chTNT-3介导的主动靶向脂质体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂质体是一种由磷脂双分子层构成的具有水相内核的脂质微囊。通过表面修饰可以改变脂质体的性质和生物学行为:在脂质体表面修饰亲水性高分子(如聚乙二醇)可以阻碍血浆成分的调理作用,减少脂质体被网状内皮系统(RES)识别和摄取,使脂质体具有长循环的特点;在脂质体表面修饰特异性的配基(如抗体,多肽),能使脂质体具有主动靶向的特性。
     人鼠嵌合抗肿瘤细胞核单抗(chemic TNT-3 monoclonal antibody,chTNT-3)是一种能特异性亲和肿瘤坏死区细胞核抗原的新型抗体。chTNT-3可特异性结合肿瘤坏死区暴露的单链DNA,定位在肿瘤坏死部位。由于实体瘤内部坏死区域的存在相当普遍,chTNT-3突破了常规肿瘤细胞单抗的局限,具有广谱抗肿瘤的特点。
     本文选择chTNT-3作为靶向头基,制备了两种chTNT-3介导的主动靶向脂质体给药系统,并比较两种不同方式chTNT-3介导的主动靶向脂质体对肿瘤的靶向性:(1)空间稳定免疫脂质体通过脂质体表面的chTNT-3与肿瘤坏死部位的特异性结合作用靶向至肿瘤;(2)将生物素化chTNT-3(chTNT-3/B)预定位于荷瘤裸鼠的肿瘤坏死部位,再给予表面修饰链霉亲和素的空间稳定脂质体,通过生物素与链霉亲和素之间特异性结合作用将脂质体靶向至肿瘤。以阿霉素为模型药物,考察chTNT-3介导的主动靶向脂质体对荷瘤裸鼠的药效。
     首先合成了脂质体空间稳定膜材料甲氧基聚乙二醇-氢化大豆磷脂酰乙醇胺(mPEG-HSPE)和用以连接抗体的功能性膜材料吡啶二硫丙酰胺-聚乙二醇-氢化大豆磷脂酰乙醇胺(PDP-PEG-HSPE),TLC、IR、~1H-NMR等初步鉴定为目的产物,符合试验要求。
     主动靶向脂质体的制备包括两方面:(1)采用高压均质机或微型挤出器制备粒径均一的含PDP-PEG-HSPE的空间稳定脂质体(PDP-SL),通过硫酸铵梯度法包载模型药物阿霉素。以阿霉素包封率和载药量为指标,通过三因素五水平的星点设计-效应面优化法优化处方,得到较优的脂质体处方为:膜材料摩尔比为HSPC/CHOL/mPEG-HSPE/PDP-PEG-HSPE=5:4:0.2:0.05,药脂比0.18:1(w/w),包载温度65℃,包载时间20min时,包封率可达(93.2±2.0)%。(2)PDP-SL经二硫苏糖醇还原,得表面带巯基的脂质体(HS-SL),与马来酰亚胺苯基丁酰基chTNT-3(MPB-chTNT-3)连接得到空间稳定免疫脂质体(chTNT-3-SL)。另一方面,HS-SL与马来酰亚胺苯基丁酰基链霉亲和素(MPB-SAv)连接可得预定位脂质体(SAv-SL);chTNT-3经生物素衍生化得到生物素取代度为3~8的chTNT-3/B,由chTNT-3/B和SAv-SL组成预定位脂质体给药系统。
    连接单抗或链霉亲和素后,chTNT-3-SL和SAv-SL的平均粒径分别从PDP-SL的102nm增大到123nm和114nm,脂质体表面抗体密度或链霉亲和素蛋白密度为1089μg/μmol PL和51.5μg/μmol PL,连接效率分别为69.8%和82.6%。建立相应ELISA法,测定chTNT-3衍生物的免疫活性,结果表明chTNT-3衍生化后的免疫活性几乎完全保留;chTNT-3通过共价方式连接到脂质体表面后,仍然在一定程度上保留了抗体的免疫活性。初步稳定性试验表明,chTNT-3-SL和SAv-SL在4℃贮存14d,两者的平均粒径及分布变化小,药物泄漏少于3%,chTHT-3-SL的相对免疫活性保持不变,理化性质较稳定。
     为验证主动靶向脂质体的体外靶向性,建立了模拟肿瘤坏死部位的固定Raji细胞模型,制备包载钙黄绿素的主动靶向脂质体,利用荧光分析法验证空间稳定免疫脂质体和预定位脂质体给药系统与固定Raji细胞的特异性结合作用。结果表明,两种主动靶向脂质体给药系统与固定Raji细胞的结合量均显著高于阴性对照组(P<0.001)。
     以阿霉素为模型药物,制备了阿霉素空间稳定免疫脂质体(chTNT-3-SL[DXR])和预定位脂质体给药系统(chTNT-3/B+SAv-SL[DXR])。HPLC法测定了大鼠单剂量静注两种主动靶向脂质体及对照组空间稳定脂质体后阿霉素在大鼠体内的药动学参数,SL[DXR]、chTNT-3-SL[DXR]和(chTNT-3/B+SAv-SL[DXR])的t_(1/2)分别为21.9h,21.6h和15.0h;AUC_(0-72)分别为22411μg·h/mL,1440μg·h/mL和1138μg·h/mL;MRT_(0-72)分别为20.1h,16.9h和13.8h。荷瘤裸鼠组织分布结果表明,预定位脂质体组4h和24h在肿瘤部位的阿霉素浓度最高,4h时显著高于SL组和游离阿霉素组(P<0.05);48h空间稳定免疫脂质体在肿瘤部位的浓度最高。荷瘤裸鼠药效试验表明,chTNT-3-SL[DXR]和chTNT-3/B+SAv-SL[DXR]抗皮下移植瘤各有优点,前者的后续药效较好(相对体积抑瘤率59.5%),后者的某个中间时相段药效较好(相对体积抑瘤率61.9%),高于非免疫SL[DOX](相对体积抑瘤率49.1%)。
Liposomes are composed of phospholipid bilayer structures that encapsulate an aqueous interior. Liposome properties and biological behaviors can be controlled by surface modification. Attachments of hydrophilic polymers, such as poly (ethylene glycol), enable them to have a prolonged circulation time without being opsonized and recognized by mononuclear phagocytic system. Attachments of specific ligands, such as monoclonal antibody or peptides, make liposomes own active targeting effect to specific cells or tissues.
