基于自适应干扰抑制与和差测角性能的阵形评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对不同阵形自适应干扰抑制及和差测角性能差异问题,研究阵形与干扰抑制性能和测角性能的关系,完成对常见平面阵形的性能评估。首先,开展了基于自适应干扰抑制性能阵形评估的研究。从表征自适应干扰抑制性能的输出信干噪比出发,推导出输出信干噪比与含有阵形结构信息的空域相关系数模平方具有减函数关系,将对输出信干噪比的评估等效为对空域相关系数的评估;基于空域相关系数的波束宽度与积分旁瓣矢量设计加权评价准则,提出了一种自适应阵形评估方法,得出圆阵的自适应干扰抑制能力较好的结论。其次,开展了基于测角性能阵形评估的研究。采用相同的和差测角方法,比较了不同阵形的鉴角曲线和测角精度,得出圆阵测角精度高的结论。最后,结合实际项目,基于数字信号处理芯片实现了和差波束测角模块,通过半实物仿真数据,验证了不同阵形的和差测角性能。
With respect to different array configurations, the performances of adaptive interference suppression and direction of arival (DOA) estimation will be different, the relationship between their performances with the array configurations is presented and the performance evaluation based on familiar plane array configurations is achieved in the thesis. Firstly, the performance evaluation of adaptive interference suppression is studied. The output-signal-to-interference-plus-noise-ratio (OSINR) is usually presented to weigh the performances of adaptive interference suppression, and the spatial correlation coefficient is relative to the array configurations. Then the mathematical relationship is derived, namely OSINR is a decreasing function of the square of the spatial correlation coefficient. So the evaluation can be simplified by adopting the spatial correlation coefficient instead of the OSINR. Based on the criteria of the beaming width and the integrated sidelobe level, a method for the evaluation of the spatial correlation coefficient is proposed. And the conclusion is derived that the performance of the circular array is better than the others according to the criteria. Secondly, the effects of the array configurations on the performance of DOA is developed. Exploiting the sum and difference patterns method for DOA estimation, the comparison of the angular curve and the accuracy of DOA estimation between different array configurations is presented. Then the conclusion is drawn that the circular array has the better performances on the accuracy of DOA estimation. Lastly, combinied with the practical program, the hardware modules is achieved by the digital signal processor (DSP). Simulation results of the real measured data verify the performance of DOA estimation with respect to different array configurations, via the sum and difference patterns method.
引文
[1] H.L. Van Trees著.最优阵列处理技术.清华大学出版社;汤俊等译, 2008, 4-7.
    [2]徐友根,刘志文,修正的虚拟空间平滑算法,电子学报,2009,37(12):2646-2650.
    [3]黄家才,陶建武,温秀兰,原位误差情况下DOA和极化参数盲估计,电波科学学报,2009,24(1):179-184.
    [4]曾操,廖桂生,杨志伟,一种加载量迭代搜索的稳健波束形成,电波科学学报,2007,22(5): 779-784.
    [5]陈忠先,相控阵雷达的发展与前景.现代电子. 1995(3) .1-6.
    [6]陈立,潘谊春,郑凯.相控阵雷达的发展.舰船电子工程. 2009,29(5) .13-17.
    [7]王怀军,徐红波,陆珉等.MIMO雷达技术及其应用分析.雷达科学与技术2009,87(4) 246-249.
    [8] S. Haykin, Ed.. Array Signal Processing. Prentice-Hall, 1985.
    [9] P. Stoica and R. L. Moses. Introduction to Spectral Analysis. Englewood Cliffs. NJ: Prentice-Hall, 1997.
    [10] H. L. Van Trees. Detection, Estimation, and Modulation Theory. PartⅣ, Optimum Array Processing. New York: Wiley, 2002.
    [11]张贤达著.通信信号处理.国防工业出版社, 2000, 12.
    [12]张贤达著.现代信号处理.第二版. 2002, 10,pp. 49-59.
