东北林蛙皮肤抗菌肽抗病毒活性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两栖类皮肤抗菌肽是两栖类在进化过程中获得的一道抵御外源微生物入侵的屏障,其种类众多、功能多样,具有抗细菌、抗真菌、抗肿瘤等方面的性质和机制,特别是近几年来,研究发现两栖类抗菌肽对疱疹病毒、艾滋病毒等有抑制作用,且在抑杀病毒的同时对宿主细胞无伤害。在当今多种病毒性疾病的传播给全球经济造成了巨大损失,各种病毒的迅速变异的情况下,以及抗病毒药物疗效降低和较严重的毒副作用等,寻找安全、有效的抗病毒药物成为全球关注的焦点,而两栖类皮肤活性肽因其独特的抗微生物特点,有望成为开发新型抗病毒药物的主要途径之一。
     本实验以东北林蛙(Rana dybowskii)作为两栖类的代表物种,从蛙皮肤分泌物中提取并纯化抗菌肽,通过以SAH水解酶活性抑制为评价指标的体外广谱抗病毒初筛模型检测皮肤抗菌肽的抗病毒活性,并以H9N2亚型禽流感病毒为试验对象,进一步检测蛙皮肤抗菌肽对有包膜病毒病毒的抑制作用。实验中的抗菌肽全部由本实验室提取。
     结果表明:(1)从鲜牛肝脏中提取纯化的SAH水解酶,比活力为1.23U/mg,在1分钟内SAH水解酶催化30.7%的腺苷(Hcy)与高半胱氨酸(Ado)合成为S-腺苷-L高半胱氨酸(SAH);(2)向SAH水解酶反应体系加入皮肤抗菌肽后,1分钟内有44.7%的Hcy与Ado合成为SAH,说明东北林蛙皮肤活性肽对SAH水解酶有抑制作用,东北林蛙皮肤中含有广谱抗病毒作用的活性成分;(3)东北林蛙皮肤抗菌肽对H9N2病毒的杀灭作用较明显,与攻毒组比较,杀灭组、治疗组和预防组血凝效价差异极显著(P<0.01),杀灭组血凝效价(Log2)从(104±0.82)降低至(3±0.82),预防组血凝效价(Log2)降低至(5.5±0.50),治疗组血凝效价(Log2)降低至(5.3±0.58)。与治疗组和预防组相比较,杀灭组对H9N2病毒的抑制作用更明显。
     结论:(1)本研究建立了SAH水解酶活性抑制的体外广谱抗病毒初筛模型,采用比色法从合成方向检测了SAH水解酶活性,该检测方法是本实验室首创,具有重复性好,操作简单,实验周期短,易于推广等特点;(2)东北林蛙皮肤抗菌肽对SAH水解酶有抑制作用,说明东北林蛙皮肤抗菌肽中含有广谱抗病毒成分;(3)东北林蛙皮肤抗菌肽对H9N2亚型禽流感病毒有抑制作用,说明东北林蛙皮肤抗菌肽对有包膜病毒有抑制作用。
The skin antimicrobial peptides(AMPs) are the barrier for amphibians to defense invading of microorganism. They have many families and lots of functions, such as anti bacteria, anti fugin and anti tumor. Recently, it reported that AMPs have inactivate properties to herpes virus and HIV-1, and simultaneity no harm for host cells. Nowadays the spread of virus diseases depress the globle economy, to find safe, effective antiviral medicine became the focus. For the unique characters of amphibian skin peptides, it is hoped to be the important way of exploring new antibiotic.In this paper, we isolate and purified AMPs from northeast forest frogs(Rana dybowskii), choose the SAH hydrolase as the antiviral filtration model to determine the broad-spectrum antiviral properties, then choose the zoonosis virus—H9N2 avian influenza virus to investigate its inactive properties to enveloped virus.Result: (1) We extract and purified SAH hydrolas from bovine liver, the specific activity of the extract SAH hydrolase is 1.23U/mg, it can catalyse 30.7% Hcy to SAH within 1 minute;(2) When put the skin peptide of Northeast forest frog into the reaction system, there is 44.7% Hcy change into SAH within 1 minute, It indicate that the skin peptide of Northeast forest frogs regress the activity of SAH hydrolase, which indicate that the skin activity peptide has broad- spectrum activity;(3) The maximum nontoxic concentration is 150mg/ml. there are comparison group, infection group, killing group, and therapy group and prevent group in this experiment. Compared with infection group, the titer of therapy group and prevent group, the killing group differ significant(P<0.01), the HA of killing guoup reduced from (10±0.82) to (3 ±0. 82), the HA of prevent group reduce by (5. 5 ± 0. 50) , HA of therapy group reduce to (5.3 ± 0.58) , compared with therapy group and prevent group, the killing group shows distinct effect on the avian influenza virus H9N2.Conclusion: (1)We establish antiviral filtration model in vitro— SAH hydrolase model, and examine its activity from the synthesizes direction with ultraviolet spectrophotometer, it is our innovation. This method has high accuracy, short periods and can be easy operated, it is adapt to be spread out;(2) the skin peptide of Northeast forest frogs regress the activity of SAH hydrolase, which indicate that the skin activity peptide has broad- spectrum activity;(3)the skin AMPs of northeast forest frogs have inactive properties to H9N2 avian influenza virus, indicate that AMPs of northeast forest frogs can inactive evoloped virus.
