地铁车辆牵引电传动系统控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牵引电传动系统是地铁车辆装备的核心和难点。目前国内地铁车辆牵引电传动系统及其控制关键技术仍主要由国外企业垄断,严重制约了我国城市轨道交通行业的长远发展。本文依托国家“十一五”科技支撑计划重点项目“城市轨道交通能馈式牵引供电系统及牵引传动系统研制”,着重针对地铁车辆牵引变流器、牵引电机及牵引电传动系统稳定性相关的核心控制技术展开分析探讨,并通过大量的仿真与地面、现场装车试验验证了理论研究成果的正确性。
     针对地铁车辆牵引变流器低开关频率脉宽调制特性及其约束条件,提出了基于同步SVM与低次谐波消除优化同步SHE-PWM的混合脉宽调制策略;研究了混合脉宽调制多模式间平滑过渡技术;详细分析了基于FPGA的集成化混合脉宽调制技术数字实现原理和设计方法,并与国外牵引变流器的脉宽调制策略进行多角度的对比分析;通过仿真与试验进行了深入全面的研究,验证了所提牵引变流器混合脉宽调制策略的有效性和可行性。
     推导分析了基于复矢量模型的牵引电机极点分布规律,并基于此研究了低开关频率下传统离散转子磁链观测模型存在的问题和局限性;通过牵引电机模型离散化设计,研究了离散磁链观测模型的稳定性,并利用矩阵∞-范数分析离散模型的观测误差;通过与论文提出的新型高阶离散迭代算法的性能对比,提出了一种适合低迭代计算频率并实现高速区稳定收敛且相位补偿的改进离散转子磁链观测模型,达到了全速稳定、离散精度高及计算量小的效果;研究了闭环转子磁链观测模型的极点配置及其电机参数敏感性,进一步提高离散模型观测精度和鲁棒性。
     基于混合脉宽调制技术,提出了矢量控制与标量控制相结合的牵引电机双模式总体控制策略,重点分析了前馈解耦预控、相角控制、脉宽调制与电机控制的同步协调以及双模式控制策略问的过渡问题;提出了基于复矢量电流闭环模型分析的改进型电流闭环控制时序和数字控制时延补偿策略,并给出了基于离散观测转子磁链q轴误差的磁场准确定向实时校正方法,进而提升牵引电机的控制性能。
     实现了地铁牵引电传动系统主动阻尼稳定性控制及直流侧滤波器参数的优化设计。通过建立牵引变流器-牵引电机系统主回路模型,对比研究了牵引变流器直流侧滤波器参数设计对系统稳定性的影响规律;基于系统输入阻抗分析,研究了牵引电传动系统稳定性边界及稳定区域,为直流侧滤波器参数设计及优化提供参考依据;建立了关注直流侧的牵引电传动系统小信号模型,研究分析了直流侧负阻抗不稳定性的本质,基于此提出了主动阻尼稳定性振荡抑制策略,并给出了控制策略中关键参数的设计取值原则。
     最后,实现了完全自主化地铁车辆牵引变流器的研制,通过能量互馈型牵引传动地面试验系统及广州地铁现场装车试验运行平台,完成了大量的试验验证及运行考核,获取了充分完善的试验波形和相关数据,逐一验证了上述地铁车辆牵引电传动系统控制关键技术及其工程实践方法的科学性和可行性。
     图172幅,表6个,参考文献161篇。
Electric traction drive system is the key and difficulty to the equipment of metro cars. At present, the traction drive system and crucial techniques of metro cars are still monopolized by foreign enterprises, which greatly hampers the development of civil urban rail transportation equipment. On sponsored by National Key Technologies R&D Program for the "11th Five-year Plan"-"Development of Energy Reclaiming Traction Power Supply System and Traction Drive System for Urban Rail Transportation", this paper focuses on the discussion of crucial techniques of traction converter, traction motor and the stability of electric traction drive system for metro cars, and then verifies the correctness of the theoretical research by amounts of simulations, ground tests and field trails.