    Chimeric Tumor Necrosis Therapy -3 monoclonal antibody (chTNT-3) is a novel monoclonal antibody (MAb) which can bind to degenerating cells located in necrotic regions of solid tumors. Since 50-90% of the progeny of tumor cells shortly undergoes degeneration and cell death, chTNT-3 can be utilized to direct at nuclear antigens accessible in necrotic areas of various tumors, while conventional tumor cell MAbs can only target to one kind of tumor cell antigen.
    Lipid materials for preparing sterically stabilized liposomes, such as methoxypolyethyleneglycol-hydrogenated soy phosphatidyl-ethanol-amine (mPEG-HSPE) and pyridylthiopropionoylamino-PEG-hydrogenated soy phosphatidylethanol-amine (PDP-PEG-HSPE), were synthesized and determined via TLC, IR, ~1H-NMR, etc.
    Preparation of active targeting liposomes were carried out via two steps: (1). The homogenized sterically stabilized liposomes (PDP-SL) with PDP-PEG-HSPE as lipid material were prepared via high pressure extrusion method. The antitumor agent, doxorubicin was then encapsulated using ammonium sulfate gradient method. According to the indexes of encapsulation efficiency and drug load, via central composite design-response surface methodology, an optimized liposome formulation was obtained as follow: HSPC/CHOL/mPEG-HSPE/PDP-PEG-HSPE = 5:4:0.2:0.05 (molar ratio), drug-lipid ratio=0.18:1 (w/w). The temperature and time for encapsulation were 65℃C and 20 min. The encapsulation efficiency was about (93.2±2.0)%. (2). PDP-SLs were reduced by dithiothreitol (DTT) to form thiol groups on the surface of liposomes (HS-SL). MPB-chTNT-3 were then linked to HS-SLs to form the stabilized immunoliposomes (chTNT-3-SL). Besides this, SAv-SL could be obtained by linking MPB-streptavidin (MPB-SAv) to HS-SL. chTNT-3 could be derivatized to chTNT-3/B with biotin substitute degree between 3-8. Both chTNT-3/B
    and SAv-SLs composed of pretargeting preparations.
    After antibody or SAv modification, the average sizes of chTNT-3-SL and SAv-SL were increased from 102 nm (PDP-SLs) to 123 and 114 nm, respectively. The binding efficiencies of antibody or SAv on liposome surfaces were 69.8% and 82.6%. The surface densities of antibodies or SAv proteins were 108.9 and 51.5μg/μmol PL. The immunoreactivity of chTNT-3 derivatives were determined by ELISA, and the results showed that it was well remained. After being conjugated to the surface of liposomes, the immunoreactivity was kept as well to a certain extent. The preliminary stability test indicated that after 14 days of storage at 4℃, the mean sizes and size distributions of both chTNT-3-SL and SAv-SL changed little, the drug leakage was less than 3%, the relative immunoreactivity of chTNT-3-SL kept unchanged and the physical and chemical properties were stable.
    To verify the in vitro targeting effect of active targeting liposomes, fixed Raji cell models were established and calcein loaded active targeting liposomes were prepared. The specific binding effects of both sterically stabilized liposomes and pretargeting preparations to fixed Raji cells were investigated by fluorescence assay. The results showed that the binding effects of two kinds of liposomes were both higher than those in control groups (P<0.001).