引文
[1] 郭玉梅.某些抗菌肽的研究进展[J].生命科学,1997,9(1):29-30.
    [2] 屈贤明.肌胞核苷酸诱导家蚕蛹血淋巴中抗菌肽的分离和纯化[J].生物化学与生物物物理学报,1996,(3):284-292.
    [3] 赵红霞,詹勇,许梓荣.动物抗菌肽的研究进展[J].中国畜牧杂志,2003,39(4):47-49.
    [4] 傅南雁,许家喜.抗菌肽研究进展[J].生命的化学,1998,18(2):25-27.
    [5] Saberwal G. Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities[J]. Bioclhim BioPllys Acta, 1994, 1197: 109.
    [6] Boman H G. Antibacterial peptides: basic facts and emerging concepts (Review) [J]. J Intem Med, 2003, 254: 197-215.
    [7] HancockRE. Peptideantibiotics[J]. Lancet, 1997, 349: 418-422.
    [8] 沈风雷,闻荻江.蚕和蛹体的抗菌肽的提纯、抗菌机理及其应用[J].苏州大学学报(工科版),2003,23(1):23-28.
    [9] Wojciech S. Anna JA.Assessment of antibiotic treatment effectiveness for prophylaxis of postoperative wound infections[J]. The Lancet, 1997, 353: 464-465.
    [10] Maloy W L, Kari U P. Structure activity studies On magainins and other host defense peptides[J]. Biopolymers, 1995, 37(2): 105-122.
    [11] Francis M J. Peptides vaccines for viral diseases[J]. Scince Progress, 1990, 74(293): 115-130.
    [12] Michael Z. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterzation of two active forms, and partial eDNA sequence of a precursor[J]. Proc Nat Acad Sci USA, 1987, 84(15): 5449-5453.
    [13] 胡文龙,郭玉梅,钱万红,等.抗菌肽抑制肿瘤细胞的实验研究[J].中国肿瘤生物治疗志,1997,4(4):320-322.
    [14] Boman H G, Maesh J. Ciba Symposium 186 Chichester: Wiley, 1994, 197-223.
    [15] Damien V, Franc ine B. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutableantimicrobialdomain[J]. EurJBiochem, 2003, 270: 2068-2081.
    [16] Conlon J M, Sonnevend A. Isolation of peptides of the breVinin-1 family with Dotent candidacidal activity from the skin secretions of the frog Rana boylii[J]. Peptide Res, 2003, 62:207-213.
    [17] Doyle T. nNOS inhibition, antimicrobial and anticancer actiVity of the amphibian skin peptide, citropin 1. 1 and synthetic modifications[J]. Eur J Biochem, 2003, 270: 1141-1153
    [18] 章天.以SAH水解酶为靶位的抗病毒筛选模型的建立与应用[J].中华试验和临床病毒学杂志,2002,3(1):1-4.
    [19] 陈昕.S-腺苷-L-高半胱氨酸水解酶及其抑制的研究进展[J].中国药物化学杂志,1998,3(1):1-7.
    [20] 郭玉梅,戴祝英,胡云龙.家蚕抗菌肽的一些性质及抗肿瘤活性[J].南京师大学报(自然科学版),1995,18(1):62-66.
