新型可溶液加工有机小分子材料的设计合成及光伏性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体异质结有机太阳能电池,具有制备工艺简单、重量轻、柔性等优点而被人们认为是取代硅太阳能电池的有效产品。而有机小分子相对于聚合物而言,由于具有较高的纯度、较高的载流子迁移率、明确的分子结构和固定的分子量等优点而越来越受到人们的关注。
     本文综述了可溶液加工的有机小分子体异质结太阳能电池的原理、结构和发展现状。同时设计合成了一系列可溶液加工的新型有机给受体小分子太阳能电池给体材料。我们通过改变小分子的共轭性,构筑新型给受体共轭小分子等方法成功实现了对给体材料带隙、能级、表面形貌、迁移率以及器件性能的调节。具体研究成果如下:
     1.通过Suzuki偶联方法合成了一系列基于三苯胺,2-吡喃-4-亚基丙二氰和不同桥连基团的给受体小分子APPM, AAPM和ATPM。研究表明:这些小分子具有较好的溶解性,较宽的吸收光谱以及较高的载流子迁移率。通过桥连基团的调节(吩噻嗪→三苯胺→噻吩),分子的HOMO能级逐步降低,在以PCBM为受体的器件中,开路电压得到改善(0.80V→0.90V→1.00V),光电转换效率依次递增:APPM 0.65%, AAPM 0.94%和ATPM 1.31%。
     2.基于强给电子基团噻吩、三苯胺和2-吡喃-4-亚基丙二氰构建了一系列可溶液加工的给受体小分子(2TAPM,4TAPM和2BTAPM)。DSC测试表明,这些小分子是无定形的。紫外可见吸收光谱研究发现,通过调节三苯胺基团外围噻吩单元的数目和长度,有效的拓宽了分子的吸收光谱,降低了共轭分子的带隙。基于2TAPM和4TAPM光伏器件的光电转换效率分别达到了1.76%和2.47%。光伏器件性能研究表明:分子结构的改变有效调节了活性层的表面形貌,从而较大程度的改善了器件性能。
     3.在以2-吡喃-4-亚基丙二氰为受体的给受体有机小分子的共轭链中引入具有强给电子能力和高共平面性的齐聚噻吩,获得了一系列溶解性好、结晶性强、吸收范围宽、带隙窄的有机小分子。电化学测试结果表明:随着齐聚噻吩中噻吩个数的增加,分子的HOMO能级逐渐升高。空间电荷限制电流方法研究发现:随着分子中噻吩单元个数的增加,共轭链的增长,其空穴迁移率逐渐增加。最终,通过改变给体基团中噻吩单元的数目,有效的调节了器件活性层的形貌,极大的提高了器件的短路电流和光电转换效率(0.03%-1.15%)。
     4.以不同长度的齐聚噻吩为给电子基团,2-吡喃-4-亚基丙二氰为吸电子基团构建了一系列可溶液加工的给受体小分子。另外,我们在分子中引入不同长度的烷基链以考察其对分子基本性质和光伏性能的影响。研究发现:通过分子中烷基链长度的调节,在吸收光谱范围不变的情况下,有效的提高了分子的光学密度。光伏器件研究表明,烷基链的缩短有效的改善了活性层的表面形貌,提高了分子的光电转换效率(1.35%→1.82%→2.20%)。
     5.通过柯诺瓦诺格反应,首次合成了一种新的吸电子基团5-(2,6-二甲基-4H-吡喃4-亚基)-1,3-二乙基-2-硫酮基-二氢嘧啶-4,6(1H,5H)-二酮(PD)在此基础上,以具有强给电子能力和高共平面性的齐聚噻吩为给电子基团,通过still偶联反应合成了可溶液加工的给受体小分子8TPDC8。紫外可见吸收光谱研究发现:小分子8TPDC8在固体薄膜状态下展现了非常宽的吸收光谱范围(300-900 nm),这说明新合成的吸电子基团PD在构建宽吸收的给体方面有着广阔的前景。初步光伏器件性能研究表明:在以PCBM为受体的条件下,器件的光电转换效率达到了1.28%。
Bulk-Heterojunction organic solar cells are evolving into a promising cost-effective alternative to the silicon-based solar cells due to their low-cost fabrication through solution processing, light weight, as well as excellent compatibility with flexible substrates etc. In contrast to polymers, small molecules have attracted more and more attentions due to their high purity, high charge carrier mobilities, well-defined molecular structures and definite molecular weights.
     In this thesis, we discussed principle, structure, development state of bulk-heterojunction organic small molecule solar cells. Then we designed and synthesized a series of solution processible donor-acceptor small molecules as donor materials. We modulated the band gap, energy level, surface morphology, carrier mobility, and photovoltaic properties of the synthesized small molecules by changing the conjugated length and structures. The detailed results of research were described as follows:
     1. We successfully synthesized a series of symmetrical solution processable small molecules (APPM, AAPM and ATPM) consisting of the electron-accepting moiety (2-pyran-4-ylidenemalononitrile) (PM) and the electron-donating moiety (triphenylamine) linked by different electron-donating moieties (phenothiazine, triphenylamine and thiophene) through a Suzuki coupling reaction. Research results showed that these small molecules possess good solubility, broad absorption and relatively high hole mobility. The open circuit voltage and power conversion efficiencies of 0.80V,0.90V,1.00V, and 0.65%,0.94%,1.31% were achieved for the photovoltaic devices based on APPM/PCBM, AAPM/PCBM and ATPM/PCBM, respectively. The results indicate that it is an effect way to enhance the open circuit voltage and improve the power conversion efficiencies of photovoltaic devices by adjusting the bridge moieties in donor materials.
     2. We successfully synthesized a series of novel solution processible small molecules (2TAPM,4TAPM and 2BTAPM) consisting of electron-accepting unit (2-pyran-4-ylidenemalononitrile) (PM) and electron-donating unit (Triphenylamine and different thiophene units). Differential scanning calorimetry (DSC) measurement indicates that these small molecules are amorphous. UV-vis absorption spectra show that the combination of PM with moieties having gradually increased electron-donating ability results in an enhanced intramolecular charge transfer (ICT) transition, leading to an extension of the absorption spectral range and a reduction of the band gap of the molecules. Power conversion efficiencies of 1.76% and 2.47% were achieved for the photovoltaic devices based on 2TAPM and 4TAPM respectively, which indicated that it is an effect method for enhancing photovoltaic performance by adjusting molecule structure and thus improving the surface morphology of active layer.
     3. We have synthesized a series of small molecules with 2-pyran-4-ylidenemalononitrile (PM) as the electron-accepting unit and oligothiophene with different numbers as the electron-donating unit. These small molecules possess good solubility, strong crystallinity, broad absorption range and low band gap properties. Cyclic voltammetry investigation displayed that the highest occupied molecular orbital (HOMO) energy levels of the three molecules rise with the increase of thiophene units. Space charge limited current (SCLC) method reveals that the hole mobility increased with the increase of conjugated chain. Finally, the surface morphology was fine-tuned and the photovoltaic performance was enhanced with the increase of thiophene units (0.03%-1.15%)
     4. A series of solution processable small molecules based on PM and oligothiophene with different thiophene units were synthesized according to the well-known palladium-catalyzed Suzuki and Still coupling reaction. Furthermore, different length of alkyl chains were introduced for investigating its influences on the properties and photovoltaic performance of these small molecules. UV-vis absorption spectra showed that the optical density was enhanced according to reducing the length of alkyl chains. The photovoltaic device investigations displayed that the surface morphology was improved and thus the photovoltaic performance enhanced gradually from 1.35% to 1.82% and 2.20%.