     To address the feature and constraints of pulse-width modulation at low switching frequency, one hybrid PWM algorithm based on synchronous SVM and optimized synchronous SHE-PWM is proposed; the smooth transition technologies between multi-mode modulation are researched; the intergrated digital hybrid PWM technology based on FPGA is achieved, which is also compared with modulation strategies of foreign traction converter at all round; with the simulation and experiments, the effectiveness of proposed hybrid PWM strategy is verified.
     The pole distribution law of traction motor based on complex model is deduced and analyzed, based on this, the problem and limitation of the traditional discrete rotor flux observer in low switching frequency are researched; with design of discrete flux observer, the stability is discussed and the discrete error is analyzed with matrix ω-norm; The new discrete rotor flux observer based on stabilization in high speed region and phase compensation with low calculation frequency is established and compared with the proposed new high-order Euler discrete method in this paper; Based on analysis of the pole placement strategy for the closed-loop rotor flux observer and the comparison discussion of motor parameters sensitivity, the precision and robustness of dicrete observer are improved.
     Based on hybrid PWM, the double-mode control strategy combined vector control and scalar control is proposed, and then, the feedforward decoupled pre-control, the phase angle control, synchronization between PWM and motor control and smooth transition between double-mode control are emphatically analyzed; To improve the performance of torque control of traction motor, a better control timing and related time-delay compensating approach are proposed based on complex current closed-loop model and a real-time correction strategy of flux orientation based on q-axis rotor flux error is discussed.
     The active damping stability control of traction electric drive system and optimized design of DC-link LC filter are realized. A traction converter-traction motor system model is established, based on this, the system stability effect of DC-link filter parameters is analyzed in details; with the analysis of system input impendance, system stability is researched, along with the stability aera of traction electric drive, acting as reference to design and optimization of the DC-link filter; The small-signal model based on DC-Link of electric traction system is established, then the instability nature of DC-link negtive impedance is discussed; An active damping stability control strategy is proposed, and the design principle and value determination of key parameters for the control strategy are analyzed.
     At last, the completely independent traction converter of metro car is realized. Through the reciprocal power-fed ground testing system for traction drive and field trial on Guangzhou Metro, a lot of validation and assessment tests are finished, comprehensive test waveforms and data are acquired, and the scientific and feasibility of the above proposed crucial technologies and engineering practice methods for traction electric drive system control of metro cars are verified one by one.
     Figures:172, Tables:6, References:161.
引文
[1]孔令洋.城市轨道交通系统型式选择研究[D].北京交通大学,2009.
    [2]2009-2012年城市轨道交通行业发展前景分析及投资风险预测报告[R].中国研究报告网,2009.
    [3]孔俊彬,严冰.我国何以成为世界最大轨道交通市场[J].人民铁道.2010.
    [4]俞展猷.我国城市轨道交通车辆的发展和实施车辆国产化的历程[J].机车电传动.2007(6):1-5.
    [5]林文立.地铁动车牵引传动系统分析、建模及优化[D].北京交通大学,2010.
    [6]徐惠林.北京地铁车辆电传动系统的国产化研究[J].现代城市轨道交通.2008(4):7-12.
    [7]翁星方,忻力,胡家喜,等.简统化地铁车辆IGBT牵引逆变器[J].机车电传动.2011(3):44-48.
    [8]冯晓云.电力牵引交流传动及其控制系统[M].北京:高等教育出版社,2009.
    [91丁荣军.现代轨道牵引传动及控制技术研究与发展[J].机车电传动.2010(5):1-9.
    [10]丁荣军.现代变流技术与电气传动[M].北京:科学出版社,2008.
    [11]李威,车向中,郝荣泰.交-直-交电力机车PWM调制方法研究[J].铁道学报.2000,22(6):26-31.
    [12]Horstmann D, Stanke G. Die Stromrichternahe Antriebsregelung des Steuergerates fur Bahnauto-matisierungssysteme SIBAS32[J]. Sonderdruck aus Elektrische Bahnen.1992,1(1):1-8.