    [21] 文加才,泰永忠,宋爱刚:阳离子抗菌肽的研究进展[J].国外医药抗生素分册,2002,23(6):267-271.
    [22] 赵东红,戴祝英,周开亚.昆虫抗菌肽的功能、作用机理与分子生物学研究最新进展[J].生物工程进展,1999,19(5):14-18.
    [23] Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming eptide isolated from mosese sole fish pardachirus marmoratus[J] . Eur J Biochem, 1996, 237(1): 303-310.
    [24] Swendsen C L, Sphepard D. A study of antimicrobial effects of mountain dusky salamander mucus[J], Jon Hasfjord: Nart Sci Seminar Abstracts, 1998.
    [25] Barra D, Simmaco M, Bomman H G. Gene-encoded peptide antibiotics and innate immunity. Do'animalcules'have defence budgets[J]? FEBS Letters, 1998, 430(1-2): 130-134.
    [26] Hancock R E W, Chapple D S. Peptides antibiotics[J]. Antimicrobial Agents and Chemotherapy, 1999, 43(6): 1317-1323.
    [27] Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us[J]? Biopolymers, 1998, 47(6): 425-450.
    [28] 赖仞,冉永禄.两栖类皮肤活性肽与活性生物胺[J].大自然探索,1999,18(67):71-74.
    [29] Bevins C L, Zasloff M. Peptides from frogs skin[J] Annual Review of Biochemistry, 1990, 59: 395-414.
    [30] Steinborner S T, Currie G J, Bowie J H, et al. New antibiotic cearinl peptides from the skin secretion of the Australian tree frog Litodachloris, comparison of the activities of the caerinl peptides from the genus Litoria[J]. Journal of Peptide Research, 1985, 51: 121-126.
    [31] Wegener K L, Wabnitz P A, Carver J A. Host defense peptides from the skin glands of the Australian blue mountains tree frog Litoriacitropa[J]. European Journal of Biochemistry, 1999, 265:627-637
    [32] Wegener K L, Steinborner S T, Currie G J. 'New caerinl antibiotic peptides from the skin secretion of the Australian tree frog Litoriachloris sequence determination using electrospray mass pectrometry[J]. Rapid Communications in Mass Spectrometry, 1998, 12: 53-56.
    [33] Gibson B W, Tang D Z, Mandrell R, et al. Bombinin like peptides with antimicrobial activity from skin secretion of the Asian toad, Bombinaorientalis[J]. J Biol Chem, 1991, 266(34): 23103-23111.
    [34] Moore K S, Bevins C L, Brasseur M M, et al. Antimicrobial peptides in the stomach ofXenopus laevis[J]. J Biol Chem, 1991, 266 (29): 19851-19857.
    [35] Giovannini M G, Poulter L, Gibson B W, et al. Biosynthesis and egradation of peptidesdedved from Xenopus laevis prohormones[J]. Biochem J, 1987, 243 (1): 113-120.
    [36] Chia B C S, Carver J A, Mulhern T D, et al. Maculatinl.1, an antimicrobial peptidefrom the Australian tree frog, Litoriageni maculata solution struncture and biological activity[J]. European Journal of Biochemistry, 2000, 267: 1894-1908.
    [37] Chia B C S, Carver J A, Mulhern T D, et al. The solution structure of uppedn3.6, an antibiotic peptide from the granular dorsal glands of the Australian toad let, Uperoleiam jobergii[J]. Journal of Peptide Reseach, 1999, 54: 137-145.
    [38] Roae K T, Wegener K L, Bowie J H. The antibiotic and anti cater antiveaure inpeptides from the Australian bell frogs Litoria aure and Litoriaraniformis[J]. European Journal of Biochemistry, 2000, 267: 5330-5310.
    [39] Boman H G, Hultmark. Cell free immudty in insects[J]. Ann Rev Microbial, 1987, 41(2): 103-107.
    [40] Jaynes J M, Burton C A, Barr S B, et al. In vitro cytocidal effect of novel lytic peptides on plasmium falciparum and trypanosomacruzfi[J]. FASEB J, 1989, 2(12): 2878-2883.
    [41] Powell W A, Catranis C M, Maynard C A. Synthetic antimicrobial peptide design Mol Plant Microbe Interact[J]. 1995, 8(5): 792-794.