     5. we synthesized a new electron-accepting unit 5-(2,6-Dimethyl-pyran-4-ylidene)-1,3-diethyl-2-thioxo-dihydro-pyrimidine-4,6-dione (PD) based on 2,6-Dimethyl- pyran-4-one and 1,3-Diethyl-2-thioxo-dihydro-pyrimidine-4,6-dione by knoevenagel reaction. Furthermore, we designed and synthesized small molecule 8TPDC8 with oligothiophene as electron-donating unit and PD as electron-accepting unit. UV-vis absorption spectra displayed that 8TPDC8 thin film covered the rather broad absorption spectrum from 300 to 900 nm, which indicated that PD is a promising electron-accepting unit for constructing donor materials with broad absorption spectrum. Photovoltaic devices were fabricated with 8TPDC8 as donor and PCBM as acceptor and a relatively high PCE 1.28% achieved.
引文
[1]Chapin, D. M; Fuller, C. S.; Pearson, G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power [J]. Journal of Applied Physics 1954,25,676-677.
    [2]Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W., Solar cell efficiency tables (version 31). Progress in Photovoltaics 2008,16,61-67.
    [3]Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells [J]. Chem. Rev.2007,107,1324-1338.
    [4]Bungaard, E.; Krebs, F. C., Low band gap polymers for organic photovoltaics [J]. Solar Energy Materials & Solar Cells 2007,91,954-985.
    [5]Brabec, C. J., Organic photovoltaics:technology and market [J]. Solar Energy Materials & Solar Cells 2004,83,273-292.
    [6]Gustafsson, G.; Gao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J., Flexible light-emitting diodes made from soluble conducting polymers [J]. Nature, 1992,357,477-479.
    [7]Roncali, J.; Frere, P.; Blanchard, P.; Bettignies, R.; Turbiez, M.; Roquet, S.; Leriche, P.; Nicolas, Y., Molecular and supramolecular engineering of π-conjugated systems for photovoltaic conversion [J]. Thin Solid Films,2006, 511-512,567-575.
    [8]Sun, X. B.; Zhou, Y H.; Wu, W. C.; Liu, Y Q.; Tian, W. J.; Yu, G.; Qiu, W. F.; Chen, S. Y.; Zhu, D. B., X-shaped oligothiophenes as a new class of electron donors for bulk-heterojunction solar cells [J]. J. Phys. Chem. B,2006,110, 7702-7707.
    [9]Roquet, S.; Cravino, A.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J., Triphenylamine-Triphenylamine Hybrid Systems with Internal Charge Transfer as Donor Materials for Heterojunction Solar Cells [J]. J. Am. Chem. Soc.2006,128, 3459-3466.
    [10]Lloyd, M. T.; Anthony, J. E.; Malliaras, G. G., Photovoltaics from Soluble Small Molecules [J]. Mater. Today 2007,10,34-41.
    [11]Rand, B. P.; Genoe, J.; Heremans, P.; Poortmans, J., Solar Cells Utilizing Small Molecular Weight Organic Semiconductors [J]. Prog. Photovoltaics:Res. Appl., 2007,15,659-676.
    [12]Walker, B.; Tamayo, A. B.; Dang, X. Dung.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T. Q., Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small Molecule Bulk Heterojunction Solar Cells [J]. Adv. Funct. Mater.2009,19,1-7.
    [13]Hastings, J. M.; Pouget, J. P.; Shirane, G.; Heeger, A. J.; Miro, N. D.; MacDiarmid, A. G., One-Dimensional Phonons and "Phase-Ordering" Phase Transition in Hg3-deltaAsF6 [J]. Phy. Rev. Let.1977,39,1484-1487.
    [14]Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G., Electrical Conductivity in Doped Polyacetylene [J]. Phy. Rev. Let.1977,39,1098-1101.
    [15]Weinberger, B. R.; Ehrenfreund, E.; Pron, A.; Heeger, A. J.; MacDiarmid, A. G., Electron spin resonance studies of magnetic soliton defects in polyacetylene [J]. J. Chem. Phy.1980,72,4749-4755.
    [16]Glenis, S.; Tourillon, G.; Gamier, F., Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene [J]. Thin Solid Films 1986, 139,221-231.
    [17]Glenis, S.; Tourillon, G.; Gamier, F., Photoelectrochemical properties of thin films of polythiophene and derivatives:Doping level and structure effects [J]. Thin Solid Films 1984,122,9-17.
    [18]Tang, C. W., Two-Layer Organic Photovoltaic Cell [J]. Appl. Phys. Lett.1986, 48,183.
    [19]Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science 1995,270,1789-1791.
    [20]Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Efficient photodiodes from interpenetrating polymer networks [J]. Nature 1995,376,498-500.
    [21]黄春辉李富友黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005.82—87.
    [22]Hanisch, J.; Ahlswede, E.; M Powalla., Contacts for semitransparent organic solar cells [J]. Eur Phys J Appl Phys,2007,90:163511-1—163511-3.
    [23]Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T. Hummelen, J. C.,2.5% efficient organic plastic solar cells [J]. Applied Physics Letters 2001,78(6):841-843
    [24]Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of postproduction treatment on plastic solar cells [J]. Advanced Functional Materials 2003,13, 85-88.
    [25]Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology [J]. Advanced Functional Materials 2005,15,1617-1622.
    [26]Chen, H. Y.; Hou, J. H.; Zhang, S. Q.; Liang, Y Y.; Yang, G. W.; Yang, Y.; Yu, L. P.; Wu, Y.; Li, G., Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature photonics 2009,3.649-653.
    [27]Liang, Y. Y.; Wu, Y.; Feng, D. Q.; Tsai, S. T.; Son, H. J.; Li, G.; Yu, L. P., Development of new semiconducting polymers for high performance solar cells [J]. J. A. Chem. Soc.2009,131,56-57.
    [28]Liang, Y. Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. P., For the Bright Future-Bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Advanced Materials 2010,22,1-4.
    [29]Sun, X. B.; Liu, Y. Q.; Xu, X. J.; Yang, C. H.; Yu, G.; Chen, S. Y.; Zhao, Z. H.; Qiu, W. F.; Li, Y. F.; Zhu, D. B., Novel electroactive and photoactive molecular materials based on conjugated donor-acceptor structures for optoelectronic device [J]. J. Phys. Chem. B 2005,109,10786-10792.
    [30]He, C.; He, Q. G.; Yang, X. D.; Wu, G. L.; Yang, C. H.; Bai, F. L.; Shuai, Z. G.; Wang, L. X.; Li, Y. F., Synthesis and photovoltaic properties of a solution-processible organic molecule containing triphenylamine and DCM moieties [J]. J. Phys. Chem. C 2007,111,8661-8666.
