synthesis and characterization of low bandgap copolymers based on indenofluorene and thiophene derivative [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47,5044-5056.
    [13].Zhang, S. M.; Guo, Y. M.; Fan, H. J.; Liu, Y.; Chen, H. Y.; Yang. G. W.; Zhan, X. W.; Liu, Y. Q.; Li, Y. F.; Yang, Y. Low bandgap л-conjugated copolymers based on fused thiophenes and benzothiadiazole:Synthesis and structure-property relationship study [J]. Journal of Polymer Science Part A:Polymer Chemistry2009,47,5498-5508.
    [14].Huang, F.; Chen, K.-S.; Yip, H.-L.; Hau, S. K; Acton, O.; Zhang, Y.; Luo, J.D.; Jen, A. K-Y. Development of New Conjugated Polymers with Donor-л-Bridge-Acceptor Side Chains for High Performance Solar Cells [J]. Journal of the American Chemical Society 2009,131,13886-13887.
    [15].Hou, J.H.; Chen, H.Y.; Zhang, S.Q.;Li,G.;Yang, Y.; Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole [J]. Journal of the American Chemical Society 2008,130,16144-16145.
    [16].Qin, R.P.; Li, W.W.; Li, C.H.;Du. C.; Veit, C.; Schleiermacher, H.; Andersson, M.; Bo, Z.S.; Liu, Z.P.; Inganas, O.; Wuerfel, U.; Zhang, F.L. A Planar Copolymer for High Efficiency Polymer Solar Cells [J]. Journal of the American Chemical Society 2009,131,14612-14613.
    [17].(a)Colladet, K.; Fourier, S.; Cleij, T.J.; Lutsen, L.; Gelan, J.; Vanderzande, D.;Nguyen, L.H.; Neugebauer, H.; Sariciftci, N. S.;Aguirre, A.;Janssen, G.;Goovaerts, E. Low Band Gap Donor-Acceptor Conjugated Polymers toward Organic Solar Cells Applications Macromolecules 2007,40,65-72. (b) Zhang, S. M.; Fan, H. J.; Liu, Y.; Zhao, G. J.; Li, Q. K.; Li, Y. F.; Zhan, X. W.;Soluble dithienothiophene polymers:Effect of link pattern [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47,2843-2852.
    [18].Wakim. S.; Beaupre, S.; Blouin, N.; Aich, B.-R.; Rodman, S.; Gaudiana, R.; Tao, Y.; Leclerc, M. Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative [J]. Journal of Materials Chemistry 2009,19,5351-5358.
    [19].Sang, G.Y.; Zou Y.P.; Li,Y.F. Two Polythiophene Derivatives Containing Phenothiazine Units:Synthesis and Photovoltaic Properties [J]. Journal of Physical Chemistry C 2008,112,12058-12064.
    [20].Brabec, C. J.; Winder, C.; Saraciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; van Hall, P. A.; Jassen, R. A. J. A Low-Bandgap Semiconducting Polymer for Photovoltaic Devices and Infrared Emitting Diodes [J]. Advanced Functional Materials.2002,12,709-712.
    [21].Blouin, N.; Michaud, A.; Leclerc, M. A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells [J]. Advanced Functional Materials,2007,19,2295-2300.
    [22].Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J.-F.; Leclerc, M. Synthesis of 2,7-Carbazolenevinylene-Based Copolymers and Characterization of Their Photovoltaic Properties [J]. Advanced Functional Materials,2006,16, 1694-1704.
    [23].Agrawal, AK.; Jenekhe, SA. Electrochemical Properties and Electronic Structures of Conjugated Polyquinolines and Polyanthrazolines [J]. Chemistry of Materials. 1996,8,579-589.
    [24].Cui, Y.; Zhang, X.; Jenekhe, SA. Thiophene-Linked Polyphenylquinoxaline:A New Electron Transport Conjugated Polymer for Electroluminescent Devices [J]. Macromolecules 1999,32,3824-3826.