    Followed two-compartment model, the biological half-life of chTNT-3-SL[DXR] and (chTNT-3/B + SAv-SL[DXR]) in rats was longer than that of free doxorubicin but shorter than sterically stabilized liposomes. ChTNT-3-SL[DXR] could target to the necrosis site of tumor and its accumulation in tumor was a gradual process. Pharmacokinetic parameters of rats after iv DXR and DXR preparations were as follow: t_(1/2) of SL[DXR], chTNT-3-SL[DXR] and (chTNT-3/B + SAv-SL[DXR]) were 21.9h, 21.6h and 15.0h, respectively; AUC0.72 of them were 2241μg·h/mL, 1440μg·h/mL and 1138μg·/mL, respectively; MRT_(0-72) of them were 20.1 h, 16.9h and 13.8h, respectively. In biodistribution investigation of mice bearing H460 tumor, the DXR concentration of pretargeting[DXR] group was the highest in all groups at 4h and 24h and was significantly higher than SL[DXR] and free DXR groups at 4h (P<0.05). And at 48h the DXR concentration of chTNT-3-SL[DXR] group was highest in all groups. The advantages of antitumor efficacy of chTNT-3-SL[DXR] and chTNT-3/B+Strepavidin-SL[DXR] pretargeting preparations to subcutaneous transplantation tumor varied. ChTNT-3-SL[DXR] had a better antitumor activity with a final tumor inhibitory rate of 59.5%, while the pretargeting preparations had the
    highest antitumor efficacy with tumor inhibitory rate of 61.9% during some intervals, which was better than that of SL[DXR]'s (49.1%).
引文
[1] 平其能.现代药剂学[M].中国医药科技出版社,2001:588-623.
    [2] Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids [J]. J Mol Biol, 1965, 13(1):238-252.
    [3] Haran G, Cohen R, Bar LK, et al. Transmembrane Ammonium-Sulfate Gradients in Liposomes Produce Efficient and Stable Entrapment of Amphipathic Weak Bases [J]. Biochimica Et BiophysicaActa, 1993, 1151(2):201-215.
    [4] Boman NL, Masin D, Mayer LD, et al. Liposomal Vincristine Which Exhibits Increased Drug Retention and Increased Circulation Longevity Cures Mice Bearing P388 Tumors [J]. Cancer Res, 1994, 54(11):2830-2833.
    [5] Liu D, Hu QG, Song YK. Liposome clearance from blood: Different animal species have different mechanisms [J]. Bba-Biomembranes, 1995, 1240(2):277-284.
    [6] Torchilin VP, Levchenko TS, Lukyanov AN, et al. p-nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups [J]. Bba-Biomembranes, 2001, 1511(2):397-411.
    [7] Biela BH. Imaging and prodrug-activating derivatives of chTNT-3(Tumor Necrosis Terapy) monoclonal antibody [D]. University of Southern California, 2001:231.
    [8] Ni S, Stephenson SM, Lee RJ. Folate receptor targeted delivery of liposomal daunorubicin into tumor cells [J]. Anticancer Res, 2002,22(4):2131-2135.
    [9] Pan XQ, Zheng X, Shi GF, et al. Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid [J]. Blood, 2002, 100(2):594-602.
    [10] Gabizon A, Horowitz AT, Goren D, et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: In vitro studies [J]. Bioconjugate Chem, 1999, 10(2):289-298.
    [11] Ishida O, Maruyama K, Tanahashi H, et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo [J]. Pharmaceut Res, 2001, 18(7):1042-1048.
    [12] Iinuma H, Maruyama K, Okinaga K, et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer [J]. Int J Cancer, 2002,99(1): 130-137.
    [13] Dubey PK, Mishra V, Jain S, et al. Liposomes modified with cyclic RGD peptide for tumor targeting [J]. J Drug Target, 2004, 12(5):257-264.
    [14] Kurohane K, Namba Y, Oku N. Liposomes modified with a synthetic Arg-Gly-Asp mimetic inhibit lung metastasis of B16BL6 melanoma cells [J]. Life Sci, 2000, 68(3):273-281.
    [15] Oku N, Tokudome Y, Koike C, et al. Liposomal ARG-GLY-ASP analogs effectively inhibit metastatic B16 melanoma colonization in murine lungs [J]. Life Sci, 1996, 58(24):2263-2270.
    [16] Moreira JN, Hansen CB, Gaspar R, et al. A growth factor antagonist as a targeting agent for sterically stabilized liposomes in human small cell lung cancer [J]. Bba-Biomembranes, 2001, 1514(2):303-317.
    [17] Dagar S, Sekosan M, Lee BS, et al. VIP receptors as molecular targets of breast cancer: implications for targeted imaging and drug delivery [J]. J Control Release, 2001, 74(1-3):129-134.
    [18] de Menezes DEL, Pilarski LM, Allen TM. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma [J]. Cancer Res, 1998, 58(15):3320-3330.
    [19] de Menezes DEL, Pilarski LM, Belch AR, et al. Selective targeting of immunoliposomal doxorubicin against human multiple myeloma in vitro and ex vivo [J]. Bba-Biomembranes, 2000, 1466(1-2):205-220.
    [20] Park JW, Hong KL, Kirpotin DB, et al. Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery [J]. Clin Cancer Res, 2002, 8(4): 1172-1181.
    [21] Maruyarna K. In vivo targeting by liposomes [J]. Biol Pharm Bull, 2000, 23(7):791-799.