    [31]Kronenberg, N. M.; Deppisch, M.; W€urthner, F.; Lademann, H. W. A.; Deing, K.; Meerholz, K., Bulk heteroj unction organic solar cells based on merocyanine colorants [J]. Chem. Commun.2008,6489.
    [32]Tamayo, A. B.; Walker, B.; Nguyen, T. Q., A Low Band Gap, Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells [J]. J. Phys. Chem. C 2008,112,11545-11551.
    [33]Tamayo, A. B.; Dang, X. D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T. Q., A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells [J]. Appl. Phys. Lett.2009,94,103301.
    [34]Xue, L. L.; He, J. T.; Gu, X.; Yang, Z. F.; Xu, B.; Tian, W. J., Efficient Bulk-Heterojunction Solar Cells Based on a Symmetrical D-π-A-π-D Organic Dye Molecule [J]. J. Phys. Chem. C 2009,113,12911-12917.
    [35]Liu, Y. S.; Wan, X. J.; Yin, B.; Zhou, J. Y.; Long, G. K.; Yin, S. G.; Chen, Y S., Efficient solution processed bulk-heterojunction solar cells based a donor-acceptor oligothiophene [J]. J. Mater. Chem.2010,20,2464-2468.
    [36]Yin, B.; Yang, L. Y.; Liu, Y. S.; Chen, Y S.; Qi, Q. J.; Zhang, F. L.; Yin, S. G, Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative [J]. Appl. Phys. Lett.2010,97,023303
    [37]Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B., The photovoltaic response in poly(p-phenylene vinylene) thin-film devices [J]. Journal of Physics-Condensed Matter 1994,6,1379-1394.
    [38]Yu, G.; Zhang, C.; Heeger, A. J., Dual-function semiconducting polymer devices: light-emitting and photodetecting diodes [J]. Applied Physics Letters 1994,64, 1540-1542.
    [39]Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf, U.; Harth, E.; Gugel, A.; Mullen, K., Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures [J]. Physical Review B 1999,59,15346-15351.
    [40]Stubinger, T.; Brutting, W., Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells [J]. Journal of Applied Physics 2001,90, 3632-3641.
    [41]Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T., Low-Bandgap Poly(Thiophene-Phenylene-Thiophene) Derivatives with Broaden Absorption Spectra for Use in High-Performance Bulk-Heterojunction Polymer Solar Cells [J]. J. Am. Chem. Soc.,2008,130,12828-12833.
    [42]Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R., Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells [J]. Appl. Phys. A,2004,79,31-35.
    [43]Svensson, M.; Zhang, F.; Veenstra, S. C.; W. Verhees, J. H.; Hummelen, J. C.; Kroon, J. M.; Inganas, O.; Andersson, M. R., High-Performance Polymer Solar Cells of an Alternating Polyflurene Copolymer and a Fullerene Derovative [J]. Adv. Mater.,2003,15,988-991.
    [44]Zhang, F.; Jespersen, K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V. K.; Magnusson, E.; Moons, A.Y.; Inganas, O., Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends [J]. Adv. Funct. Mater.,2006,16, 667-674.
    [45]Hoppe, H.; Glatzel, T.; Niggemann, M.; Schwinger, W.; Schaeffler, F.; Hinsch, A.; Lux-Steiner, M. Ch.; Sariciftci, N. S. Molecular and supramolecular engineering of π-conjugated systems for photovoltaic conversion [J]. Thin Solid Films,2006,511-512,587-592.
    [46]Duren, J. K. J.van; Yang, X.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sievel, A. B.; Hummelen, J. C.; Janssen, R. A. J., Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solarcell performance [J]. Adv. Funct. Mater,2004,14,425-434.
    [47]Halls, J. J. M.; Friend, R. H., The Photovoltaic Effect in a Poly (p-phenyleneviny- lene)/Perylene Heterojunction [J]. Synth. Met.,1997,85, 1307-1308.
    [48]Nunzi, J. M. C. R., Organic Photovoltaic Materials and devices [J]. Physique, 2002,3,523-542.
    [49]Markov, D. E.; Tanase, C.; Blom, P. W. M.; Wildeman, J., Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives [J]. Phys. Rev. B,2005,72,045217.
    [50]Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M., Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells [J]. Appl. Phys. Lett.,2006, 88,052104.
    [51]Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency [J]. Adv. Mater.,2006.18,789-794.
    [52]Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers:a molecular picture [J]. Chem. Rev.,2004,104,4971-5004.
    [53]Dennler, G.; Scharber, M. C.; Brabec, C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells [J]. Adv. Mater.,2009,21,1323-1338.
    [54]Li, Z. F.; Pei, J. N.; Li, Y. W.; Xu, B.; Deng, M. Liu, Z. Y.; Li, H.; Lu, H. G.; Li, Q.; Tian W. J., Synthesis and Photovoltaic Properties of Solution Processable Small Molecules Containing 2-Pyran-4-ylidenemalononitrile and Oligothiophene Moieties [J]. J. Phys. Chem. C.2010,114,18270-18278.
    [55]Leeuw, D. M. D.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F., Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices [J]. Synth. Met.1997,87,53-59.
    [56]Zhang, C.; Choi, S.; Haliburton, J.; Cleveland, T.; Li, R.; Sun, S.; Ledbetter, A.; Bonner, C. E., Design, Synthesis, and Characterization of a -Donor-Bridge-Acceptor-Bridge- Type Block Copolymer via Alkoxy- and Sulfone- Derivatized Poly(phenylenevinylenes) [J]. Macromolecules,2006,39,4317-4326.
    [57]Lincker, F.; Delbosc, N.; Bailly, S.; De Betignies, R.; Billon, M.; Pron, A.; Demadrille, R., Fluorenone-Based Molecules for Bulk-Heterojunction Solar Cells: Synthesis, Characterization, and Photovoltaic Properties [J]. AdV. Funct. Mater. 2008,18,3444-3453.
    [58]Xia, P. F.; Feng, X. J.; Lu J. P.; Tsang, S. W.; Movileanu, R.; Tao, Y.; Wong, M. S., Donor-Acceptor Oligothiophenes as Low Optical Gap Chromophores for Photovoltaic Applications [J]. Adv. Mat.,2008,20,4810-4815.
    [59]Xia, P. F.; Feng, X. J.; Lu, J. P.; Movileanu, R.; Tao, Y.; Baribeau, J. M.; Wong, M. S., Triarylamino and Tricyanovinyl End-capped Oligothiophenes with Reduced Optical Gap for Photovoltaic Applications [J]. J. Phys. Chem. C,2008, 112,16714-16720.
    [60]Tamayo, A. B.; Walker, B.; Nguyen, T. Q., A Low Band Gap, Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells [J]. J. Phys. Chem. C 2008,112,11545-11551.
    [61]Tantiwiwat, M.; Tamayo, A.; Luu, N.; Dang, X.; Nguyen, T. Q., Oligothiophene Derivatives Functionalized with a Diketopyrrolopyrrolo Core for Solution-Processed Field Effect Transistors:Effect of Alkyl Substituents and Thermal Annealing [J]. J. Phys. Chem. C,2008,112,17402-17407.