    [13]贾永康,保铮.利用多普勒信息的波达方向最大似然估计方法.电子学报,1997,25(6),pp.71-76.
    [14]刘德树,罗景青,张剑云著.空间谱估计及其应用.合肥:中国科学技术大学出版社,1997.
    [15] H.Gazza, S.Marcos, Cramer-Rao Bounds for Antenna Array Design, IEEE Transcations. on Signal Processing, 2006,54, (1); 336-345.
    [16] F.Harabi, A. Gharsallah and S.Marcos, Three-dimensional Antennas Array for the Estimation of Direction of Arrival. IET Microwaves. Antennas &ProPag, 2009,3(5): 843-849.
    [17] T.N.Kaifas, J.N.Sahalos, On the Geometry Synthesis of Arrays with a Given Excitation by the Orthogonal Method, IEEE Trans. on Antenna and Propagation, 2008, 56(12):3680-3688.
    [18] P. J. Bevelacqua, C. A. Balanis, Geometry and Weight Optimization for Minimizing Sidelobes in Wideband Planar Arrays, IEEE Transactions on Antennas and Propagation, 2009, 57(4):1285-1289.
    [19] P. J. Bevelacqua, C. A. Balanis, Optimizing Antenna Array Geometry forInterference Suppression ,IEEE Transactions on Antennas and Propagation, 2007,55(3): 637–641.
    [20] P.Ioannides, C.A.Balanis, Uniform Circular and Rectangular Arrays for Adaptive Beamforming Applications, IEEE Antennas and Wireless Propagation Letters, 2005, 4: 351-354.
    [21]王永良,丁前军,李荣锋著.自适应阵列处理.清华大学出版社,北京; 2009, 70-71.
    [22]王永良,陈辉,彭应宁.空间谱估计理论与算法.北京:清华大学出版社, 2004.203-250.
    [23]丁鹭飞,耿富录.雷达原理.第三版.西安:西安电子科技大学出版社,2006,202-209.
    [24]汪晓燕.单通道单脉冲角跟踪系统的研究.电讯技术. 2005,3,pp.117-120.
    [25]刘桂瑜.和差波束形成及其稳健方法研究.西安电子科技大学硕士论文. 2008.3. 21.
    [26]许文龙,蒋伟,尚勇等.一种基于子阵合成的DOA估计算法.电子学报. 2006, 34(9): 1571-1577.
    [27]胡航,靖涛.一种由均匀子阵构成的DBF方向图设计方法.系统工程与电子技术. 2000, 22(6):29-31.
    [28]张旭红,李会勇,何子述.平面数字阵列雷达的子阵级波束形成算法.雷达科学与技术.2008,6(6):440-444.
    [29]邱力军,周智敏,梁甸农.稀布相控阵雷达子阵划分方法研究.系统工程与电子技术,1997,7:31-37.
    [30] Nickel,U.Subarray configurations for interference suppression with phased array radar.Proc.of Intel.Conf.on Radar,1989,82-86.
    [31]束咸荣,何炳发,高铁.相控阵雷达天线.国防工业出版社,北京,2007.7.1:62-64.
    [32]苏涛.并行处理技术在雷达信号处理中的应用研究.西安电子科技大学博士学位论文, 1999.
    [33]刘书名,苏涛,罗军辉编著,TigerSHARC DSP应用系统设计, 2004年5月第一版.
    [34] ADSP-TS101 TigerSHARC Processor Hardware Reference.Analog Device Inc.2003,3.
    [35] ADSP-TS101 TigerSHARC DSP Microcomputer Data Sheet,Revision.Analog Device Inc.2003.
    [36] Burg. J. P. ,Maximum-entropy spectral analysis,Proc.37th meeting of society of exploration Geophysicists,Otc.,1967.
    [37] Capon,J.,High-resolution frequency-wavenumber spectrum analysis,Proc. of IEEE,57(8),Aug,1969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700