    [22] Matsuo H, Wakasugi M, Takanaga H, et al. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein [J]. J Control Release, 2001, 77(1-2):77-86.
    [23] Pagnan G, Montaldo PC, Pastorino F, et al. GD2-mediated melanoma cell targeting and cytotoxicity of liposome-entrapped fenretinide [J]. Int J Cancer, 1999, 81(2):268-274.
    [24] Kessner S, Krause A, Rothe U, et al. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells [J]. Bba-Biomembranes, 2001, 1514(2): 177-190.
    [25] Moase EH, Qu W, Ishida T, et al. Anti-MUC-1 immunoliposomal doxorubicin in the treatment of murine models of metastatic breast cancer [J]. Bba-Biomembranes, 2001, 1510(1-2):43-55.
    [26] Pietras RJ, Fendly BM, Chazin VR, et al. Antibody to Her-2/Neu Receptor Blocks DNA-Repair after Cisplatin in Human Breast and Ovarian-Cancer Cells [J]. Oncogene, 1994, 9(7): 1829-1838.
    [27] Ghetie MA, Picker LJ, Richardson JA, et al. Anti-Cd19 Inhibits the Growth of Human B-Cell Tumor Lines in-Vitro and of Daudi Ceils in Scid Mice by Inducing Cell-Cycle Arrest [J]. Blood, 1994, 83(5): 1329-1336.
    [28] Ghetie MA, Ghetie V, Vitetta ES. Anti-CD19 antibodies inhibit the function of the P-gp pump in multidrug-resistant B lymphoma cell [J]. Clin Cancer Res, 1999, 5(12):3920-3927.
    [29] Bradbury LE, Kansas GS, Levy S, et al. The Cd19/Cd21 Signal Transducing Complex of Human Lymphocytes-B Includes the Target of Antiproliferative Antibody-1 and Leu-13 Molecules [J]. J Immunol, 1992, 149(9):2841-2850.
    [30] Allen TM, Sapra P, Moase E, et al. Adventures in targeting [J]. Journal of Liposome Research, 2002, 12(1-2):5-12.
    [31] Sharifi J, Khawli LA, Hu P, et al. Characterization of a phage display-derived human monoclonal antibody (NHS76) counterpart to chimeric TNT-1 directed against necrotic regions of solid tumors [J]. Hybridoma Hybridom, 2001, 20(5-6):305-312.
    [32] Gaffar SA, Chen F-M, Liu C, et al. Cell based radioimmunoassays to quantitare the immunoreactivity of TNT monoclonal antibodies detected against intracellular antigens [J]. J Immunoassay, 1991, 12(1): 1-14.
    [33] 肿瘤坏死靶向治疗[EB/OL].抗癌新药网:2005/4/15
    [34] Khawli LA, Biela B, Hu P, et al. Comparison of recombinant derivatives of chimeric TNT-3 antibody for the radioimaging of solid tumors [J]. Hybrid Hybridomics, 2003, 22(1):1-9.
    [35] Khawli LA, Alauddin MM, Hu P, et al. Tumor targeting properties of indium-111 labeled genetically engineered Fab' and F(ab')2 constructs of chimeric tumor necrosis treatment (chTNT)-3 antibody [J]. Cancer Biotherapy & Radiopharmaceuticals, 2003, 18(6):931-940.
    [36] Khawli LA, Mizokami MM, Sharifi J, et al. Pharmacokinetic characteristics and biodistribution of radioiodinated chimeric TNT-1,-2, and-3, monoclonal antibodies after chemical modification with biotin [J]. Cancer Biother Radio, 2002, 17(4):359-370.
    [37] Spicer KM, Patei S, Gordon L, et al. Intracerebrai distribution of 1-131-chTNT-1/B: Comparison of drug vs. tumor volume with single/dual catheter infusions. [J]. Journal of Nuclear Medicine, 2000, 41(5):272P-272P.
    [38] Henahan S. TNT for Tumors [EB/OL].Access Excellence @ the national health museum: 1998/5/6
    [39] Chen SL, Yu LK, Jiang CY, et al. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer [J]. Journal of Clinical Oncology, 2005, 23(7): 1538-1547.
    [40] Hornick JL, Sharifi J, Khawli LA, et al. A new chemically modified chimeric TNT-3 monoclonal antibody directed against DNA for the radioimmunotherapy of solid tumors [J]. Cancer Biother Radio, 1998, 13(4):255-268.
    [41] Khawli LA, Giasky MS, Alauddin MM, et al. Improved Tumor Localization and Radioimaging with Chemically Modified Monoclonal Antibodies [J]. Cancer Biother Radio, 1996, 11(3):203-214.
    [42] Hornick JL, Khawli LA, Hu PS, et al. Pretreatment with a monoclonal antibody/interleukin-2 fusion protein directed against DNA enhances the delivery of therapeutic molecules to solid tumors [J]. Clin Cancer Res, 1999, 5(1):51-60.
    [43] Mizokami MM, Hu P, Khawli LA, et al. Chimeric TNT-3 antibody/routine interferon-gamma fusion protein for the immunotherapy of solid malignancies [J]. Hybrid Hybridomics, 2003, 22(4): 197-207.