    [13]Ando T, Tokunosuke, Tanamachi. Apparatus and method for controllng induction motor[P]. Dec.26,2000.
    [14]周庆强.CKD8E型内燃机车交流电传动系统分析[J].内燃机车.2005(10):6-10.
    [15]J H. On continuous control of PWM inverters in the overmodulation range including the six-step mode[J]. IEEE Trans.on Power Electronics.1993,8(4):546-553.
    [16]Nguyen T H, Lee D C. Improvement of current control in overmodulation range for vector controlled induction machine drives[C]. Korea: 2011.
    [17]Tripathi A, Khambadkone A M. Dynamic control of torque in overmodulation and in the field weakening region[J]. Transactions on Power Electronics,IEEE.2006,21(4):1091-1098.
    [18]黄济荣.电力牵引交流传动与控制[M].北京:机械工业出版社,1998.
    [19]周明磊,游小杰,王琛琛.低开关频率下PWM调制方法研究[J].北京交通大学学报.2010,34(5):53-58.
    [20]Peroutka Z, Glasberger T, Janda M. Control of induction machine drive for multisystem locomotive: Design considerations regarding problems of conductive currents affecting railway safety system: Power Electronics and Applications,2009. EPE'09.13th[C].2009.
    [21]Peroutka Z, Glasberger T, Janda M. Main problems and proposed solutions to induction machine drive control of multisystem locomotive: ECCE 2009. IEEE [C].2009.
    [22]谭新元.牵引逆变器SHEPWM控制技术的研究[J].中国电机工程学报.2001,21(9):47-52.
    [23]P E. New current control scheme for PWM inverters[J]. IEE Proc.B.1988,135(4):172-179.
    [24]Rajashekara K. DC link filter design consideration in three-phase voltage source inverter-fed induction motor drive system[J]. IEEE Trans on IA.1987, 23(4): 673-680.
    [25]Holtz J. Synchronous optimal pulsewidth modulation and stator flux trajectory control for medium voltage drives[J]. IEEE. Trans.on Ind. 2007,43(2): 600-608.
    [26]Holtz J. Fast dynamic control of medium voltage drive operating at very switching frequency-an overview[J]. IEEE.Trans.on Ind. Electronic. 2008,55(3):1005-1013.
    [27]Holtz J. Fast current trajectory control based on synchronous optimal pulsewidth modulation[J]. 1995,31(5):1110-1120.
    [28]Holtz J. Closed-loop control of medium voltage drive operated with synchronous optimal pulsewidth modulation[J]. IEEE.Trans.on Ind. 2008,31(5):115-123.
    [29]陶生桂,胡兵.城市轨道车辆电气传动系统发展综述[J].电力机车与城轨车辆.2007,30(2):1-6.
    [30]年晓红,王坚.牵引电机无速度传感器间接定子量磁场定向控制[J].变流技术与电力牵引.2008(2):40-43.
    [31]王坚,桂卫华,年晓红,等.牵引电机无速度传感器间接定子量控制系统研究[J].铁道学报.2010,32(6):17-21.
    [32]Wei L. Device for controlling torque of an asynchronous electric motor by controlling the phase of the motor stator voltage[P]. May.31.1994.
    [33]Kitanaka H. Vector controller for induction motor[P]. Jul. 12.2007.
    [34]Bose Bimal K,现代电力电子学与交流传动[M].北京:机械工程出版社,2005.
    [35]罗慧.感应电机全阶磁链观测器和转速估算方法研究[D].华中科技大学,2009.
    [36]Harnefors L, Hinkkanen M. Complete Stability of Reduced-order and Full-order observers for Sensorless IM Drives[J]. IEEE.Trans.on IE. 2008,55(3):1319-1329.
    [37]West N T, Lorenz R D. Digital implementation of stator and rotor flux-linkage observers and a stator-current observer for deadbeat DTC[J]. IEEE.Trans.on IA. 2009,45(2):729-736.
    [38]Kubota H, Matsuse K. DSP-based speed adaptive flux observer of induction motor[J]. IEEE.Trans. on IA. 1993,29(2):344-348.