    [62]Tamayo, A. B.; Dang, X. D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T. Q., A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells [J]. Appl. Phys. Lett.2009,94,103301.
    [63]He, C.; He, Q. G.; Yi, Y. P.; Wu, G. L.; Yang, C.; Bai, F. L.; Shuai, Z. G.; Li, Y. F., Improve the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry [J]. J. Mater. Chem.2008,18,4085-4090.
    [64]Zhang, J.; Yang, Y.; He, C.; He, Y. J.; Zhao, G. J.; Li, Y. F., Star-Shaped Photovoltaic Organic Molecule with Triphenylamine Core and Benzothiadiazole-Thiophene Arms [J]. Macromolecules 2009,42,7619-7622.
    [65]Zhang, J.; Deng, D.; He, C.; He, Y. J.; Zhang, M. J.; Zhang, Z. G.; Zhang, Z. J.; Li, Y. F., Solution-Processable Star-Shaped Molecules with Triphenylamine Core and Dicyanovinyl Endgroups for Organic Solar Cells [J]. Chem. Mater.2011,23,817-822.
    [66]Li, K. P.; Qu, J. L.; Xu, B.; Zhou, Y. H.; Liu, L. J.; Peng, P.; Tian, W. J., Synthesis and photovoltaic properties of novel solution-processable triphenylamine-based dendrimers with sulfonyldibenzene cores [J]. New J. Chem. 2009,33,2120-2127.
    [67]Kroneneberg, N. M.; Deppish, M.; Wurthner, F.; Ledemann, H. W. A.; Deing, K.; Meerholz, K., Bulk heterojunction organic solar cells based on merocyanine colorants [J]. Chem. Commun.2008,6489-6491.
    [68]Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J., Efficient Squaraine-Based Solution Processable Bulk-Heterojunction Solar Cells [J]. J. Am. Chem. Soc.2008,130,17640-17641.
    [69]Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali, J., Multi-donor Molecular Bulk Heterojunction Solar Cells:Improving Conversion Efficiency by Synergistic Combinations [J]. Chem. Commun.2009,1673-1675.
    [70]Rousseau, T.; Cravino, A.; Ripaud, E.; Leriche, P.; Rihn, S.; Nicola, A. D. Ziesselb, R.; Roncali, J., A tailored hybrid BODIPY-oligothiophene donor for molecular bulk heteroj unction solar cells with improved performances [J]. Chem. Commun.2010,46,5082-5084.
    [71]Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C. S.; Ree, M., A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells [J]. Nat. Mater.,2006,5,197-203.
    [72]Wei, Q.; Nishizawa, T.; Tajima, K.; Hashimoto, K. Self-Organized Buffer Layers in Organic Solar Cells [J]. Adv. Mater.2008,20,2211-2216.
    [73]Tamayo, A. B.; Tantiwawat, M.; Walker, B.; Nguyen, T. Q., Design, Synthesis, and Self-assembly of Oligothiophene derivatives with a Diketopyrrolopyrrole Core [J]. J. Phys. Chem. C 2008,112,15543-15552.
    [74]Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A. J. Charge carrier dynamics in polymer solar cells [J]. Angewandte Chemie-International Edition 2003,42,3371-3375.
    [75]Lenes, M.; Wetzelaer, G. A. H.; Kooistra, F. B.; Veenstra, S. C.; Hummelen, J. C.; Blom, P. W. M., Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells [J]. Advanced Materials 2008,20,2116-2119.
    [76]Kooistra, F. B.; Mihailetchi, V. D.; Popescu, L. M.; Kronholm, D.; Blom, P. W. M.; Hummelen, J. C., [84]PCBM and its Application in a Bulk Heterojunction Solar Cell [J]. Chemistry of Materials 2006,18,3068-3073.
    [77]He, Y. J.; Chen, H. Y.; Hou, J. H.; Li, Y. F., Indene-C60 Bisadduct:A New Acceptor for High-Performance Polymer Solar Cells [J]. J. Am. Chem. Soc.2010, 132,1377-1382.
    [78]Li, J. L.; Dierschke, F.; Wu, J. S.; Grimsdale, A. C.; Mullen, K., Poly(2,7-carbazole) and perylene tetracarboxydiimide:a promising donor/acceptor pair for polymer solar cells [J]. J. Mater. Chem.2006,16,96-100.
    [79]Lim, Y. F.; Shu, Y.; Parkin, S. R.; Anthony, J. E.; Malliaras, G. G, Soluble n-type pentacene derivatives as novel acceptors for organic solar cells [J]. J. Mater. Chem.2009,19,3049-3056.
    [80]Zhou, Y. H.; Pei, J. N.; Dong, Q. F.; Sun, X. B. Liu, Y. Q.; Tian, W. J., Donor-Acceptor Molecule as the Acceptor for Polymer-Based Bulk Heterojunction Solar Cells [J]. J. Phys. Chem. C 2009,113,7882-7886.
    [81]Ooi, Z.E.; Tam, T. L.; Shin, R. Y C.; Chen, Z. K.; Kietzke, T.; Sellinger, A.; Baumgarten, M.; Mullene, K.; deMellob J. C., Solution processable bulk-heterojunction solar cells using a small molecule acceptor [J]. J. Mater. Chem.,2008,18,4619-4622.
    [82]Woo, C. H.; Holcombe, T. W.; Unruh, D. A.; Sellinger, A.; Frechet, J. M. J., Phenyl vs Alkyl Polythiophene:A Solar Cell Comparison Using a Vinazene Derivative as Acceptor [J]. Chem. Mater.2010,22,1673-1679.
    [83]Shang, H, X.; Fan, H, J.; Liu, Y.; Hu, W, P.; Li. Y. F.; Zhan, X. W., A Solution-Processable Star-Shaped Molecule for High-Performance Organic Solar Cells [J]. Advanced Materials.2011,23,1554-1557.
    [1](a) Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells [J]. Chem. Rev.2007,107,1324-1338. (b) Brabec, C. J., Organic photovoltaics:technology and market [J]. Solar Energy Materials & Solar Cells 2004,83,273-292.
    [2]Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, A.; Heeger, A. J.; Brabec, C. J., Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency [J]. AdV. Mater.2006,18,789-794.
    [3]Chen, H.; Hou, J. H.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.; Yang, Y.; Yu, L, P.; Wu, Y.; Li, G., Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature Photonics.2009,3,649-653.
    [4]Salzman, R. F.; Xue, J. G.; Rand, B. P.; Alexander, A.; Thompson, M. E.; Forrest, S. R., The effects of copper phthalocyanine purity on organic solar cell performance [J]. Org. Electron.2005,6,242-246.
    [5]Goh, C.; Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Frechet, J. M. J., Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes [J]. Appl. Phys. Lett.2005,86,122110.
    [6]Sundar, V. C., et al., Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals [J]. Science 2004,303,1644-1646.
    [7]He, C.; He, Q. G.; Yang, X. D.; Wu, G. L.; Yang, C. H.; Bai, F. L.; Shuai, Z. G.; Wang, L. X.; Li, Y. F., Synthesis and photovoltaic properties of a solution-processible organic molecule containing triphenylamine and DCM moieties [J] J. Phys. Chem. C 2007,111,8661-8666.