    [42] Zanetti M, Gennaro R, Romeo D. Cathlicidins: a novel protein family with a common proregion and avariable C-termimal antimicrobial domain[J]. FEBS Lett, 1995, 374(1): 18.
    [43] Michael C J, Sonnevend A, Patel M, et al. A melittin-related peptide from the skin of the Japanese frog, Rana tagoi, with antimicrobial and cytolytic properties[J]. Biochemical and Biophysical Research ommunications, 2003, 306: 496-500.
    [44] Baghian A, Jaynes J, Enright F. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread[J]. Peptides, 1997, 18: 177-183.
    [45] 赖仞,赵宇,刘横,等.两栖类动物皮肤活性物质的利用兼论中国两栖类资源开发的策略[J].动物学研究,2002,23(1):65-70.
    [46] 杨志力.中国两栖类资源开发利用研究[J].生态经济,2000,(11):46-49.
    [47] 胡云龙,赵学忠,屈览铭.抗菌肽的分子生物学研究进展[J].生物工程进展,1997,17:14-15.
    [48] Steiner H, Andrev D, Merrifield R B. Binding and action of ceropin and cecropin analogues: antibacterial peptides from insects[J]. Biochem Biophys Acts, 1998, 939: 260-280.
    [49] 崔晓江,刘枝俏,田颖川,等.杀菌肽的研究进展及应用前景[J].生物化学及生物物理进展,1999,22(1):5-8
    [50] 姚文兵,刘煜,于江河,等.蛙皮活性提取物的抗炎作用和体外抗菌活性研究[J].中国药科大学学报,1995,26(5):314-317
    [51] Belaid A, Aouni M, Khelifa R, et al. In vitro antiviral activity of dermaseptins against herpes simplex virus type 1[J]. Journal of medical virology, 2002, 66: 229-234.
    [52] Lorina C, Saidib H, Belaidc A, Zairi A, Baleux F, Hocini H, Belec L, Hani K, Tangy F. The antimicrobial peptide Dermaseptin S4 inhibits HIV-1 infectivity in vitro[J]. Virology, 2005, 334: 264-275.
    [53] Chinchar V G, Wang J, Murti G, et al. Inactivation of Frog Virus 3 and channel catfish by esculentin-2P and ranatuerin-2P, two antimicrobial peptide isolated from frog skin[J]. Virology, 2001, 288: 351-357.
    [54] Chinchar V G, Bryan L, Silphadaung U, et al. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides[J]. Virology, 2004, 323: 268-275.
    [55] Soballe P W, Maloy W L, Myrga M L, et al. Experimental local therapy of human melanomelanoma with lyric magainin peptides[J]. Int J Cancer, 1995, 60: 280-284.
    [56] 尹文,徐晨,马戈甲.抗菌肽的研究进展[J].细胞与分子免疫学杂志,2005,21:136-138.
    [57] Lee J Y, Boman A, Sun C, et al. Antibacterial peptides from pig intestine: Isolation of a mammalian eecropin[J]. Proc Nail Aead Sei USA, 1989, 86: 9159-9162.
    [58] Zasloff M. Antimierobial peptides of multicellular organisms[J]. Nature 2002, 415: 389-395.
    [59] 崔艳红,黄现青.抗菌肽的抗菌机理研究进展.兽药与饲料添加剂,2005,10(3):14-16
    [60] Habermann E. Bee and wasp venoms[J]. Science, 1972, 177: 314-322.
    [61] Kreil G. Structure of melittin isolated from two species of honey bees[J]. FEBS Lett, 1973, 33:241-244.
    [62] Blondelle S E, Houghten R A. Probing the relationships between the structure and hemolytic activity of melittin with a complete set of leucine substitution analogs[J]. Pept. Res, 1991, 4: 12-18.
    [63] Werkmeister J A, Kirkpatrick A, McKenzei J A, et al. The effect of sequence variations and structure on the cytolytic activity of melittin peptides, Biochim[J]. Biophys, Acta 1993, 1157: 50-54.
    [64] Lee D G, Park J H, Shin SY, et al. Design of novel analogue peptides with potent fungicidal but low hemolytic activity based on the cecropin A-melittin hybrid structure[J]. Biochem Mol Biol Int, 1997, 43: 489-498.