    [39]Astrom K J, Wittenmark B. Computer controlled systems[M]. Engewood Cliffs.NJ: prentice Hall, 1984.
    [40]Verghese G, Sanders S. Observers for flux estimation in induction machines[J]. IEEE Trans, on Industrial Electronics.1988(35):85-94.
    [41]Behhini A, Figalli G. Analysis and design of a microcomputer-based observer for induction motor.[J]. Automatics.1988,24(4):549-555.
    [42]Bottura C, Silvino J, Resende P. A flux observer for induction machines based on a time-variant discrete model[J]. IEEE Trans, on IA. 1993(29):349-354.
    [43]Griva G, Ferraris P, Profumo F. Luenberger observer for high speed induction machine drives based on a new pole placement method: In Proceeding of the 9th European Conference on Power Electronics and applications[C].2001.
    [44]Hinkkanen M, Luomi J. full-order flux observer structure for speed sensorless induction motors: In Proceeding of the 27th Annual Conference of the IEEE Industrial Electronics Society [Z].2001.
    [45]Hinkkanen M, Luomi J. Digital implementation of full-order flux observers for induction motors: In proceeding of the EPE-PEMC 02[C]. Cavat and Dubrovnik.Croatia: 2002.
    [46]李威.感应电机矢量控制系统研究[D].北京交通大学,2001.
    [47]Nakazawa Y, Toda S, Yasuoka I, et al. One-pulse PWM mode vector control for traction drives[Z]. 1996135-141.
    [48]Ando T, Tokunosuke. Apparatus and method for cpontrolling induction motor[P]. Dec.26.2000.
    [49]Horie Akire. Mizobuchi Tetsuya. Efficient Train Traction System that Reduces Maintenance Work [J]. Hitachi Review. 1999.
    [50]Holtz J, Quan J, Schmitt G. Design of fast and robust current regulators for high power drives based on complex state variables[J]. IEEE.Trans.on IA.1997, 40(5): 1388-1397.
    [51]Kim H, Degner M W, Guerrero J M. Discrete-time current regulator design for AC machine drives[J]. IEEE.Trans.on IA.2010, 46(4): 1425-1435.
    [52]吕昊,马伟明,聂子玲.磁场定向不准对感应电动机系统性能影响的分析[J].电工技术学报.2005,20(8):85-90.
    [53]Bibian S, Jin H. Time delay compensation of digital control for SMPS Using prediction techniques[J]. IEEE.Trans.on Power Electronics.2000,15(5): 835-842.
    [54]Nussbaumer T, Heldwein M L, Gong G, et al. Prediction techniques compensating delay times caused by digital control of a three-phase buck-type PWM rectifier system:Industry Applications Conference,2005[C].2005923-927.
    [55]李春龙,沈颂华,卢家林.基于状态观测器的PWM整流器电流环无差拍控制技术[J].电工技术学报.2006,21(2):84-89.
    [56]Abu-Rub H, Guzinshi J. Predictive current control of voltage-source inverters[J]. IEEE.Trans.on IE. 2004,51(3):585-593.
    [57]Drobnic K, Nemec M, Nedeljkovic D. Predictive direct control applied to AC drives and active power filter[J]. IEEE.Trans.on IE.2009, 25(6): 1884-1894.
    [58]Toliyat A, Levi E. A review of RFO induction motor parameter estimation techiniques[J]. IEEE.on EC. 2003,18(2):271-282.
    [59]U R, A D, K G. An MRAS scheme for on-line rotor resistance adaption of an induction machine: Power Eelctronics Specialist Conference[C]. Vancouver BC:2001.
    [60]Zai L, Demarco L, Lipo A. An extend Kalman filter approach to rotor time constant measurement in PWM induction motor drives[J]. IEEE.Trans.on IA. 1992,28(1):96-104.
    [61]Wade S, Dunnigan W, Willians W. A new method of rotor resistance estimation for vector controlled induction machines[J]. IEEE.Trans.on IE.1997,44(2):247-257.