    [8]Xue, L. L.; He, J. T.; Gu, X.; Yang, Z. F.; Xu, B.; Tian, W. J., Efficient Bulk-Heterojunction Solar Cells Based on a Symmetrical D-π-A-π-D Organic Dye Molecule [J]. J. Phys. Chem. C 2009,113,12911-12917.
    [9]He, C.; He, Q. G.; Yi, Y. P.; Wu, G. L.; Yang, C.; Bai, F. L.; Shuai, Z. G.; Li, Y. F., Improve the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry [J]. J. Mater. Chem.2008,18,4085-4090.
    [10]Kroneneberg, N. M.; Deppish, M.; Wurthner, F.; Ledemann, H. W. A.; Deing, K.; Meerholz, K., Bulk heterojunction organic solar cells based on merocyanine colorants [J]. Chem. Commun.2008,6489-6491.
    [11]Rousseau, T.;Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali, J., Multi-donor Molecular Bulk Heterojunction Solar Cells:Improving Conversion Efficiency by Synergistic Combinations [J]. Chem. Commun.2009,1673-1675.
    [12]Valentini, L.; Bagnis, D.; Marrocchi, A.; Seri, M.; Taticchi, A.; Kenny, J. M., Novel Anthracene-Core Molecule for the Development of Efficient PCBM-Based Solar Cells [J]. Chem. Mater.2008,20,32-34.
    [13]Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J., Efficient Squaraine-Based Solution Processable Bulk-Heterojunction Solar Cells [J]. J. Am. Chem. Soc.2008,130,17640-17641.
    [14]Tamayo, A. B.; Walker, B.; Nguyen, T. Q., Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells [J]. J. Phys. Chem. C 2008,112,11545-11551.
    [15]Tamayo, A. B.; Dang, X. D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T. Q., A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells [J]. Appl. Phys. Lett.2009,94,103301.
    [16]Walker, B.; Tamayo, A. B.; Dang, X. Dung.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T. Q., Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small Molecule Bulk Heterojunction Solar Cells [J]. Adv. Funct. Mater.2009,19,1-7.
    [17]Roncali, J.; Leriche, P.; Cravino, A., From One- to Three-Dimensional Organic Semiconductors:In Search of the Organic Silicon? [J]. Adv. Mater.2007,19, 2045-2060.
    [18]Li, Y. W.; Xue, L. L.; Li, H.; Li, Z. F.; Xu, B.; Wen, S. P.; and Tian, W. J., Energy Level and Molecular Engineering of conjugated Donor-Acceptor Copolymers for Photovoltaic Applications [J]. Macromolecules 2009,42, 4491-4499.
    [19]Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C. Kroon, J. M.; Inganas, O.; Andersson, M. R., High-Performance Polymer Solar Cells of an Alternating Polyflurene Copolymer and a Fullerene Derovative [J]. Adv. Mater.2003,15,988-991.
    [20]Wu, G. L.; Zhao, G. J.; He, C.; Zhang, J.; He, Q. G.; Chen, X. M.; Li, Y. F., Synthesis and photovoltaic properties of a star-shaped molecule with triphenylamine as core and benzo[1,2,5]thiadiazol vinylene as arms [J]. Solar Energy Materials & Solar Cells 2009,93,108-113.
    [21]Li, K. P.; Qu, J. L.; Xu, B. Y.; Zhou, H.; Liu, L. J.; Peng, P.; Tian, W. J., Synthesis and photovoltaic properties of novel solution-processable triphenylamine-based dendrimers with sulfonyldibenzene cores [J]. New J. Chem. 2009,33,2120-2127.
    [22]Yang, Y.; Zhang, J.; Zhou, Y.; Zhao, G. j.; He, C.; Li, Y. F. Andersson, M. Inganas, O.; Zhang, F. L., Solution-Processable Organic Molecule with Triphenylamine Core and Two Benzothiadiazole-Thiophene Arms for Photovoltaic Application [J]. J. Phys. Chem. C 2010,114,3701-3706.
    [23]Alam, M. M.; Jenekhe, S. A., Performance and Stability of Polymer Light-Emitting Diodes [J]. Chem. Mater 2002,14,4775-4780.
    [24]Woods, L. L., Some Further Reactions of 2,6-Dimethyl-4-pyrone [J]. J. Am. Chem. Soc.1958,80,1440-1442.
    [25]Sun, M. H.; Li, J.; Li, B. S.; Fu, Y. Q.; Bo, Z. S., Toward high molecular weight triphenylamine-based hyperbranched polymers [J]. Macromolecules.2005,38, 2651-2658.
    [26]Xia, P. F.; Feng, X. J.; Lu, J. P.; Tsang, S. W.; Movileanu, R.; Tao, Y.; Wong, M. S., Donor-Acceptor Oligothiophenes as Low Optical Gap Chromophores for Photovoltaic Applications [J]. Adv. Mater.2008,9999,1-6.
    [27]Li, Y. W.; Xue, L. L.; Xia, H. J.; Xu, B.; Wen, S. P.; Tian, W. J., Synthesis and properties of polythiophene derivatives containing triphenylamine moiety and their photovoltaic applications [J]. J. Polymer Science Part A:Polym. Chem. 2008,46,3970-3984.
    [28]Thompson, B. C.; Kim, Y. G.; Reynolds, J. R., Spectral Broadening in MEH-PPV:PCBM-Based Photovoltaic Devices via Blending with a Narrow Band Gap Cyanovinylene-Dioxythiophene Polymer[J].Macromolecules.2005,38, 5359-5362.
    [29]Leeuw,D.M.D.;Simenon,M.M.J.;Brown,A.R.;Einerhand,R.E.F., Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices[J].Synth.Met.1997,87,53,59.
    [30]Shaheen,S.E.;Brabec,C.J.;Sariciftci,N.S.,2.5%efficient organic plastic solar cells[J].Appl.Phys.Lett.2001,78,841-843.
    [31]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.; Cheeseman,J.R.:Montgomery,J.A.,Jr.:Vreven,T.:Kudin,K.N.:Burant,J.C.; Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci,B.;Cossi,M.; Scalmani,G.;Rega,N.;Petersson,G.A.;Nakatsuji,H.;Hada,M.;Ehara,M.; Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao, O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.; Bakken,V.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev, O.;Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y. Morokuma,K.;Voth,G.A.;Salvador,P.;Dannenberg,J.J.;Zakrzewski,V.G.; Dapprich,S.;Daniels,A.D.;Strain,M.C.;Farkas,O.;Malick,D.K.;Rabyck,A. D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Babiyl,A.G.; Clifford,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.; Komaromi,I.;Martin,R.L.:Fox,D.J.;Keith,T.;Al.Laham,M.A.;Peng,C.Y. Nanayakkara.A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chan,W.; Wong,M.W.;Gonzalez,C.;Pople,J.A.Gaussian 03,Revision B.05;Gaussian, Inc:Pittsburgh,PA,2003.
    [32]Mandoc,M.M.,Koster,L.J.A.,Optimum charge carrier mobility in organic solar cells[J].Appl.Phys.Lett.2007,90.133504.