    [44] Sharifi J, Khawli LA, Hu PS, et al. Generation of human interferon gamma and tumor necrosis factor alpha chimeric TNT-3 fusion proteins [J]. Hybridoma Hybridom, 2002, 21(6):421-432.
    [45] Fan CZ. Targeting of Biotinylated Long-Circulating Liposomes to Human Ovarian Cancer [D]. Edmonton: University of Alberta, 2002: 23-29.
    [46] 吴湖炳,彭武和,黄祖汉.肿瘤放射免疫显像的亲和素-生物素系统[J].国外医学·放射医学核医学分册,1998,22(6):248-251.
    [47] Nobs L, Buchegger F, Gurny R, et al. Biodegradable nanoparticles for direct or two-step tumor immunotargeting [J]. Bioconjugate Chemistry, 2006, 17(1):139-145.
    [48] Lazzeri E, Pauwels EKJ, Erba PA, et al. Clinical feasibility of two-step streptavidin/In-111-biotin scintigraphy in patients with suspected vertebral osteomyelitis [J]. European Journal of Nuclear Medicine and Molecular Imaging, 2004, 31(11):1505-1511.
    [49] Wilbur DS, Hamlin DK, Buhler KR, et al. Streptavidin in antibody pretargeting. 2. Evaluation of methods for decreasing localization of streptavidin to kidney while retaining its tumor binding capacity [J]. Bioconjugate Chemistry, 1998, 9(3):322-330.
    [50] Guidi F, Spagnoli G, Neri G, et al. Three-step tumor targeting via biotin-avidin interaction as a versatile system to elicit T cell-mediated, non-MHC-restricted cytotoxic activity against neoplastic cells [J]. Int J Cancer, 1998, 76(3):443-447.
    [51] Magnani P, Fazio F, Grana C, et al. Diagnosis of persistent ovarian carcinoma with three-stop immunoscintigraphy [J]. British Journal of Cancer, 2000, 82(3):616-620.
    [1] Beugin S, Edwards K, Karlsson G, et al. New sterically stabilized vesicles based on nonionic surfactant, cholesterol, and poly(ethylene glycol) cholesterol conjugates [J]. Biophysical Journal, 1998, 74(6):3198-3210.
    [2] Beugin-Deroo S, Ollivon M, Lesieur S. Bilayer stability and impermeability of nonionic surfactant vesicles sterically stabilized by PEG-cholesterol conjugates [J]. Journal of Colloid and Interface Science, 1998, 202(2):324-333.
    [3] Bradley AJ, Devine DV, Ansell SM, et al. Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol) lipids [J]. Archives of Biochemistry and Biophysics, 1998, 357(2): 185-194.
    [4] 胡海洋.蜂毒多肽空间稳定免疫脂质体的研究[D].沈阳:沈阳药科大学,2005:69-86.
    [5] Torchilin VP, Weissig V. Liposomes: a practical approach [M]. 2nd Ed. New York: Oxford University Press, 2003: 240-243.
    [6] Allen TM, Brandeis E, Hansen CB, et al. A New Strategy for Attachment of Antibodies to Sterically Stabilized Liposomes Resulting in Efficient Targeting to Cancer-Cells [J]. Biochimica Et Biophysica Acta-Biomembranes, 1995, 1237(2):99-108.
    [7] Gabizon A, Horowitz AT, Goren D, et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: In vitro studies [J]. Bioconjugate Chemistry, 1999, 10(2):289-298.
    [8] Blume G, Cevc G, Crommelin MDJA, et al. Specific Targeting with Poly(Ethylene Glycol)-Modified Liposomes - Coupling of Homing Devices to the Ends of the Polymeric Chains Combines Effective Target Binding with Long Circulation Times [J]. Biochimica Et Biophysica Acta, 1993, 1149(1): 180-184.
    [9] Torchilin VP, Rammohan R, Weissig V, et al. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors [J]. P Natl Acad Sci USA, 2001, 98(15):8786-8791.
    [10] Kirpotin D, Park JW, Hong K, et al. Sterically stabilized Anti-HER2 immunoliposomes: Design and targeting to human breast cancer cells in vitro [J]. Biochemistry, 1997, 36(1):66-75.
    [11] Harding JA, Engbers CM, Newman MS, et al. Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes [J]. Biochimica Et Biophysica Acta-Biomembranes, 1997, 1327(2):181-192.
    [12] Zalipsky S. Synthesis of an End-Group Functionalized Polyethylene Glycol-Lipid Conjugate for Preparation of Polymer-Grafted Liposomes [J]. Bioconjugate Chemistry, 1993, 4(4):296-299.
    [13] 牛国琴,潘弘,张静,et al.甲氧基聚乙二醇-磷脂酰乙醇胺的制备及其对脂质体的稳定作用[J].中国医药工业杂志,2003,34(10):501-503.
    [14] Carlsson J, Drevin H, Axen R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent [J]. Biochemical Journal 1978, 173(3):723-737.