    [62]Razzouk B, Sicard P. A simple on-line method for rotor resistance updating in indirect rotor flux orientation: IECON02[C]. Sevilla: 2002.
    [63]黄开胜,童怀,郑泰开.遗传算法在异步电动机动态参数模型参数识别中的应用[J].中国电机工程学报.2000,20(8):37-42.
    [64]马小亮.高性能变频调速及其典型控制系统[M].北京:机械工程出版社,2010.
    [65]刘可安,高首聪,刘晨.地铁车辆交流传动系统主电路振荡抑制研究[J].机车电传动.2006(3):48-52.
    [66]孙大南,刘志刚,林文立,等.地铁牵引变流器直流侧振荡抑制策略研究[J].铁道学报.2011,33(8):52-57.
    [67]柳文涛.逆变器供电感应电机传动系统的自激振荡问题研究[D].西安理工大学,2008.
    [68]Xian Y Q. Instability Compensation of VF PWM Inverter-fed Induction Motor Drives:IEEE.IAS[Z]. Louisiana: 1997613-620.
    [69]王庆义,尹泉.一种改善VVVF变频调速系统稳定性方法[J].电机与控制学报.2007,11(2):138-142.
    [70]王秀利.电力机车交流传动系统半实物仿真的研究[D].浙江大学,2005.
    [71]Mosskull H. Robust Control of an Induction Motor Drive[D]. Royal Institute of technology, 2006.
    [72]Mosskull H, Galic J, Wahlberg B. Stabilization of induction motor drives with poorly damped input filters[J]. IEEE.Trans.on IE.2007,54(5):2724-2734.
    [73]Mosskull H. Stabilization of an induction motor drive with resonant input filter: 2005 European Conference on Power Electronics and Applications[C].20051-10.
    [74]周克亮.电力电子变换器PWM技术原理与实践[M].北京:人民邮电出版社,2010.
    [75]赵振波,陈子颖IPOSIM-IGBT仿真工具在变频器设计中的应用[J].变频器世界.2009:83-87.
    [76]冯江华.多模式电压空间矢量脉宽调制的理论分析及微机实现[J].机车电传动.1996(4):8-12.
    [77]Beig A R, Narayanan G, Ranganathan V T. Modified SVPWM algorithm for three level VSI with synchronized and symmetrical waveforms[J]. IEEE Transactions on Industrial Electronics.2007, 54(1):486-494.
    [78]费万民,张艳莉,阮新波.三电平逆变器SHEPWM3(?)线性方程组的求解[J].中国电机工程学报.2008,28(6):62-68.
    [79]张永昌,赵争鸣,张颖超.三电平变频调速系统iVPWM和SHEPWM混合调制方法的研究[J].中国电机工程学报.2007,27(16):72-77.
    [80]刘文华,卢军峰,郑征.基于SHE-PWM的D-STATCOM的控制器和脉冲发生器的设计[J].清华大学学报.2002,42(9):1188-1191.
    [81]S B. Novel digital continuous control of SVM inverters in the overmodulation range[J]. IEEE Trans. on Industry Applications.1997,33(2):525-530.
    [82]Liwei Z, Xuhui W, Jun L. A novel based on angle-control strategy of SVPWM inverter in the overmodulation region:ICEMS2004[C]. Jeju Island.Korea:2004.
    [83]Khambadkone A M, Holtz J. Current control in overmodulation range for space vector modulation based vector controlled induction motor drives:IECON 2000.26th Annual Conference of the IEEE [C].20001334-1339.
    [84]丁荣军.中间60°PWM控制的特点及其电路的实现[J].机车电传动.1995(1):13-17.
    [85]刘连根.涉及交流传动电力机车运行工况平稳过度的两个问题的研究[J].铁道学报.1996,18(8):116-119.
    [86]Alejo D, Maussion P, Faucher J. About just in time PWM transition for railway high power traction drives:EPE[C]. Toulouse:2003.
    [87]Couto C M, Martins J S. Multi-mode microcontroller based PWM modulator suitable for fast vector control:ISIE[C].199566-667.