    [33]Blom,P.W.M.;deJong,M.J.M.;vanMunster,M.G.,Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene)[J]. Phys.ReV.B.1997,55,656-659.
    [34]Li,Z.F.;Pei,J.N.;Li,Y.W.;Xu,B.;Deng,M.;Liu,Z.Y.;Li,H.;Lu,H.G.Li, Q.;Tian,W.J.,Synthesis and Photovoltaic Properties of Solution Processable Small Molecules Containing 2-Pyran-4-ylidenemalononitrile and Oligothiophene Moieties[J].J.Phys.Chem.C.2010,114,18270-18278.
    [1]Li, Y. W.; Xue, L. L.; Li, H.; Li, Z. F.; Xu, B.; Wen, S. P.; and Tian, W. J., Energy Level and Molecular Engineering of conjugated Donor-Acceptor Copolymers for Photovoltaic Applications [J]. Macromolecules 2009,42, 4491-4499.
    [2]Woods, L. L.; Some Further Reactions of 2,6-Dimethyl-4-pyrone[J]. J. Am. Chem. Soc.1958,80,1440-1442.
    [3]Xia, H. J.; He, J. T.; Xu, B.; Wen, S. P.; Li, Y. W.; Tian, W. J., A facile convergent procedure for the preparation of triphenylamine-based dendrimers with truxene cores [J]. Tetrahedron 2008,64,5736-5742.
    [4]Li, Z. F.; Pei, J. N.; Li, Y. W.; Xu, B.; Deng, M.; Liu, Z. Y.; Li, H.; Lu, H. G. Li, Q.; Tian, W. J., Synthesis and Photovoltaic Properties of Solution Processable Small Molecules Containing 2-Pyran-4-ylidenemalononitrile and Oligothiophene Moieties [J]. J. Phys. Chem. C.2010,114,18270-18278.
    [5]Li, Y. W.; Xue, L. L.; Xia, H. J.; Xu, B.; Wen, S. P.; Tian, W. J., Synthesis and properties of polythiophene derivatives containing triphenylamine moiety and their photovoltaic applications [J]. J. Polymer Science Part A:Polym. Chem. 2008,46,3970-3984.
    [6]He, C.; He, Q. G.; Yang, X. D.; Wu, G. L.; Yang, C. H.; Bai, F. L.; Shuai, Z. G.; Wang, L. X.; Li, Y. F., Synthesis and photovoltaic properties of a solution-processible organic molecule containing triphenylamine and DCM moieties [J]. J. Phys. Chem. C 2007,111,8661-8666.
    [7]Xue, L. L.; He, J. T.; Gu, X.; Yang, Z. F.; Xu, B.; Tian, W. J., Efficient Bulk-Heterojunction Solar Cells Based on a Symmetrical D-π-A-π-D Organic Dye Molecule [J]. J. Phys. Chem. C 2009,113,12911-12917.
    [8]Xia, P. F.; Feng, X. J.; Lu, J. P.; Tsang, S. W.; Movileanu, R.; Tao, Y.; Wong, M. S., Donor-Acceptor Oligothiophenes as Low Optical Gap Chromophores for Photovoltaic Applications [J]. Adv. Mater.2008,9999,1-6.
    [9]Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.,2.5%efficient organic plastic solar cells [J]. Appl. Phys. Lett.2001,78,841-843.
    [10]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A. Cheeseman,J.R.;Montgomery,J.A.,Jr.:Vreven,T.:Kudin,K.N.:Burant,J.C.: Millam,J.M.;Iyengar,S.S.:Tomasi,J.;Barone,V.;Mennucci,B.:Cossi,M.: Scalmani,G.;Rega,N.;Petersson,G.A.;Nakatsuj i,H.;Hada,M.;Ehara,M.; Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.:Nakajima,T.;Honda,Y.;Kitao, O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.; Bakken,V.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev, O.:Austin,A.J.:Cammi,R.;Pomelli,C.:Ochterski,J.W.;Ayala,P.Y.: Morokuma,K.;Voth,G.A.;Salvador,P.;Dannenberg,J.J.;Zakrzewski,V.G.; Dapprich,S.:Daniels,A.D.:Strain,M.C.;Farkas,O.:Malick,D.K.;Rabuck,A. D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.; Clifford,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.; Komaromi,I.;Martin,R.L.;Fix,D.J.:Keith,T.:A1.Laham,M.A.;Peng,C.Y.: Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.; Wong,M.W.;Gonzalez,C.;Pople,J.A.Gaussian 03,Revision B.05;Gaussian, Inc:Pittsburgh,PA,2003.
    [11]Gadisa,A.;Zhang,F.L.;Sharma,D.;Svensson,M.;Andersson,M.R.;Inganas, O.,Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors[J].Thin Solid Films 2007,515,3126-3131.
    [12]Demadrille,R.;Delbosc,N.;Kervella, Y.;Firon,M.;Bettignies,R.D.;Billon, M.; Rannou, P.; Pron, A., Conjugated alternating copolymer of dialkylquaterthiophene and fluorenone:synthesis, characterisation and photovoltaic properties[J].J.Mater.Chem.2007,17,4661-4669.
    [13]Thompson,B.C.;Kim,Y.G.;Reynolds,J.R.,Spectral Broadening in MEH-PPV:PCBM-Based Photovoltaic Devices via Blending with a Narrow Band Gap Cyanovinylene-Dioxythiophene Polymer[J].Macromolecules 2005,38, 5359-5362.
    [1]Roncali, J.; Leriche, P.; Cravino, A., From One- to Three-Dimensional Organic Semiconductors:In Search of the Organic Silicon? [J]. Adv. Mater.2007,19, 2045-2060.
    [2]He, C.; He, Q. G.; Yang, X. D.; Wu, G. L.; Yang, C. H.; Bai, F. L.; Shuai, Z. G.; Wang, L. X.; Li, Y. F., Synthesis and photovoltaic properties of a solution-processible organic molecule containing triphenylamine and DCM moieties [J]. J. Phys. Chem. C 2007,111,8661-8666.
    [3]Xue, L. L.; He, J. T.; Gu, X.; Yang, Z. F.; Xu, B.; Tian, W. J., Efficient Bulk-Heterojunction Solar Cells Based on a Symmetrical D-π-A-π-D Organic Dye Molecule [J]. J. Phys. Chem. C 2009,113,12911-12917.
    [4]He, C.; He, Q. G.; Yi, Y. P.; Wu, G. L.; Yang, C.; Bai, F. L.; Shuai, Z. G.; Li, Y. F., Improve the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry [J]. J. Mater. Chem.2008,18,4085-4090.
    [5]Kroneneberg, N. M.; Deppish, M.; Wiirthner, F.; Ledemann, H. W. A.; Deing, K.; Meerholz, K., Bulk heterojunction organic solar cells based on merocyanine colorants [J]. Chem. Commun.2008,6489-6491.
    [6]Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali, J., Multi-donor Molecular Bulk Heterojunction Solar Cells:Improving Conversion Efficiency by Synergistic Combinations [J]. Chem. Commun.2009,1673-1675.