    [65] Arrowood M J, Jaynes J M, Healey M C. In vitro activities of lytic peptides against the sporozoites of Cryptosporidium parvum[J]. Antimicrob Agents Chemother, 1991, 35: 224-227.
    [66] Marcos J F, Beachy R N, Houghten R A, et al. Inhibition of plant virus infection by melittin[J]. Proceedings of the National Academy of Sciences, 1995, 92, 12466- 12469.
    [67] Baghian A, Jaynes J, Enright F. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread[J]. Peptides, 1997, 18: 177-183.
    [68] Wachinger M, Kleinschmidt A, Winder D, et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression[J]. Journal of General Virology, 1998, 79: 731-740.
    [69] Boman H G. Peptide antibiotics and their role in innate immunity [J]. Annual Review of- Immunology, 1995, 13: 61-92
    [70] Mariam E, Monta C, Dorothy L, et al. Caroline Attardo Genco. Antiviral effects of synthetic membrane-active peptides on Herpes Simplex Virus, Type 1[J]. International of Antimicrobial Agents, 1999, 13: 57-60.
    [71] Mor A, Nicolas P. Isolation and structure of a novel defensive peptides from frog skin[J]. EurJ Biochem, 1994, 219: 145-154.
    [72] Ganz T, Selsted M E, Szklarek D, et al. Defensins, Natural peptide antibiotics of human neutrophils[J]. J Clin Invest, 1985, 76: 1427-1435.
    [73] Selsted M E, Harwig S S L, Ganz T, et al. Primary structures of three human neutrophil defensins[J]. JClin Invest, 1985, 76: 1436-1439.
    [74] Daher K A, Selsted M E, Lehrer R I. Direct inactivation of virus by human granulocyte defensins[J]. Journal of virology, 1986, 12: 1068-1074.
    [75] Lehrer R I, Daher K, Ganz T, et al. Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes[J]. J Virol, 1985, 54: 467- 472.
    [76] Albiol Matanic V C, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus[J]. International Journal of Antimicrobial Agents, 2004, 23: 382-389.
    [77] Chang T L, Francois F, Mosoian A, et al. CAF-mediated HIV-1 transcriptional inhibition is distinct from a-defensin-1 HIV inhibition[J]. J Virol, 2003, 77: 6777-6784.
    [78] Zhang L, Yu W, He T, et al. Contribution of human a-defensin-1, -2, and -3 to the anti-HIV-1 activity of CD8 antiviral factor[J]. Science, 2002, 298: 995-1000.
    [79] Andren D, Aschauer H, Kreil G. Solid-phase synthesis of PYLa and isolation of itsnatural counterpart, PGLa[PYLa2(4-24)], from skin secretion of Xenopus laevis[J]. European Journal of Biochemistry, 1985, 149: 531-535.
    [80] Hans V, Westerhoff, Davor J. Magainin sand the disruption of membrane-linked free energy transduction[J]. Proc Nati Acad Sci USA, 1989, 86: 6597-6601.
    [81] Andreu D , Rivas L Animal antimicrobial peptides: an overview[J]. Biopolymers. 1999, 47: 413-433.
    [82] 谢锋,叶昌媛,费梁,等.中国东北地区林蛙属物种的分类学研究(两栖纲:蛙科).动物分类学报.1999,24(2):224-231.
    [83] 费梁,叶昌媛,黄永昭,等.中国两栖动物检索及图解[M].成都:四川科学技术出版社,2005:108.
    [84] 肖向红,徐义刚,柴龙会.中国林蛙皮肤抗菌活性肽的分离提取[J].东北林业大学学报,2005,33(1):44-46.
    [85] Henry H R, Peter K C, Giulio LC. Adenosylhomocysteine Hydrolase[J]. The Journal of Biological Chemistry, 1978, 253(12): 4476-4480.
    [86] Milner S M, Ortega M R. Reduced antimicrobial peptide expression in human burn wounds[J]. Burns, 1999, 25(5): 411-413.
    [87] In-Kyung Kim, Robert R A, and Giulio L C. Mechanism of the Cytostatic Activity of 3-Deazaaristeromycin, anInhibitor of Adenosylhomocysteine Hydrolase[J] . The Journal of Biological Chemistry, 1982, 257 (4): 14726-14729.