    [88]A TMS32010 Based Near Optimized PWM Generator[J].
    [89]李建林,王立乔,李彩霞,等.基于现场可编程门阵列的多路PWM波形发生器[J].中国电机工程学报.2005,25(10):55-59.
    [90]许赟,邹云屏,陈伟,等FPGA-DSP实现混合级联多电平变换器的高性能PWM控制[J].高电压技术.2009,35(5):1038-1043.
    [91]王剑,李永东.电流环时序方法在PWM整流器中的应用[J].清华大学学报.2009,49(10):1577-1580.
    [92]刘健.新型三电平高压变频调速关键技术及成套装备研发[D].华中科技大学,2008.
    [93]孙从君.基于TMS320F2812的多采样率交流调速系统[D].成都:西南交通大学,2010.
    [94]蔡华斌.多采样率直接转矩控制系统研究[D].成都:西南交通大学,2007.
    [95]胡斯登,赵争鸣,袁立强,等.高性能变频调速系统的离散控制问题研究[J].中国电机工程学报.2010,30(30):1-6.
    [96]Holtz J. On the Spatial Propagation of Transient Magnetic Fields in AC MachinesfJ]. IEEE.Trans.on IA.1996,32(4):927-937.
    [97]Holtz J. The representation of AC machine dynamics by complex signal flow [J]. IEEE.Trans.on IE. 1995,42(3):263-271.
    [98]黄晶,阙沛文,唐景肃.论微机控制系统的采样周期[J].计算机测量与控制.2003,11(8):588-590.
    [99]高金源,夏洁,张平.计算机控制系统[M].北京:高等教育出版社,2010.
    [100]钱积新,王慧,周立芳.控制系统的数字仿真及计算机辅助设计[M].北京:化学工业出版社,2009.
    [101]J B. Discrete-time model of an induction motor[J]. ETEP. 1991,1(2):65-71.
    [102]郑大钟.线性系统理论[M].北京:清华大学出版社,2002.
    [103]薛定宇.控制系统计算机辅助设计[M].北京:清华大学出版社,2006.
    [104]J H, B W. New integration algorithms for estimating motor flux over a wide speed range[J]. IEEE Trans, on Power Electronics.1998,13(5):969-977.
    [105]尚敬,刘可安.全阶状态观测器在传动控制系统中的速度辨识[J].机车电传动.2004(6):28-31.
    [106]Busco B, De Marcoc G, Marino P, et al. Flux Observation and Parameter Estimatin for IM in Traction Drives:Power Electronics Specialists Conference,1996. PESC[C].19961408-1413.
    [107]Salvatore N, Caponio A, Neri F, et al. Optimization of Delayed-State Kalman-Filter-Based Algorithm via Differential Evolution for Sensorless Control of Induction Motors[J]. IEEE Transactions on Industrial Electronics.2010,57(1):385-394.
    [108]H K. DSP-Based speed adaptive flux observer of induction motor[J]. IEEE.Trans.on IA.1993,29(2): 344-348.
    [109]冯江涛,王路,冯帆.线性非时变离散系统带观测器的状态反馈分析[J].电力学报.2010,25(5):411-415.
    [110]奚国华,沈红平,喻寿益.基于全阶状态观测器的无速度传感器DTC系统[J].电气传动.2008,38(7):22-26.
    [111]Madadi H, Chang L. Comparative study of pole placement methods in adaptive flux observers[J]. Control Engineering Practice.2005(13):749-757.
    [112]Ben-Brahim L, Kawamura A. Digital current regulation of field-oriented controlled induction motor based on predictive flux observer[J]. IEEE Transs on.IA.1991,27(5):956-961.
    [113]奚国华,高宏洋,许为.定子磁链全阶观测器增益矩阵的确定方法[J].中南大学学报.,39(4):794-799.
    [114]M H, J L. Parameter sensitivity of full-order flux observer for induction motors[J]. IEEE Trans, on Industrial Applications.1998,39(40):1127-1135.
    [115]樊扬,瞿文龙,陆海峰,等.基于转子磁链q轴分量的异步电机间接矢量控制转差频率校正[J].中国电机工程学报.,29(9):62-66.