    [7]Valentini, L.; Bagnis, D.; Marrocchi, A.; Seri, M.; Taticchi, A.; Kenny, J. M., Novel Anthracene-Core Molecule for the Development of Efficient PCBM-Based Solar Cells [J]. Chem. Mater.2008,20,32-34.
    [8]Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J., Efficient Squaraine-Based Solution Processable Bulk-Heterojunction Solar Cells [J]. J. Am. Chem. Soc.2008,130,17640-17641.
    [9]Tamayo, A. B.; Walker, B.; Nguyen, T. Q., Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells [J]. J. Phys. Chem. C 2008,112,11545-11551.
    [10]Tamayo, A. B.; Dang, X. D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T. Q., A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells [J]. Appl. Phys. Lett.2009,94,103301.
    [11]Walker, B.; Tamayo, A. B.; Dang, X. Dung.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T. Q., Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small Molecule Bulk Heterojunction Solar Cells [J]. Adv. Funct. Mater.2009,19,1-7.
    [12]Woods, L. L., Some Further Reactions of 2,6-Dimethyl-4-pyrone [J]. J. Am. Chem. Soc.1958,80,1440-1442.
    [13]Li, Y. W.; Xue, L. L.; Li, H.; Li, Z. F.; Xu, B.; Wen, S. P.; and Tian, W. J., Energy Level and Molecular Engineering of conjugated Donor-Acceptor Copolymers for Photovoltaic Applications [J]. Macromolecules 2009,42, 4491-4499.
    [14]Melucci, M.; Barbarella, G.; Zambianchi, M.; Pietro, P. D.; Bongini, A., Solution-Phase Microwave-Assisted Synthesis of Unsubstituted and Modified a-Quinque- and Sexithiophenes [J]. J. Org. Chem.2004,69,4821-4828.
    [15]Wen, S. P.; Pei, J. N.; Zhou, Y. H.; Li, P. F.; Xue, L. L.; Li, Y. W.; Xu, B.; Tian, W. J., Synthesis of 4,7-Diphenyl-2,1,3- Benzothiadiazole-Based Copolymers and Their Photovoltaic Applications [J]. Macromolecules 2009,42,4977-4984.
    [16]Xia, P. F.; Feng, X. J.; Lu, J. P.; Tsang, S. W.; Movileanu, R.; Tao, Y.; Wong, M. S., Donor-Acceptor Oligothiophenes as Low Optical Gap Chromophores for Photovoltaic Applications [J]. Adv. Mater.2008,9999,1-6.
    [17]Thompson, B. C.; Kim, Y. G.; Reynolds, J. R., Spectral Broadening in MEH-PPV:PCBM-Based Photovoltaic Devices via Blending with a Narrow Band Gap Cyanovinylene-Dioxythiophene Polymer [J]. Macromolecules.2005,38, 5359-5362.
    [18]Leeuw, D. M. D.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F., Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices [J]. Synth. Met.1997,87,53-59.
    [19]Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.,2.5% efficient organic plastic solar cells [J]. Appl. Phys. Lett.2001,78,841-843.
    [20]Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin. K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani,G.;Rega,N.;Petersson,G. A.;Nakatsuji,H.;Hada,M.;Ehara,M.; Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao, O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.; Bakken,V.;Adamo,C.;Jaramillo,J.:Gomperts,R.;Stratmann,R.E.:Yazyev,O.: Austin,A.J.:Cammi,R.:Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.:Morokuma, K.;Voth,G. A.;Salvador,P.;Dannenberg,J.J.;Zakrzewski,V.G.;Dapprich,S.; Daniels,A.D.;Strain,M.C.;Farkas,O.;Malick,D.K.;Rabuck,A.D.; Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.;Clifford, S.;Cioslowski,J.;Stefanov,B.B.;Liu,G;Liashenko,A.;Piskorz,P.;Komaromi, I.;Martin,R.L.;Fox,D.J.;Keith,T.;A1.Laham,M.A.;Peng,C.Y; Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong, M.W.;Gonzalez,C.;Pople,J.A.Gaussian 03,Revision B.05;Gaussian,Inc: Puttsburgh,PA,2003.
    [21]Mandoc,M.M.,Koster,L.J.A.,Optimum charge carrier mobility in organic solar cells[J].Appl.Phys.Lett.2007,90.133504.
    [22]Blom,P.W.M.;deJong,M.J.M.;vanMunster,M.G.,Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene)[J]. Phys.ReV. B.1997,55,656-659.
    [23]Gadisa,A.;Zhang,F.L.;Sharma,D.;Svensson,M.;Andersson,M.R.;Inganas, O., Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors[J].Thin Solid Films 2007,515,3126-3131.
    [24]Van Duren,J.K.J.;Yang,X.;Loos,J.;Bulle-Lieuwma,C.W.T.;Sieval,A.B.; Hummelen,J.C.;Janssen,R.A.J.,Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solarcell performance [J].Adv.Funct. Mater.2004,14,425-434.
    [25]Koster,L.J.A.;Mihailetchi,V.D.;Ramaker,R.;Blom,P. W.M.,Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells[J]. Appl.Phys.Lett.2005,86,123509.
    [26]Potscavage,W.J.;Sharma,A.;Kippelen,B.,Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage[J].Accounts of Chemical Research.2009,42,1758-1767.
    [1]Nguyen, L. H.; Hoppe, H.; Erb, T.; Gu¨nes, S.; Gobsch, G.; Sariciftci, N. S., Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk-Heterojunction Solar Cells [J]. AdV. Funct. Mater.2007,17,1071-1078.
    [2]Friedel, B.; McNeill, C. R.; Greenham, N. C., Influence of Alkyl Side-Chain Length on the Performance of Poly(3-alkylthiophene)a/Polyfluorene All-Polymer Solar Cells [J]. Chem. Mater.2010,22,3389-3398.
    [3]Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties [J]. J. Am. Chem. Soc.2009,131,7792-7799.
    [4]Zhang, M.; Tsao, H. N.; Pisula,W.; Yang, C.; Mishra, A. K.; Mullen, K., Field-Effect Transistors Based on a Benzothiadiazole-Cyclopentadithiophene Copolymer [J]. J. Am. Chem. Soc.2007,129,3472-3473.
    [5]Piliego, C.; Holcombe, T. W.; Douglas, J. D.; Woo, C. H.; Beaujuge, P. M.; Fre'chet, J. M., Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole- 4,6-dione-Based Polymers for Efficient Solar Cells [J]. J. Am. Chem. Soc.2010,132,7595-7597.
    [6]Woods, L. L.; Some Further Reactions of 2,6-Dimethyl-4-pyrone [J]. J. Am. Chem. Soc.1958,80,1440-1442.
    [7]Li, Z. F.; Pei, J. N.; Li, Y. W.; Xu, B.; Deng, M.; Liu, Z. Y.; Li, H.; Lu, H. G. Li, Q.; Tian, W. J., Synthesis and Photovoltaic Properties of Solution Processable Small Molecules Containing 2-Pyran-4-ylidenemalononitrile and Oligothiophene Moieties [J]. J. Phys. Chem. C.2010,114,18270-18278.