    [1] Allen TM, Brandeis E, Hansen CB, et al. A New Strategy for Attachment of Antibodies to Sterically Stabilized Liposomes Resulting in Efficient Targeting to Cancer-Cells [J]. Biochimica Et Biophysica Acta, 1995, 1237(2):99-108.
    [2] Fan CZ. Targeting of Biotinylated Long-Circulating Liposomes to Human Ovarian Cancer [D]. Edmonton: University of Alberta, 2002: 36-38.
    [3] Hornick JL, Sharifi J, Khawli LA, et al. A new chemically modified chimeric TNT-3 monoclonal antibody directed against DNA for the radioimmunotherapy of solid tumors [J]. Cancer Biother Radio, 1998, 13(4):255-268.
    [4] 牛国琴,潘弘,张静,et al.甲氧基聚乙二醇-磷脂酰乙醇胺的制备及其对脂质体的稳定作用[J].中国医药工业杂志,2003,34(10):501-503.
    [5] Mrsny RJ, Voiwerk J J, Griffith OH. A simplified procedure for lipid phosphorus analysis shows that digestion rates vary with phospholipid structure [J]. Chem Phys Lipids, 1986, 39(1-2): 185-191.
    [6] 胡海洋.蜂毒多肽空间稳定免疫脂质体的研究[D].沈阳:沈阳药科大学,2005:69—86.
    [7] 胡弢,吴伟,吴宝剑.多柔比星聚酯微球的制备[J].中国医药工业杂志,2005,36(7):408-411.
    [8] 吴伟,崔光华.星点设计-效应面优化法及其在药学中的应用[J].国外医学(药学分册),2000,27(5):292-298.
    [9] Torchilin VP, Weissig V. Liposomes: a practical approach [M]. 2nd Ed. New York: Oxford University Press, 2003:246-248.
    [10] Bohlen P, Stein S, Dairman W, et al. Fluorometric assay of proteins in the nanogram range [J]. Arch Biochem Biophys, 1973, 155:213-220.
    [11] Mercadai M, Domingo JC, Petriz J, et al. A novel strategy affords high-yield coupling of antibody to extremities of liposomai surface-grafted PEG chains [J]. Biochim Biophys Acta, 1999, 1418(1):232-238.
    [12] 张宇锋,谢蜀生,侯新朴,et al.具有活性羧基末端的长循环脂质体的制备和分布[J].药学学报,2000,35(11):854-859.
    [13] Green NM. A spectrophotometric assay for avidin and biotin based on binding of dyes by avidin [J]. Biochem J, 1965, 94:23c.
    [14] 阿霉素[EB/OL].中国肿瘤医学网:10/9/2005
    [15] Montero MT, Marti A, Hemandezborrell J. The Active Trapping of Doxorubicin in Liposomes by Ph Gradient - Photon-Correlation Spectroscopy and Fiuorometric Study [J]. International Journal of Pharmaceutics, 1993, 96(1-3): 157-165.
    [16] Li XG, Hirsh DJ, Cabral-Lilly D, et al. Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient [J]. Biochimica Et Biophysica Acta-Biomembranes, 1998, 1415(1):23-40.
    [17] Maurer-Spurej E, Wong KF, Maurer N, et al. Factors influencing uptake and retention of amino-containing drugs in large unilamellar vesicles exhibiting transmembrane pH gradients [J]. Biochimica Et Biophysica Acta-Biomembranes, 1999, 1416(l-2):l-10.
    [18] Cheung BCL, Sun THT, Leenhouts JM, et al. Loading of doxorubicin into liposomes by forming Mn2+-drug complexes [J]. Biochimica Et Biophysica Acta-Biomembranes, 1998, 1414(1-2):205-216.
    
    [19] DOXIL~(?) [EB/OL].RxList Inc:03/02/2005
    [20] Barenholz Y, Bolotin E, Cohen R, et al. Sterically stabilized doxorubicin loaded liposomes (DOX-SL(TM)): From basics to the clinics [J]. Phosphorus Sulfur and Silicon and the Related Elements, 1996, 110(1-4):293-296.
    [21] Emanuel N, Kedar E, Bolotin EM, et al. Preparation and characterization of doxorubicin-loaded sterically stabilized immunoliposomes [J]. Pharmaceutical Research, 1996, 13(3):352-359.
    [22] Haran G, Cohen R, Bar LK, et al. Transmembrane Ammonium-Sulfate Gradients in Liposomes Produce Efficient and Stable Entrapment of Amphipathic Weak Bases [J]. Biochimica Et Biophysica Acta, 1993, 1151(2):201-215.
    [23] Lasic D, Martin F. Stealth~(?) liposomes [M]. Boca Raton London Tokyo: CRC Press, 1995: Pages.
    [24] Khawli LA, Mizokami MM, Sharifi J, et al. Pharmacokinetic characteristics and biodistribution of radioiodinated chimeric TNT-1,-2, and-3, monoclonal antibodies after chemical modification with biotin [J]. Cancer Biother Radio, 2002, 17(4):359-370.