    [116]Holtz J. Field-oriented asychronous pulse-width modulation for high-performance ac machine drives operating at low switching frequency[J]. IEEE.Trans.on IA.1991,27(3):574-581.
    [117]Bauer F, Schierling H. Method and apparatus for current regulating in a voltage-injecting converter[P]. Nov.14.1995.
    [118]Negoro H. Vector controller for induction motor[P]. Jan.1,2002.
    [119]Jung J, Nam K. A dynamic decoupling control scheme for high-speed operation of induction motors[J]. IEEE.Trans.on IE.1999,46(1):100-110.
    [120]Kawabata Y, Kawakami T. New design method of decoupling control system for vector controlled induction motor[J]. IEEE.Trans.on Power Electronics.2004,19(1):1-9.
    [121]Steinke J K, Dudler G J, Huber B P. Field oriented control of a high power GTO-VSI fed AC drive with high dynamic performance using a programmable high speed controller (PHSC):Industry Applications Society Annual Meeting[C].1992393-399.
    [122]周雒维,孙鹏菊,杜雄.数字控制DC-DC变换器的延时离散模型及影响分析[J].电机与控制学报.2010,14(5):7-12.
    [123]刁利军.电力推进负载模拟系统研究[D].北京交通大学,2008.
    [124]Rodriguez J, Pontt J, Silva C A. Predictive current control of a voltage source inverter[J]. IEEE.Trans.on IE.2007,54(1):495-503.
    [125]1 L, Rodriguez J, Wu B, et al. Predictive control for current source rectifiers operating at low switching frequency:IPEMC[C].20091630-1633.
    [126]Vargas R, Cortes P, Ammann U. Predictive control of a three-Phase neutral-point-clamped inverter[J]. IEEE.Trans.on.IE. 2007,54(5):2697-2706.
    [127]Papafotiou G, Kley J, Papadopoulos K G. Model Predictive Direct Torque Control-Part2 implementation and experimental evaluation[J]. IEEE.Trans.on IE.2009, 56(6): 1906-1915.
    [128]Geyer T, Papafotiou G, Morari M. Model predictive DTC-Partl:concept,algorithm,and analysis[J]. IEEE.Trans.on IE. 2009,56(6):1894-1905.
    [129]王宏佳,杨明,牛里,等.永磁交流伺服系统电流环带宽扩展研究[J].中国电机工程学报.2010,30(12):56-66.
    [130]Park C, Kwon W. Time delay compensation for induction motor vector control system[J]. SCIENCE Electric Power Systems Research.2004(68): 238-247.
    [131]孙大南,刁利军,刘志刚.交流传动矢量控制系统时延补偿[J].电工技术学报.2011,26(5):138-145.
    [132]王剑,李永东.一种显著增加变换器电流环带宽的新方法[J].电气传动.2009,39(6):34-38.
    [133]Schmirgel H. Delay time Compensation in the current control of servo drives higher bandwidth at no trade-off: PCIM EUROPE Proceeding[C].2006.
    [134]Bae B, Sul S. A Compensation Method for time delay of full-digital Synchronous frame current regulator of PWM AC drives[J]. IEEE.Trans.on IA.2003, 39(3):802-810.
    [135]Noguchi T, Kondo S, Valigi P. Field-oriented control of an induction motor with robust on-line tuning of its parameters[J]. IEEE.Trans.on IA.1997, 33(1):35-42.
    [136]孙大南,刘志刚,刁利军,等.牵引电机矢量控制转子磁场定向准确定向实时校正策略[J].电工技术学报.2011,26(9):116-123.
    [137]陆海峰,瞿文龙,张磊,等.一种基于无功功率的异步电机矢量控制转子磁场准确定向方法[J].中国电机工程学报.2005,25(16):116-120.
    [138]Degner M W, Guerrero J M, Briz F. Slip gain estimation in field-orientation controlled induction machines using the system transient response[J]. IEEE.Trans.on IA.2006, 42(3): 702-711.
