磁化等离子体填充相对论微波器件的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从导师的“磁化等离子体波导中电磁波传播理论”出发,较全面地从理论和实验上研究了在有限磁场作用下等离子体填充光滑圆柱波导和波纹波导中电磁波的传播特性。
     为了使微波器件有更大的功率输出和更高的互作用效率,近年来,人们在这一领域已进行了卓有成效的工作,使在相对论微波脉冲器件中,输出功率已达到吉瓦(GW)量级,而连续工作的输出功率可达兆瓦(MW)量级。而要进一步的提高输出功率和互作用效率却面临一些基本的限制,其中一个主要的限制是来自空间电荷影响,因在真空中电子的相互排斥使电子注有一电流密度极限,这将影响注—波互作用,并降低了微波器件的性能。最近的一系列的实验研究表明,在大功率微波器件中填充等离子体可以大大增强其电子束与波的互作用效率,提高功率输出的水平;理论研究进而表明等离子体的参与有以下几个突出的优点:1.由于等离子体电荷中和效应可以使器件在高于真空电流极限下工作,进而有更高的输出功率;2.辅助电子束聚集而降低对磁场的要求,进而降低器件的体积、重量和成本;3.新的等离子体—电子束—波互作用机理,使器件达到很高的效率;4.输出频率连续可调,拓宽了频带宽度。
     本文主要围绕等离子体填充大功率微波器件—光滑圆柱波导和波纹波导,以及相关问题进行了一些研究和探讨,主要工作如下:
     1.详细讨论了相对论电子束在等离子体中传输过程中所发生的一些效应,如离子通道的形成、电荷和电流中和效应、以及电子束的箍缩传输等;
     2.根据导师的磁化等离子体波导中电磁波传播理论,推导出了有限磁场作用下等离子体填充的光滑波导和波纹波导的色散方程,计算了各参数(如磁场强度,环形等离子体的厚度、密度,电子注的位置等)对色散曲线、增益的影响。
     3.推导出了功率流密度的表达式,并进行了功率流密度、相速、耦合阻抗等的计算。
     4.在考虑离子通道和有限磁场的作用下得出了更普遍的、更接近真实情况的光
    
     ABSTRACT
     滑波导和波纹波导的色散方程。
    5.还研究了中央有介质棒的光滑波导的电磁波传播特性,并进行了相关的计
     算。
    6.参加了PASOTRON的部分实验,从中受益匪浅。
Based on the Prof. Liu's theory on the wave propagation along magnetized plasma-filled waveguide, the detailed theoretical and experimental study on wave propagation characters in magnetized plasma-filled cylindrical waveguide and corrugated waveguide are made in this dissertation .
    In order to get higher output power and higher efficiency in a microwave tube, much progress has been carried out in this regime. Up to now, in relativistic microwave devices, the maximum pulse output power can reach 1GW, and a 1MW CW output power can also be obtained. However, There exist some basic limits for further enhancement of the output power and the efficiency of the microwave devices. The major limit comes from the space charge's influence. The repulsion of electrons in vacuum limits the electronic density in electron beam, resulting in a low efficiency of beam-wave interaction. Recently, much attention has been made on the study of plasma-filled high-power microwave devices for the enhancement of efficiency and output power. The introduction of plasma into generators of coherent electromagnetic radiation potentially has several beneficial effects (a) due to the charge neutralization in the plasma, the devices can operate with large beam current above the vacuum space-charge limiting; (b) the guiding magnetic field can be lower through auxiliary beam focusing of the plasma, so that the volume, weight and total cost of devices can be decreased; (c) the efficiency of devices can be greatly enhanced with a result of the new interaction mechanisms of plasma, electron beam and electromagnetic wave,(d) the working frequency is tunable, leading to a broader bandwidth.
    In this dissertation , the theoretical and experimental studies on plasma-filled high-power microwave devices in both the corrugated waveguide structure and cylindrical waveguide have been made. The main works are the following:
    1. The effects of ion-channel, spatial charge and current limiting are discussed in the process of the relativistic electron-beam transporting in
    
    
    plasma.