    [1] Winterhalter M, Lasic DD. Liposome Stability and Formation - Experimental Parameters and Theories on the Size Distribution [J]. Chemistry and Physics of Lipids, 1993, 64(1-3):35-43.
    [2] Epstein AL, Clevenger CV. Identification of nuclear antigens in human cells by immunofluorescence, immunoelectron microscopy, and immunobiochemical methods using monoclonal antibodies. [J]. Progress in Nonhistone Protein Research, 1985, 1:117-134.
    [3] Hornick JL, Khawli LA, Hu PS, et al. Pretreatment with a monoclonal antibody/interleukin-2 fusion protein directed against DNA enhances the delivery of therapeutic molecules to solid tumors [J]. Clin Cancer Res, 1999, 5(1):51-60.
    [4] Hornick JL, Sharifi J, Khawli LA, et al. Single amino acid substitution in the Fc region of chimeric TNT-3 antibody accelerates clearance and improves immunoscintigraphy of solid tumors [J]. Journal of Nuclear Medicine, 2000, 41(2):355-362.
    [5] Gaffar SA, Chen F-M, Liu C, et al. Cell based radioimmunoassays to quantitare the immunoreactivity of TNT monoclonal antibodies derected against intracellular antigens [J]. J Immunoassay, 1991, 12(1):1-14.
    [6] Kruk I, Michalska T, Kladny J, et al. Luminescence investigations of redox cycling of adriamycin [J]. Chemosphere, 2001, 44:83-90.
    [7] Zagotto G, Gatto B, More S, et al. Anthracyclines: recent developments in their separation and quantitation [J]. journal of Chromatography B, 2001, 764:161-171.
    [8] 王黎,侯宝光,侯新朴,et al.氢化与非氢化卵磷脂对阿霉素脂质体体内外稳定性的影响[J].药学学报,2001,36(6):444-447.
    [9] Chen S, Yu L, Jiang C, et al. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer [J]. Journal of Clinical Oncology, 2005, 23(7): 1538-1547.
    [10] Li J, Hu P, Khawli LA, et al. chTNT-3/hu IL-12 fusion protein for the immunotherapy of experimental solid tumors [J]. Hybrid Hybridomics, 2004, 23(1):1-10.
    [11] Mizokami MM, Hu P, Khawli LA, et al. Chimeric TNT-3 antibody/murine interferon-gamma fusion protein for the immunotherapy of solid malignancies [J]. Hybrid Hybridomics, 2003, 22(4): 197-207.
    [12] Biela BH, Khawli LA, Hu PS, et al. Chimeric TNT-3/human beta-glucuronidase fusion proteins for antibody-directed enzyme prodrng therapy (ADEPT) [J]. Cancer Biother Radio, 2003, 18(3):339-353.
    [13] Klibanov AL, Muzykantov VR, Ivanov NN, et al. Evaluation of quantitative parameters of the interaction of antibody-bearing liposomes with target antigens [J]. Anal Biochem, 1985, 150(2):251-257.
    [14] Woodle MC, Newman MS, Martin FJ. Liposome Leakage and Blood-CirculationComparison of Adsorbed Block Copolymers with Covalent Attachment of Peg [J]. International Journal of Pharmaceutics, 1992, 88(1-3): 327-334.
    [1] Hornick JL, Khawli LA, Hu PS, et al. Pretreatment with a monoclonal antibody/interleukin-2 fusion protein directed against DNA enhances the delivery of therapeutic molecules to solid tumors [J]. Clin Cancer Res, 1999, 5(1):51-60.
    [2] Sharifi J, Khawli LA, Kang HY, et al. Optimizing pharmacokinetic performance of chTNT monoclonai antibodies using chemical modification. [J]. J Invest Med, 1998, 46(1):125A-125A.
    [3] Hornick JL, Sharifi J, Khawli LA, et al. A new chemically modified chimeric TNT-3 monoclonal antibody directed against DNA for the radioimmunotherapy of solid tumors [J]. Cancer Biother Radio, 1998, 13(4):255-268.
    [4] Khawli LA, Biela B, Hu P, et al. Comparison of recombinant derivatives of chimeric TNT-3 antibody for the radioimaging of solid tumors [J]. Hybrid Hybridomics, 2003, 22(1): 1-9.
    [5] Li JL, Hu PS, Khawli LA, et al. LEC/chTNT-3 fusion protein for the immunotherapy of experimental solid tumors [J]. Journal of Immunotherapy, 2003, 26(4):320-331.
    [6] Li JL, Arias R, Hu PS, et al. Combination LEC/chTNT-3 fusion protein immunotherapy and CD25(+) T-regulatory cell depletion produces complete remission of experimental solid tumors [J]. Journal of Immunotherapy, 2003, 26(6):S38-S38.
    [7] Gaffar SA, Chen F-M, Liu C, et al. Cell based radioimmunoassays to quantitare the immunoreactivity of TNT monoclonal antibodies derected against intracellular antigens [J]. J Immunoassay, 1991, 12(1):1-14.