    [25].Yasuda, T.; Sakai, Y.; Aramaki, S.; Yamamoto, T. New Coplanar (ABA)n-Type Donor-Acceptor л-Conjugated Copolymers Constituted of Alkylthiophene (Unit A) and Pyridazine (Unit B):Synthesis Using Hexamethylditin, Self-Organized Solid Structure, and Optical and Electrochemical Properties of the Copolymers [J]. Chemistry of Materials.2005; 17,6060-6068.
    [26].Scherf, U.; List, E.J.W. Semiconducting Polyfluorenes—Towards Reliable Structure-Property Relationships [J]. Advanced Materials,2002,14,477-487.
    [27].Liu, B.; Yu, W.L.; Lai, Y.H.; Huang, W. Blue-Light-Emitting Fluorene-Based Polymers with Tunable Electronic Properties [J]. Chemistry of Materials.2001, 13,1984-1991.
    [28].Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications [J]. Chemical Review 2009,109,5868-5923.
    [29].Svensson, M.; Zhang, F.L.;Veenstra, S.C.;Verhees, W.J.H.; Hummelen, J.C.; Kroon, J.M.; Inganas,O.; Andersson, M.R. High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative [J]. Advanced Materials,2003,15,988-991
    [30].Wen, S.P.; Pei, J.N.; Zhou, Y.H.; Li, P.F.; Xue, L.L.; Li, Y.W.; Xu, B.; Tian, W.J. Synthesis of 4,7-Diphenyl-2,l,3-Benzothiadiazole-Based Copolymers and Their Photovoltaic Applications [J]. Macromolecules 2009,42,4977-4984.
    [31].Anuragudom, P.; Newaz, S. S.; Phanichphant, S.; Lee, T. R. Facile Horner-Emmons Synthesis of Defect-Free Poly(9,9-dialkylfluorenyl-2,7-vinylene) [J]. Macromolecules 2006,39,3494-3499.
    [32].Pilgram, K.; Zupan, M.; Skile, R., Bromination of 2,1,3-benzothiadiazoles [J]. J. Heterocycl. Chem.1970,7,629-633.
    [33].Shi, C. J.; Wu, Y.; Zeng, W. J.; Xie, Y. Q.; Yang, K. X.; Cao, Y., Saturated Red Light-Emitting Copolymers of Poly(aryleneethynylene)s with Narrow-Band-Gap (NBG) Units:Synthesis and Luminescent Properties [J]. Macromolar Chemistry and Physics 2005,206,1114-1125.
    [34].Peng, Q.; Park, K.; Lin, T.; Durstock, M.; Dai, L. M. Donor-л-Acceptor Conjugated Copolymers for Photovoltaic Applications:Tuning the Open-Circuit Voltage by Adjusting the Donor/Acceptor Ratio [J]. Journal of Physical Chemistry B,2008,112,2801-2808.
    [35].van Bavel, S. S.; Sourty, E.; de With, G.; Frolic, K.; Loos, J. Relation between photoactive layer thickness,3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells [J]. Macromolecules.2009,42, 7396.
    [36].Xu, Z.; Chen, L.-M.; Yang, G.; Huang, C.-H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C.-S.; Yang. Y. Vertical phase separation in poly(3-hexylthiophene):fullerene derivative blends and its advantage for inverted structure solar cells [J]. Advanced Functional Material,2009,19,1.
    [37].Dante, M.; Peet, J.; Nguyen, T.-Q. Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy [J]. Journal of Physical Chemistry C 2008,112,7241
    [1].Tang, C. W., Two-Layer Organic Photovoltaic Cell [J]. Applied Physics Letters 1986,48,(2),183-185.
    [2].Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells [J]. Advanced Materials.2007,19,1551-1566.
    [3].Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells [J]. Chemical Review 2007,107,1324-1338.
    [4].Thompson, B. C.; Frechet, J. M. J., Organic photovoltaics Polymer-fullerene composite solar cells. [J]. Angewandte Chemie-International Edition 2008,47, (1), 58-77.