    2. The dispersion relations of magnetized plasma-filled corrugated and cylindrical waveguide have been obtained. The dispersion curve and linear gain have been gotten for different physical parameters. The influence of magnetic field, thickness of annular plasma, the density of plasma and the position of annular electron beam are investigated.
    3. The expression of power density has been derived. Power density, phase velocity and coupling impedance have been also calculated and analyzed.
    4. With ion-channel and finite field being taken into account, the dispersion relations of cylindrical and corrugated waveguide have been derived in a more general form.
    5. The properties of the electromagnetic wave propagation along plasma waveguide with a dielectric-rod inside are also studied.
    6. Some experimental works on the PASOTRON have been carried out.
引文
1. Liu Shenggang, Robert J.Barker, Zhu Dajun et. al. Basic Theoretical Formulations of Plasma Microwave Electronics —Part Ⅰ: A Fluid Model Analysis of Electron Beam-wave Interactions. IEEE Transactions on Plasma Science, 2000,28(6): 2135-2151
    2. Liu Shenggang, Robert J.Barker, Yan Yang et. al. Basic Theoretical Formulations of Plasma Microwave Electronics —Part Ⅱ: Kinetic Theory of Electron Beam-wave Interactions. IEEE Transactions on Plasma Science, 2000,28(6): 2152-2165
    3. Liu Shenggang, J. K. Lee, Song Liqun et. al. Theory of Wave Proopagation Along Corrugated Waveguide Filled with Plasma Immersed in an Axial Magnetic Field, IEEE Transactions on Plasma Science, 1996,24(3):918-923
    4. Liu Shenggang, R. J. Barker, Gao Hong, A New Hybrid Ion-channel Maser Instability, 23rd Annual International Conference on Infrared and Millimeter Waves, Essex University, September, 7-11,1998
    5. Liu Shenggang, R. J. Barker, Gao Hong et. al. Electromagnetic wave pumped ion-channel free-electron laser, 4th Asian Symposium on Free Electron Lasers and Korea-Russia Joint Seminar on High Power FELs, Taejon, Korea, June 8-10,1999.
    6. Liu Shenggang, R. J. Barker, Gao Hong et. al. "A new hybrid ion-channel instability", IEEE Transactions on Plasma Science, 2000,28(3): 1016-1019
    7. Liu Shenggang, Zhu Dajun, "An alternative analysis for wave propagation along plasma waveguide in finite magnetic field", Chinese Journal of Electronics, 1996, 5(2):1-7
    8.刘盛纲,J.K.Lee,祝大军等,“等离子体波导中电磁波传输理论”,中国科学(E辑),1996年8月,26(4):348-363
    9.刘盛纲,鄢扬,宋立群等,“有限磁场下等离子体填充的波纹波导中波传播理论”,电子科技大学学报,1996,25(7):1-11
    10.祝大军,刘盛纲,“磁化等离子体中电磁波的一种特殊模式”,电子学报,1997,25(3):29-24
    11.吴坚强,刘盛纲,莫元龙,“未磁化等离子体介质切伦可夫脉塞的线性理论”,物理学报,1997,46(2):324-331
    
    
    12. Gao Hong, Liu Shenggang, "Dispersion relation of a magnetized plasma-filled backward wave oscillator",Chinese Physics, 2000,9(4) :274-274-278
    13. Baugaev S.P, Cherepenin V.A. Investigation of amillimeter-wavelength-range relativistic diffraction generator, IEEE Trans Plasma Sci, 1990,18:518-521
    14. Benford J, Swegle John. Application of high power microwaves. SPIE-Intense Microwave and Particle Beams, 1992,1 629:69-79
    15. 刘盛纲,蒙林,熊彩东等,高功率微波,电子科技大学学报,1993,22:11-39
    16. Kuzelev M.V, Rukhadze A.A, Strelkov P.S et al. Relativistic high-current plasma microwave electronics: advantages, progress, and outlook. Sov J Plasma Phys, 1987,13(11) : 793-800
    17. Destler W.W, Carmel Y, Granatstein V.L et al. High-power microwave generation from plasma-filled backward-wave Oscillators. SPIE, 1989,1 061:10-16
    18. Lin A T, Chen L. Plasma induced efficiency enhancement in a backward wave oscillator. Phys Rev Lett. 1989,63: 2808-2815