    [8]Li, Y. W.; Xue, L. L.; Li, H.; Li, Z. F.; Xu, B.; Wen, S. P.; Tian, W. J., Energy Level and Molecular Engineering of conjugated Donor-Acceptor Copolymers for Photovoltaic Applications [J]. Macromolecules 2009,42,4491-4499.
    [9]Melucci, M.; Barbarella, G.; Zambianchi, M.; Pietro, P. D.; Bongini, A., Solution-Phase Microwave-Assisted Synthesis of Unsubstituted and Modified a-Quinque- and Sexithiophenes [J]. J. Org. Chem.2004,69,4821-4828.
    [10]Wen, S. P.; Pei, J. N.; Zhou, Y. H.; Li, P. F.; Xue, L. L.; Li, Y. W.; Xu, B.; Tian, W. J., Synthesis of 4,7-Diphenyl-2,1,3-Benzothiadiazole-Based Copolymers and Their Photovoltaic Applications [J]. Macromolecules 2009,42,4977-4984.
    [11]Li, Y. W.; Xue, L. L.; Xia, H. J.; Xu, B.; Wen, S. P.; Tian, W. J., Synthesis and Properties of Polythiophene Derivatives Containing Triphenylamine Moiety and Their Photovoltaic Applications [J]. J. Polymer Science Part A:Polym. Chem. 2008,46,3970-3984.
    [12]Frisch, M. J.; etc., Gaussian 03, Revision B.05; Gaussian, Inc:Pittsburgh, PA, 2003.
    [13]Leeuw, D. M. D.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F., Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices [J]. Synth. Met.1997,87,53-59.
    [14]Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.,2.5% efficient organic plastic solar cells [J]. Appl. Phys. Lett.2001,78,841-843.
    [15]Gadisa, A.; Zhang, F.L.; Sharma, D.; Svensson, M.; Andersson, M. R.; Inganas, O., Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors [J]. Thin Solid Films 2007,515,3126-3131.
    [16]Van Duren, J. K. J.; Yang, X.; Loos, J.; Bulle-Lieuwma,C. W. T.; Sieval, A. B.; Hummelen, J. C.; Janssen, R. A. J., Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solarcell performance [J]. Adv. Funct. Mater.2004,14,425-434.
    [1]Li, Z. F.; Pei, J. N.; Li, Y. W.; Xu, B.; Deng, M.; Liu, Z. Y.; Li, H.; Lu, H. G. Li, Q.; Tian, W. J., Synthesis and Photovoltaic Properties of Solution Processable Small Molecules Containing 2-Pyran-4-ylidenemalononitrile and Oligothiophene Moieties [J]. J. Phys. Chem. C.2010,114,18270-18278.
    [2]Li, Z. F.; Dong, Q. F.; Li, Y. W.; Xu, B.; Deng, M.; Pei, J. N.; Zhang, J, B.; Chen, F. P.; Wen, S. P.; Gao, Y. J.; Tian, W. J. Design and synthesis of solution processable small molecules towards high photovoltaic performance [J]. J. Mater. Chem.2011,21,2159-2168
    [3]Tamayo, A. B.; Walker, B.; Nguyen, T. Q., A Low Band Gap, Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells [J]. J. Phys. Chem. C 2008,112,11545-11551.
    [4]Tamayo, A. B.; Dang, X. D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T. Q., A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells [J]. Appl. Phys. Lett.2009,94,103301.
    [5]Xia, P. F.; Feng, X. J.; Lu, J. P.; Tsang, S. W.; Movileanu, R.; Tao, Y.; Wong, M. S., Donor-Acceptor Oligothiophenes as Low Optical Gap Chromophores for Photovoltaic Applications [J]. Adv. Mater.2008,9999,1-6.
    [6]Li, K. P.; Qu, J. L.; Xu, B. Y.; Zhou, H.; Liu, L. J.; Peng, P.; Tian, W. J., Synthesis and photovoltaic properties of novel solution-processable triphenylamine-based dendrimers with sulfonyldibenzene cores [J]. New J. Chem. 2009,33,2120-2127.
    [7]He, C.; He, Q. G.; Yi, Y. P.; Wu, G. L.; Yang, C.; Bai, F. L.; Shuai, Z. G.; Li, Y. F., Improve the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry [J]. J. Mater. Chem.2008,18,4085-4090.
    [8]Zhang, W. F.; Tse, S. C.; Lu, J. P.; Tao, Y.; Wong, M. S., Solution processable donor-acceptor oligothiophenes for bulk-heterojunction solar cells [J]. J. Mater. Chem.2010,20,2182-2189.
    [9]Zhang, J.; Yang, Y.; He, C.; He, Y J.; Zhao, G. J.; Li, Y. F., Star-Shaped Photovoltaic Organic Molecule with Triphenylamine Core and Benzothiadiazole-Thiophene Arms [J]. Macromolecules 2009,42,7619-7622.
    [10]Xue, L. L.; He, J. T.; Gu, X.; Yang, Z. F.; Xu, B.; Tian, W. J., Efficient Bulk-Heterojunction Solar Cells Based on a Symmetrical D-π-A-π-D Organic Dye Molecule [J]. J. Phys. Chem. C 2009,113,12911-12917.
    [11]Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J., Efficient Squaraine-Based Solution Processable Bulk-Heterojunction Solar Cells [J]. J. Am. Chem. Soc.2008,130,17640-17641.
    [12]Melucci, M.; Barbarella, G.; Zambianchi, M.; Pietro, P. D.; Bongini, A., Solution-Phase Microwave-Assisted Synthesis of Unsubstituted and Modified a-Quinque- and Sexithiophenes [J]. J. Org. Chem.2004,69,4821-4828.
    [13]Wen, S. P.; Pei, J. N.; Zhou, Y. H.; Li, P. F.; Xue, L. L.; Li, Y. W.; Xu, B.; Tian, W. J., Synthesis of 4,7-Diphenyl-2,1,3-Benzothiadiazole-Based Copolymers and Their Photovoltaic Applications [J]. Macromolecules 2009,42,4977-4984.
    [14]Thompson, B. C.; Kim, Y. G.; Reynolds, J. R., Spectral Broadening in MEH-PPV:PCBM-Based Photovoltaic Devices via Blending with a Narrow Band Gap Cyanovinylene-Dioxythiophene Polymer [J]. Macromolecules 2005,38, 5359-5362.
    [15]Leeuw, D. M. D.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F., Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices [J]. Synth. Met.1997,87,53-59.
    [16]Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S. Appl. Phys. Lett.2001,78, 841-843.
    [17]Frisch, M. J.; etc. Gaussian 03, Revision B.05; Gaussian, Inc:Pittsburgh. PA, 2003.
    [18]Gadisa, A.; Zhang, F.L.; Sharma, D.; Svensson, M.; Andersson, M. R.; Inganas, O., Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors [J]. Thin Solid Films 2007,515,3126-3131.
    [19]Van Duren, J. K. J.; Yang, X.; Loos, J.; Bulle-Lieuwma,C. W. T.; Sieval, A. B.; Hummelen, J. C.; Janssen, R. A. J., Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solarcell performance [J]. Adv. Funct. Mater.2004,14,425-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700