    [5].Yu, G.; Gao, J.; Hummelen, J. C.; Wudl. F.; Heeger, A. J., Polymer Photovoltaic Cells-Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science 1995,270, (5243),1789-1791.
    [6].Li, G.; Shrotriya, V.; Huang, J. S.; Yao. Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nature Materials 2005,4, (11),864-868.
    [7].Chu, T.-Y.; Lu, J.P.; Beaupre, S.; Zhang, Y.G.; Pouliot, J.-R.; Wakim, S.; Zhou, J.Y.; Leclerc, M.; Li, Z.; Ding, J.F.; Tao, Y. Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:20,30-d]silole Copolymer with a Power Conversion Efficiency of 7.3% [J]. Journal of the American Chemical Society dx.doi.org/10.1021/ja200314m
    [8]. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. [J]. Science 2007,317,222-225.
    [9]. Chen, H.Y.; Hou, J.H.; Zhang, S.Q.; Liang, Y.Y.; Yang, G.W.; Yang, Y.; Yu, L.P.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature Photonics 2009,3,649-653.
    [10].Park.S. H.; Roy. A.; Beaupre, S.; Cho. S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J., Bulk heterojunction solar cells with internal quantum efficiency approaching 100% [J]. Nature Photonics 2009,3,297-303.
    [11].Mihailetchi, V. D.; van Duren, J. K. J.; Blom. P. W. M.; Hummelen, J. C.; Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees. W. J. H.; Wienk, M. M., Electron transport in a methanofullerene [J]. Advanced Functional Materials 2003,13.(1),43-46.
    [12].Liu, J.; Shi, Y. J.; Yang, Y., Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices [J]. Advanced Functional Materials 2001,11. (6),420-424.
    [13].Scharber, M. C.; Schultz, N. A.; Sariciftci, N. S.; Brabec, C. J., Optical-and photocurrent-detected magnetic resonance studies on conjugated polymer/fullerene composites [J]. Physical Review B 2003,67, (8),085202.
    [14].Van Duren, J. K. J.; Yang, X. N.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sieval, A. B.; Hummelen, J. C.; Janssen, R. A. J., Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. [J]. Advanced Functional Materials 2004,14, (5),425-434.
    [15].Shaheen. S.E.; Brabec, C.J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T. Hummelen, J. C.,2.5% efficient organic plastic solar cells [J]. Applied Physics Letters 2001,78, (6),841-843.
    [16].Hoppe, H.; Sariciftci, N.S., Morphology of polymer/fullerene bulk heterojunction solar cells [J]. Journal of Materials Chemistry 2006,16, (1),45-61.
    [17].Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J.Poly(3-alkylthiophene) Nanofibres:Probing Order as a Function M.; Michels, M. A. J.; Janssen, R. A. J., Nanoscale morphology of high-performance polymer solar cells [J]. Nano Letters 2005,5, (4),579-583.
    [18].Jo, J.; Na, S.-I.; Kim, S.-S.; Lee, T.-W.; Chung, Y.; Kang, S.-J.; Vak, D.; Kim, D.-Y. Three-Dimensional Bulk Heteroj unction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells [J]. Advanced Functional Materials 2009,19,2398-2406.
    [19].J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J.Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells [J]. Journal of the American Chemical Society 2008,130,3619-3623.
    [20].Hoven, C.V.; Dang, X.-D.; Coffin, R. C.; Peet, J.; Nguyen, T.-Q.; Bazan, G. C. Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives [J]. Advanced Materials, 2010,22,E63-E66.
    [21].Hoven, C. V.; Dang, X.-D.; Coffin, R. C.; Peet, J.; Nguyen, T.-Q.; Bazan. G. C.Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives [J]. Advanced Materials, 2010,22,E63-E66.
    [22]. Moul, A. J.; Allard, S.; Kronenberg, N. M.; Tsami, A.; Scherf, U.; Meerholz, K. Effect of Polymer Nanoparticle Formation on the Efficiency of Polythiophene Based "Bulk-Heterojunction" Solar Cells [J]. Journal of Physical Chemistry C, 2008,112 (33), pp 12583-12589
    [23].Zhang, F. L.; Johansson, M.; Andersson, M. R.; Hummelen, J. C; Inganas, O., Polymer solar cells based on MEH-PPV and PCBM [J]. Synthetic Metals 2003, 137,(1-3),1401-1402.