    19. L.S.Bogdankevich, et al., "Plasma Microwave Electronics", Soviet Physics, Vol.24,p.1,1981.
    20. Sawthney R,Maheswari K. P., Effect of plasma on efficiency enhancement in a high power relativistic backward wave oscillator.IEEE Trans. Plasma Sci., 1993,21:609-613
    21. Wu jianqiang,Xiong Caidong, Liu Shenggang, "Field theory of dielectric cherenkov maser". Int. J. Infrared and Millimeter Waves, 1995,16:1317-1328
    22. Song Liqun, Liu Shenggang, On the solutions of coupled wave equations, Chinese Journal of Electronics, 1995,4:86-89
    23. D.Bohm and E. Gross, Theory of plasma oscillations, Phys. Rev., 75:1876,1949
    24. A. I. Akhiezer and Y. B. Fainbery, On the interaction of a beam of charge particles with electron plasma, Dokl. Akad. Nauk. SSSR,1949,69:555-556
    25. D. I. Trubetskkov and L. A. Pishchik, Nonrelativistic Cherenkov-radiation microwave plasma devices, Sov. J. Plasma Phys., 1989,15(3) :200-207
    26. M.V. Kuzelev, F.Kh. Mukhametzyanov, M.S. Rabinovich et al., Relativistic plasma UHF generator, Sov. Phys. JETP,1982,54:780-795
    27. A.GShkvarunet, A.A. Rukhadze and P.S. Strelkov, Wide-band relativistic plasma
    
    microwave oscillator, Plasma Phys. Rep.,1994,20(7) :613-616
    28. M.V. Kuzelev, O.T. Loza, A.V. Ponomarev et al., Spectral characteristics of a relativistic plasma microwave generator, Sov. Phys. JETP, 1996, 82(6) : 1102-1111
    29. E.P. Garate, A. Fisher, W. Main, High-gain plasma Cherenkov maser, IEEE J. of QE,1989,25(7) :1712-1719
    30. H. Kosai, E.P. Garate, A. Fisher, Plasma-filled dieletric Cherenkov maser, IEEE Trans, on PS, 1990,18(6) : 1002-1007
    31. Y. Carmel, K. Minami, et al., Demonstration of efficency enhancement in a high-power backward-wave oscillator by plasma injection, Physical Review Letters, 1989, 62(20) :2389-2392
    32. Y. Carmel, K. Minami, et al., High-power microwave generation by excitation of a plasma-filled rippled boundary resonator, IEEE-PS, 1990,18(3) :497-506
    33. R.W. Schumacher, D.M. Goebel, J.Santoru et al., PASOTRON?high-energy microwave source, IEEE Inter. Con. of Plasma Sci.,June 3,1991
    34. D.M. Goebel,et al., PASOTRON? high-energy microwave source, SPIE,1992,1629(Intense microwave and particle beams III):119-129
    35. D.M. Goebel,et al., High-power microwave source based on an unmagnetized backward-wave oscillator, IEEE-PS, 1994,22(5) :547-553
    36. R.B.Miller,An Introduction of Charged Particle Beam Physics,New York:Plenum,1982. 中译本,刘锡山等译,强流带电粒子束物理学导论,北京:原子能出版社,1990。
    37. C.A. Kapetanakos, P.A. Sprangle, R.A. Mahaffey, and J. Golden, "High-power microwave from a non-isochronous reflecting electron system (NIRES)", Phys.Rev. Lett. 39,843(1977) .
    38. D.H. Whittum, A.M. Sessler, J.M. Dawson. Ion-Channel Laser. Phys. Rev. Lett., 1990,64(21) :2511-2514
    39. 陈希,谢文楷,刘盛纲,电子注在等离子体中的运动及传输特性,强激光与粒子束,1998年 2月,第1期,第10卷:145-149
    40. David K.Abe, Member, IEEE,Yuval Carmel, Senior Member,IEEE, Susanne M.Miller, Member,IEEE, et al. Experimental Studies of Overmoded Relativistic Backward-Wave Oscillators, IEEE TRANSACTIONS ON PLASMA SCIENCE,VOL,26,NO.3,JUNE 1998:
    
    591~603
    41. JianQiang Wu, Cherenkov radiation excited by a thin annular relativistic electron beam in a slow-wave structure consisting of an annular-plasma-filled cylindrical waveguide with a dielectric lining, INT. J.ELECTRONICS, 1998,VOL.84, NO.5:539~548.