    [139]陈伟,杨荣峰,余泳.新型感应电机VF控制系统稳定性方法[J].电机与控制学报.2009,13(1):11-15.
    [140]Suzuki K, Saito S, Kudor T, et al. Stability Improvement of VF Controlled Large Capacity Voltage-Source Inverter Fed Induction Motor: 41st IAS Annual [C]. 200690-95.
    [141]程夕明,欧阳明高,孙逢春.基于铅酸动力电池组供电的电压源型逆变器——牵引感应电机传动系统的稳定性研究[J].中国电机工程学报.2003,23(10).
    [142]胡寿松.自动控制原理[M].北京:科学出版社,2007.
    [143]Carpita M, Zueger H, Pellerin M. Transformer used as a DC Link Filter inductance in DC high Power traction applications: EPE[C]. Dresden: 2005.
    [144]Pietilainen K, Harnefors L, Petersson A. DC-Link stabilization and voltage sag ride-through of inverter drives[J]. IEEE.Trans.on IE. 2006,53(4):1261-1268.
    [145]李芬,邹旭东,邹云屏.并网LCL滤波的PWM整流器输入阻抗分析[J].电工技术学报.2010,25(1):97-103.
    [146]Ahmed M M, Taufiq J A, Goodman C J, et al. Electrical instability in a voltage source inverter-fed induction motor drive at constant speed[J]. Electric Power Applications, IEE Proceedings B.1986, 133(4):299-307.
    [147]鲁力,田奎森,盛政彬.地铁列车电传动系统线路空心滤波电抗器研制[J].机车电传动.2011(2): 43-46.
    [148]徐惠林,曾宪钧.北京地铁13号线车辆电传动系统设计[J].机车电传动.2002(6):35-38.
    [149]胡引娥,程有平.广州地铁1号线车辆的牵引逆变器[J].机车电传动.2003(1):42-44.
    [150]陶功安,袁立祥,马喜成.广州地铁3号线地铁车辆[J].机车电传动.2006(4):53-59.
    [151]王鑫,金福来.沈阳地铁1号线地铁车辆电传动系统[J].机车电传动.2011(2):40-43.
    [152]张安,任天浩.沈阳地铁2号线地铁车辆[J].机车电传动.2010(4):49-54.
    [153]孙大南,李哲峰,林文立.基于矢量控制的双电机传动试验系统[J].电气传动.2009(39):16-18.
    [154]Satoshi Kadowaki,Kiyoshi Ohishi,etc. Re-adhesion Control of Electric Motor Coach Based on Disturbance Observer and Sensorless Vector Control[C]. PCC Osaka 2002.3:1020-1025.
    [155]Ohishi.K, Ogawa.Y, Miyashita.I. Anti-slip Re-adhesion Control of Electric Motor Coach Based on Force Control Using Disturbance Observer[C]. Industry Application Conference,2000.2:1001-1007
    [156]陆阳,康熊.机车防空转设计原则及SS8机车防空转系统试验结果分析[J].铁道学报.1998,20(2):25-30.
    [157]Don-Ha Hwang, Moon-Sup Kim, Doh-Young Park. Re-adhesion Control for High-Speed Electric Railway with Parallel Motor Control System[C]. ISIE,2001.2:1124-1129.
    [158]Kadowaki.S, Ohishi.K, Hata.T. Advanced Anti-slip and Anti-skid Re-adhesion Control Considering Air Brake for Electric Train[C]. EPE. 2005.1:1-10.
    [159]Imai.K, Ohishi.K, Sano.T, etc. Real-time Distribution Control of Torque Reference of Commuter Train for Fine Re-adhesion Control[C]. Advanced Motion Control,2010:228-233.
    [160]Lehtla.M, Hoimoja.H. Slip Control Upgrades for Light-Rail Electric Traction Drives[C].EPE-PEMC, 2008.13th:1581-1584.
    [161]陈军华,胡铁军,陈希隽.广州地铁1号线车辆防空转/防滑系统[J].机车电传动.2002(1):38-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700