    [24].Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Advanced Functional Materials 2005,15, (10), 1617-1622.
    [25].Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005,4, (11),864-868.
    [26].Shanpeng Wen, Jianing Pei, Yinhua Zhou, Pengfei Li, Lili Xue, Yaowen Li, Bin Xu, Wenjing Tian. Synthesis of 4,7-Diphenyl-2,1,3-Benzothiadiazole-Based Copolymers and Their Photovoltaic Applications [J]. Macromolecules 2009,42, 4977.4984.
    [27].Liu, J.; Bu, L.J.; Dong, J.P.; Zhou, Q.G.; Geng, Y.H.; Ma, D.G.; Wang, L.X.; Jing, X.B. Wang, F.S. Green light-emitting polyfluorenes with improved color purity incorporated with 4,7-diphenyl-2,1,3-benzothiadiazole moieties, [J]. Journal of Materials Chemistry,2007,17,2832-2838
    [28].Zhang, X.L.; Gorohmaru, H.; Kadowaki, M.; Kobayashi, T.; Ishi-i, T.; Thiemann, T. and Mataka, S. Benzo-2,1,3-thiadiazole-based, highly dichroic fluorescent dyes for fluorescent host-guest liquid crystal displays [J]. Journal of Materials Chemistry,2004,14,1901-1904
    [1].Yablonovitch, E.& Cody, G. D. Intensity enhancement in textured optical sheets for solar cells [J]. IEEE Trans. Electr. Dev.29,300-305 (1982).
    [2].Yablonovitch, E.& Cody, G. D. Intensity enhancement in textured optical sheets for solar cells [J]. IEEE Trans. Electr. Dev.29,300-305 (1982).
    [3].Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes [J]. Advanced Functional Materials,2007,17,1636.
    [4].Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells [J]. Nano Letters 2005,5,579.
    [5].Xu, Z.; Chen, L.-M.; Yang, G.; Huang, C.-H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C.-S.; Yang, Y. Vertical phase separation in poly(3-hexylthiophene):fullerene derivative blends and its advantage for inverted structure solar cells [J]. Advanced Functional Materials,2009,19,1.
    [6]J.H. Hou, H.Y. Chen, S.Q. Zhang, G. Li, Y. Yang, Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole [J]. Journal of the American Chemical Society 130(2008) 16144-16145.
    [7].M. Niggemann, M. Riede, A. Gombert, K. Leo, Light trapping in organic solar cells [J]. Phys. Status Solidi A 205(2008) 2862-2874.
    [8].D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, E. T. Samulski, Photonic Crystal Geometry for Organic Solar Cells, [J]. Nano Letters 9(2009) 2742-2746.
    [9].T.D. Heidel, J. K. Mapel, M. Singh, K. Celebi, M. A. Baldo, Surface plasmon polariton mediated energy transfer in organic photovoltaic devices [J]. Applied Physics Letters,91(2007) 093506.
    [10].K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, I. V. Zozoulenko, Surface plasmon increase absorption in polymer photovoltaic cells [J]. Applied Physics Letters,91(2007) 113514.
    [11J.F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, M.H. Huang, Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles [J]. Applied Physics Letters,95(2009) 013305.
    [12].A.P. Kulkarni, K.M. Noone, K. Munechika, S.R. Guyer, D.S. Ginger, Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms [J]. Nano Letters 10(2010) 1501-1505.
    [13].Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides [J]. Nature Materials. 2,229-232 (2003).
    [14].Zia, R., Selker, M. D., Catrysse, P. B.& Brongersma, M. L. Geometries and materials for subwavelength surface plasmon modes [J]. J. Opt. Soc. Am. A 21, 2442-2446 (2004).