    42. B.Shokri, H.Ghomi and H.Latifi, Dielectric Cherenkov maser with a magnetically confined plasma column in a dielectric lined slow-wave waveguide, PHYSICS OF PLASMAS, VOLUME 7,NUMBER 6,JUNE 2000:2671~2676
    43.吴坚强,刘盛纲,填充环形等离子体的介质切伦可夫脉塞,电子科学学刊,1998年9月,第20卷,第5期:682~688
    44.熊彩东,吴坚强,刘盛纲,电子束与等离子体互作用产生的宽带微波辐射,电子学报,1995年10月,Vol.23,No.10:160~163
    45.宫玉彬,王文样,等离子体圆柱波导慢电磁波的激励,电子科学学刊,1996年5月,第18卷第3期:298~303
    46.宫玉彬,王文祥,覃志东,一种适用于空心电子束的慢波系统的理论,电子科技大学学报,2001年10月,Vol.30(5):484~488
    47.李伟,魏彦玉,刘盛纲,有限磁场作用下等离子体圆柱波导中的线性理论,强激光与粒子束,2001,13(5):641~645
    48.吴坚强,高功率微波的发展及应用,电子科技大学学报,Aug.,1996,Vol.25(7):129-139
    49. B.Shokri, H.Ghomi and H.Latifi. Dielectric Cherenkov maser with a magnetically confined plasma column in a dielectric lined slow-wave waveguide. Physics of plasmas,2000,7(6):2671-2676.
    50. Joon Y. Choe, Han S.uhm, and Saeyoung Ahn, Mixed slow-wave operation of a wide-band dielectric gyrotron. J.Appl.Phys, 1981,52(12):7067-7074.
    51. Joon Y. Choe, Hah S.uhm, and Saeyoung Ahn, Member, IEEE, Slow wave Gyrotron amplifier with a dielectric center rod, IEEE Transactions on microwave theory and techniques, 1982,MTT-30(5):700-707.
    52. J.N.Maiti and J.Basu, Properties of a dielectric-rod waveguide immersed in plasma, Journal of Appllied Physics, 1974,5(4):1650-1656.
    
    
    53. Wei Yanyu, Wang Wenxiang, Zhao Guoqing and Sun Jiahong, Wave propagation along a Helical Step-Loaded Groove Structure, Int. J.of Infrared & Millimeter Waves, Vol, 20, No.8, 1999,P1581-1592.
    54. Wenxiang Wang, Guofen Yu, Yanyu Wei. Study of the Ridge-Loaded Helical Groove Slow-Wave Structure, IEEE Trans. On MTT, Vol.45,No. 10,1997,P 1689-1695.