    [8] Qi XR, Maitani Y, Nagai T. Effect of Soybean-Derived Sterols on the in-Vitro Stability and the Blood-Circulation of Liposomes in Mice [J]. International Journal of Pharmaceutics, 1995, 114(1):33-41.
    [9] 齐宪荣,米谷芳芝,侯新朴,et al.胰岛素与二棕榈酰磷脂酰胆碱脂质体的相互作用[J].药学学报,2000,35(12):924-928.
    [10] Lukyanov AN, Elbayoumi TA, Chakilam AR, et al. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody [J]. Journal of Controlled Release, 2004, 100(1):135-144.
    [1] Khawli LA, Biela B, Hu P, et al. Comparison of recombinant derivatives of chimeric TNT-3 antibody for the radioimaging of solid tumors [J]. Hybrid Hybridomics, 2003, 22(1):1-9.
    [2] Xiong XB, Huang Y, Lu WL, et al. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized iiposomes modified with a synthetic RGD mimetic [J]. J Control Release, 2005, 107(2):262-275.
    [3] 牛国琴.人鼠嵌合抗肿瘤细胞核单抗-空间稳定脂质体研究[D]. Shanghai: Fudan University, 2003: 100.
    [4] Grant CWM, Karlik S, Florio E. A Liposomal MRI Contrast Agent: Phosphatidylethanolarnine-DTPA [J]. Magn Res Med, 1959, 11:236-243.
    [5] Moreira JN, Gaspar R, Alien TM. Targeting Stealth liposomes in a murine model of human small cell lung cancer [J]. Bba-Biomembranes, 2001, 1515(2): 167-176.
    [6] Bally MB, Nayar R, Masin D, et al. Liposomes with Entrapped Doxorubicin Exhibit Extended Blood Residence Times [J]. Biochim Biophys Acta, 1990, 1023(1): 133-139.
    [7] Fogli S, Danesi R, Innocenti F, et al. An improved HPLC method for therapeutic drug monitoring of daunorubicin, idarubicin, doxorubicin, epirubicin, and their 13-dihydro metabolites in human plasma [J]. Ther Drug Monit, 1999, 21(3):367-375.
    [8] Charrois GJR, Allen TM. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer [J]. Bba-Biomembranes, 2004, 1663(1-2): 167-177.
    [9] Khawli LA, Mizokami MM, Sharifi J, et al. Pharmacokinetic characteristics and biodistfibution of radioiodinated chimeric TNT-1,-2, and-3, monoclonai antibodies after chemical modification with biotin [J]. Cancer Biother Radio, 2002, 17(4):359-370.
    [10] 李贵平,朱承谟,张健,et al.亲和素-生物素系统预定位放射治疗的实验研究[J].核技术,2001,24(5):355-360.
    [11] 《临床药理学》实验指导[EB/OL].安徽医科大学药学院:2005
    [12] Sung C, Vanosdol WW, Saga T, et al. Streptavidin Distribution in Metastatic Tumors Pretargeted with a Biotinylated Monoclonal-Antibody - Theoretical and Experimental Pharmacokinetics [J]. Cancer Res, 1994, 54(8):2166-2175.
    [13] Kassis AI, Jones PL, Matalka KZ, et al. Antibody-dependent signal amplification in tumor xenografts after pretreatment with biotinylated monoclonal antibody and avidin or streptavidin [J]. J Nucl Med, 1996, 37(2):343-352.
    [14] Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically Stabilized LiposomesImprovements in Pharmacokinetics and Antitumor Therapeutic Efficacy [J]. P Natl Acad Sci USA, 1991, 88(24): 11460-11464.
    [15] Huang SK, Mayhew E, Gilani S, et al. Pharmacokinetics and Therapeutics of Sterically Stabilized Liposomes in Mice Bearing C-26 Colon-Carcinoma [J]. Cancer Res, 1992, 52(24):6774-6781.
    [16] Allen TM. Long-Circulating (Sterically Stabilized) Liposomes for Targeted Drug-Delivery [J]. Trends Pharmacol Sci, 1994, 15(7):215-220.
    [17] Torchilin VP, Omelyanenko VG, Papisov MI, et al. Poly(Ethylene Glycol) on the Liposome Surface - on the Mechanism of Polymer-Coated Liposome Longevity [J]. Bba-Biomembranes, 1994, 1195(1):11-20.
    [18] Woodle MC, Newman MS, Cohen JA. Sterically Stabilized Liposomes - Physical and Biological Properties [J]. J Drug Target, 1994, 2(5):397-403.
    [19] Kirpotin D, Park JW, Hong K, et al. Sterically stabilized Anti-HER2 immunoliposomes: Design and targeting to human breast cancer cells in vitro [J]. Biochemistry-Us, 1997, 36(1):66-75.
    [20] Moase EH, Qu W, Ishida T, et al. Anti-MUC-1 immunoliposomal doxorubicin in the treatment of murine models of metastatic breast cancer [J]. Bba-Biomembranes, 2001, 1510(1-2):43-55.
    [21] Allen TM, Sapra P, Moase E, et al. Adventures in targeting [J]. J Liposome Res, 2002, 12(1-2):5-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700