    [15].C. Hagglund, M. Zach, G. Petersson, B. Kasemo, Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons [J]. Applied Physics Letters 92(2008)053110.
    [16].Linden, S. et al. Magnetic response of metamaterials at 100 terahertz [J]. Science 306,1351-1353(2004).
    [17].Derkacs, D., Lim, S. H., Matheu, P., Mar, W.& Yu, E. T. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles [J]. Applied Physics Letters.89,093103 (2006).
    [18].W.L. Barnes, A. Dereux, T.W. Ebbesen, Review article Surface plasmon subwavelength optics [J]. Nature 424 (2003) 824-830.
    [19].Nakayama, K., Tanabe, K.& Atwater, H. A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells [J]. Applied Physics Letters,93,121904 (2008).
    [20].C. Hagglund, B. Kasemo, Nanoparticle Plasmonics for 2D-Photovoltaics: Mechanisms, Optimization, and Limits [J]. Opt. Express 17(2009) 11944-11957.
    [21].S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles [J]. Applied Physics Letters,93 (2008) 073307.
    [22].W.-J. Yoon, K.-Y. Jung, J.W. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, P. Berger, Plasmon-enhanced optical absorption and photocurrent in organic bulk Heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles [J]. Solar Energy Materials & Solar Cells 94(2010) 128-132.
    [23].K. Kim, and D. L. Carroll, Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heteroj unction photovoltaic devices [J]. Applied Physics Letters,87 (2005) 203113.
    [24].Beck, F. J., Polman, A.& Catchpole, K. R. Tunable light trapping for solar cells using localized surface plasmons [J]. Journal of Applied Physics 105,114310 (2009).
    [25].B. Tang, S.P. Xu, J. An, B. Zhao, W.Q. Xu, Silver Nanodisks with Tunable Size by Heat Aging [J]. Journal of Physical Chemistry C113(2009) 7025-7030
    [26].Beck, F. J., Mokkapati, S., Polman, A.& Catchpole, K. R. Asymmetry in light-trapping by plasmonic nanoparticle arrays located on the front or on the rear of solar cells [J]. Applied Physics Letters (in the press).
    [27].B. Nikoobakht, M.A. El-Sayed, Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods [J]. J. Phys. Chem. A 107(2003) 3372-3378.
    [28].J.H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, K. Cho, High efficiency polymer solar cells with wet deposited plasmonic gold nanodots [J]. Organic Electronics 10(2009)416-420.
    [29].Y.J. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z.-Y. Li, Y. Xia, Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties [J]. Journal of the American Chemical Society 127(2005)17118-17127.
    [30].X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, Y. Xia, Chemical Synthesis of Novel Plasmonic Nanoparticles [J]. Annu. Rev. Phys. Chem.60(2009) 167-192.
    [31].Stuart, H. R.& Hall, D. G. Thermodynamic limit to light trapping in thin planar structures [J]. J. Opt. Soc. Am. A 14,3001-3008 (1997).
    [32].Lindquist, N. C, Luhman, W. A., Oh, S. H.& Holmes, R. J. Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells [J]. Applied Physics Letters 93.123308 (2008).
    [33].Rand. B. P., Peumans, P.& Forrest, S. R. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters [J]. Journal of Applied Physics,96,7519-7526 (2004).
    [34].Rand, B. P., Peumans, P.& Forrest, S. R. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters [J]. Journal of Applied Physics 96,7519-7526 (2004).
    [35].Pala, R. A., White, J., Barnard, E., Liu, J.& Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements [J]. Advanced Materials,21,3504-3509 (2009).
    [36].W. Leng, H. Y. Woo, D. Vak, G. C. Bazan, A. M. Kelley, Surface-enhanced resonance Raman and hyper-Raman spectroscopy of water-soluble substituted stilbene and distyrylbenzene chromophores [J]. J. Raman Spectrosc.37(2006) 132-141.
    [37].Hagglund, C, Zach, M.& Kasemo, B. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons [J]. Applied Physics Letters 92,013113(2008).
    [38].L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells [J]. Applied Physics Letters 88(2006)052104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700