    55. J.R.Pierce, Traveling wave Tubes (Van Nostrand, Princeton, 1950).
    56. Les winslow, Phase Velocity Dispersion Shaping as A Design Parameter in Traveling Wave Tubes, IEDM, 1988,P374-377.
    57. R.M.Bevensee, Electromagnetic Slow Wave Systems, (New York: John Wiley and Sons, Inc. 1964, P212)
    58. J.N.MAITI AND J.BASU, Properties of a dielectric-rod waveguide immersed in plasma, Journal of Appllied Physics, Vol.45,No.4, April 1974. P1650-1656
    59.刘濮鲲,熊彩东,刘盛纲,一种新的等离子体脉塞系统。物理学报,第46卷,第5期,1997年5月:892~896
    60.吴坚强,王海明,电磁波在非均匀等离子体波导中的传播,电子科技大学学报,2001年8月,Vol.30(4):401~406
    61.李伟,魏彦玉,刘盛纲,有限磁场作用下等离子体圆柱波导中的功率流密度计算,强激光与粒子束,2001,13(6):753-756
    62.李伟,魏彦玉,刘盛纲,磁化环形等离子体填充波导中注-波互作用的研究,电子科学学刊,已接受待发表。
    63.李伟,魏彦玉,刘盛纲,有限磁场作用下等离子体背景中的切伦可夫不稳定性研究,强激光与粒子束,已接受待发表。
    64.吴坚强,熊彩东,刘盛纲.介质切伦可夫脉塞的研究,应用科学学报,1996,14(3):345-352
    65.吴坚强,熊彩东,刘盛纲.介质切伦可夫脉塞的线性理论.电子科技大学学报,1996,25(1):46-51
    66. John R. Smith,Isaac R. Shokair, Kenneth W. Struve, et al., Transverse Oscillations of a Long-Pulse Electron Beam on a Laser-formed Channel, IEEE Trans. on P.S., 1991, Vol.19:850-854
    67. Tephen B. Swanekamp, Jjames Paul Holloway etc., The Theory and Simulation of
    
    Relativistic Electron Beam Transport in the Ion-Focused Regime,Phys. Fluids B4(5) ,May,1992
    68. David H. Whittum, K. Ebihara et al., Experimental Studies of Microwave Amplification in the Ion-Focused Regime, IEEE Trans, on Plasma Science,Vol., February 1993,21(1) :
    69. David H. Whittum, Electromagnetic Instability of the Ion-Focused Regime, Phys. Fluids, March 1992,84(3) :
    70. Joel D. Miller and Ronald M. Gilgeenbach, Transport of Long-Pulse, High-Current Electron Beams in Preformed Monatomic Plasma Vhannels in the Ion Regime, IEEE Trans, on Plasma Science, June 1990,Vol.18(3) :
    71. David H. Whittum, William M. Sharp etc., Electron Hose Instability in the Ion-Focused Regime, Phys. Rev., August 1991,Vol.67(8) :
    72. S.P. Kuo, Y.S.Zhang and A. Ren, Observation of Freqency up-Conversion Plasma, Physics Letters A,29 October 1990,Vol.150(2) :
    73. Kuan-Ren Chen, Thomas C. Katsouleas and John M. Dawson, On the Amplification of the Ion-Channel Laser, IEEE Trans, on P.S., 1990,Vol. 18:837-841
    74. Chang-Jian Tang, Pu-kun Liu and Sheng-Gang Liu, Electromagnetic Instability in an Ion-Channel Electron Cyclotron Maser, J.Phys. D:Appl. Phys., 1996,29:90-94
    75. K.R. Chen and J. M. Dawson, Ion-Ripple Laser, Physical Review Letters, 1992,Vol.68:29-32
    76. David H. Whittum, Andrew M. Sessler and John M. Dawson, Ion-Channel Laser, Physical Review Letters, 1990,Vol .64:2511-2514
    77. Kuan-Ren Chen and John M. Dawson, Amplification Mechanism of Ion-Ripple Laser and Its Possible Application, IEEE Trans, on Plasma Science, Febuary 1993,Vol. 21(1) :
    78. Miller B. R. ,An Introduction of Charged Particle Beam Physics, New York: Plenum, 1982
    79. Gregory S.Nusinovich, Yuval Carmel, Thomas M.Antonsen et al., "Recent Progress in the Development of Plasma-Filled Traveling-Wave Tubes and Backward-Wave Oscillators", IEEE Trans, on Plasma Science, VOL.26. NO. 3, JUNE, 1998:628-645