    [88] Michael L, Greenberg, Sara Chaffees, et al. Basis for Resistance to 3-Deazaaristeromycin, an Inhibitor of S-Adenosylhomocysteine Hydrolase, in Human B-Lymphoblasts[J]. The Journal of Biological Chemistry, 1989, 264(2): 795-803.
    [89] Cools M, De clercq E. Correlation Between the Antviral Activity of Acyclic and Carbocyclic Adenosine Analogues in Murine L929 Cells and their Inhibitory Effect on L929 Cell S-Adenosy-lhomoeysteine Hydrolase.Biochem[J]. Parmacol The Journal of Biological Chemistry, 1989, 38: 1061-1067.
    [90] Yafei Huang, Junichi Komoto, Yoshimi Takata, et al. Inhibition of S-Adenosylhomocysteine Hydrolase by Acyelic Sugar Adenosine Analogue D-Eritadenine[J]. The Journal of Biological Chemistry, 2002, 277 (9): 7477-7482.
    [91] 王光星.S-9-(2,3-二羟丙基)腺嘌呤类似物的合成及其对S-腺苷-L-高半胱氨酸水解酶的抑制活性[J].药学学报,1997,32(3):188-192.
    [92] 吴冠芸,潘华珍,等.生物化学与分子生物学实验常用数据手册[M].北京:科学出版社,1999:135.
    [93] 汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2001:171-176.
    [94] 沈同,王镜岩.生物化学[M].北京:高等教育出版社出版,1998:242
    [95] 汪建雄,隋秀芝,陈育晖,等.用SDS—PAGE电泳法测定小分子多肽分子量的研究[J].丝绸,2001,(12):44-45.
    [96] 郭尧君主编.蛋白质电泳实验技术[M].北京:科学出版社,1999:131
    [97] 杨联萍,孔祥平,易学端.SDS-PAGE电泳对小分子多肽的分析[J].生物工程进展,1998,18(6):49-51.
    [98] 徐小华,陈天豹,李珑等.一种改进的小分子多肽SDS-PAGE方法[J].福州大学学报,2001,29(3):113-115.
    [99] 石继红,赵永同,王俊楼等.SDS-聚丙烯酰胺凝胶电泳分析小分子多肽[J].第四军医大学学报,2000,21(6):761-763.
    [100] 赵旭东,魏东芝,万群.谷胱甘肽的简便测定法[J].药物分析杂志,2000,1(20):34-37.
    [101] Louise A, Rollins-Smith, Laura K R, et al. Antimicrobial peptide defenses of the Tarahumara frog, Rana tara humarae[J]. Biochemical and Biophysical Research Communications, 2002, 297: 361-367.
    [102] 林清华.免疫学实验[M].武汉:武汉大学出版社,2004:110-114.
    [103] 于海,王雪鹏,常维山.核糖体失活蛋白体内外抗病毒的实验研究[J].微生物学通报,2005,32(5):107-113.
    [104] 唐秀英,田国斌,赵传珊,等.中国禽流感流行株的分离鉴定[J].中国畜禽传染病,1998,20(1):15-17.
    [105] Lockey T D, Ourth D D. Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae[J]. European Journal of Biochemistry, 1996, 236(1): 263-71.
    [106] Daher K A, Selsted M E, Lehrer R I. Direct inactivation of virus by human granulocyte defensins[J]. Journal of virology, 1986, 12: 1068-1074.
    [107] Chinchar V G, Bryan L, Silphadaung U, Harwig S S L, Daher K, Bainton D F, Lehrer R I. Inactivation of viruses infecting ectothermic animals by amphibian and piscineantimicrobialpeptides[J]. Virology, 2004, 323: 268-275.
    [108] Zerial A, Skerlavag B, Gennaro R, Romeo D . Inactivation of herpes simplex virus by protein components of bovine neutrophil granules[J]. Antiviral Res, 1987, 7: 341-352.
    [109] Clark M A, Conway T M, Shorr R G L, Crooke S T. Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin[J]. Journal of Biological Chemistry, 1987, 262: 4402- 4406.
    [110] 牛国琴.空间稳定免疫脂质体体内过程及其对策的研究进展[J].国外医学药学分册,2002,29(5):301-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700