    80. F.F.Chen, Introduction to Plasma Physics.
    81. Gao Hong, Liu Shenggang, "Dispersion relation of a magnetized plasma-filled backward wave oscillator",Chinese Physics, 2000,9(4) :274-278
    
    
    82. K.Minami, et al., Observation of resonant enhancement of microwaveradiation from a gas-filled backward wave oscillator, Appl. Phys. Lett., 1988,53(7) :559-561
    83. K. Minami, Y.Carmel, V.L. Granatstein et al. Linear theory of electromagnetic wave generation in a plasma-loaded corrugated-wall resonator. IEEE Trans. Plasma Sci.,1990,18(3) :537-545
    84. A. T. Lin, The effect of a dense background plasma on the dispersion of backward wave oscillators, SPIE,1990,1226(Intense microwave and particle beams): 172-178
    85. A. T. Lin, Magnetic field effects on plasma-filled backward wave oscillators, SPIE,1991,1407(Intense microwave and particle beams):234-241
    86. R. Saehney, K. P. Maheshwari, et al., Effect of plasma on efficiency enhancement in a high power relativistic backward wave oscillator, IEEE-PS,1993,21(6) :609-613
    87. Choyal Y., et al., Excitation of electromagnetic waves by relativistic electron beam in plasma-filled rippled wall waveguide, Phys. Plasmas,1994,1(1) :171-175
    88. Lou W. R, Carmal Y, Destler W. W. et al. New mode in a plasma with periodic boundaries: the origin of the dense spectrum. Physical Review Letters, 1991,67(28) :2481-2483
    89. Zhai Xiaoling, Garate E, Prohaska R et al. Experimental study of a plasma-filled backward wave oscillator. IEEE Trans. Plasma Science,1993,21(1) :141-148
    90. Lin A .T. Magnetic field effects on plasma-filled backward wave oscillators. Intense Microwave and Particle Beams, SPIE, 1991,Vol 1407:234-241
    91. Yang Ziqiang, Li Dazhi and Liang Zheng, A Study of Frequency Characteristics For Relativistic Backward-wave Oscillator. High Power Laser and Particle Beams, 1996,Vol.8(4) :513
    92. A.T. Lin. Emission of plasma cyclotron waves in plasma-filled backward-wave oscillators. Phys. Rev. Lett., 1990,65(6) :717-720
    93. M.M. Ali, K. Minami, S. Amano.et al. Linear analysis of a localized plasma-loaded backward wave oscillator driven by an annular relativistic electron beam. J. Phys. Soc.. Japan,1991,60(8) :2655-2664
    94. Y.Carmel, et al., "Relativistic Plasma Microwave Electronics: Studies of High-Power Plasma-Filled Backward-wave Oscillators", Phys. Fluids. B, Vol. 4, No.7, pp.2286-2292, 1992
    
    
    95. G.S. Nusinovich, Y. Carmel, T. M. Antonsen, Recent progress in the development of plasma-filled traveling-wave tubs and backward-wave oscillator, IEEE Trans. on PS, 1998,26(3):628-645
    96. O. T. Loza, A. G. Shkvarunets and P. S. Strelkov, Experimental Plasma Relativistic Microwave Electronics, IEEE Trans. on PS, 1998,20(3):615-627
    97. D. Bohm and E. Gross, Theory of plasma oscillations, Phys. Rev., 1949,75:1876
    98.杨梓强,李大治,梁正,相对论返波管频率特性研究,强激光与粒子束,1996,8(4):513-517
    99.李伟,鄢杨,刘盛纲等,磁化等离子体波导中注波互作用的一些数值计算,激光与微波技术专项学术交流会论文集,2000,7:76-81
    100.李伟,高宏,刘盛纲等,磁化等离子体填充波纹波导中的色散特性,四川省电子学会高能电子学专业委员会第二届学术交流会论文集,2001,11月:240-247
    101.高宏,博士后研究工作报告,“等离子体填充大功率微波器件及其相关问题的理论研究”,24-27。
    102. New microwave source disrupts enemy electronics, Defense Electronics, 1992,8:18
    103. Dan M. Goebel, Robert W. Schumacher, and Robert L.Eisenhart, Performance and Pulse Shortening Effects in a 200-kV PASOTRON HPM Source, IEEE Transactions On Plasma Science, 1998Vol.26(3)
    104.谢文楷,“等离子体阴极电子枪及其特性”,电子科技大学学报,1996,25(7):17-23
    105.蒙林,谢文楷,“毫米波虚阴极器件的锁相”,红外与毫米波学报,1995,14(5):379-382
    106.谢文楷,“强流相对论电子学若干新进展”,电子学报,1995,23(6):102-104
    107. Guofen Yu, Wenxiang Wang,Yanyu Wei et al., Study On Microwave Exicited By Virtual Cathodee Oscillation In Cavity, International Joural of Infrared and Millimeter Waves, 1996,Vol.17(7):1219-1225
    108.蒙林,黎晓云,谢文楷等,“离子通道中高能电子束传输特性实验研究”,四川省电子学会高能电子学专业委员会第二届学术交流会论文集,2001,11月:211-213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700