用于液晶光学特性模拟的时域电磁计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液晶作为一种电控各向异性介质,已经广泛应用于显示领域并取得极大地成功。近年来,液晶在非显示领域的应用,如用于光束控制、波前变换、自适应光学等领域的研究也日益受到关注,并逐步走向实际应用阶段。此外,由于液晶具有很宽的工作光谱范围,使得其在微波和太赫兹波段也有着诱人的应用前景。液晶器件特性数值模拟能够预测器件光学特性,优化器件参数,为器件设计与控制提供依据,是器件研究和开发不可或缺的重要组成部分。
     液晶器件数值模拟包含指向矢模拟和光学特性模拟两个方面。光学特性模拟是通过研究光与液晶的相互作用,模拟入射光波在液晶器件中的传播过程。时域有限差分法(FDTD)作为一种严格求解Maxwell方程组的数值方法,是液晶光学特性模拟中应用最广泛的方法。
     本课题主要研究用于液晶光学特性模拟的二维时域电磁计算方法,寻求适用于非均匀各向异性介质、具有不同尺度结构细节(相对于入射光的波长)的算法,为液晶光学相控阵等液晶器件的设计和制造奠定理论基础。本课题研究内容如下:
     (1)当FDTD方法用于层状各向异性介质的散射分析时,由于任意非对角各向异性介质中电场各分量之间的互相耦合,导致了一维辅助网格上的Maxwell方程组中Dy和Hy沿切向和法向传播的子分量不能独立离散,使得传统的一维辅助FDTD方法无法直接计算层状各向异性介质的入射场场值。为此引入分裂场技术,解决了一维辅助Maxwell方程组的离散问题。
     (2)当FDTD方法用于非周期结构液晶器件时,由于左、右边界的不对称性导致了用于平面波源引入的周期边界条件不适用,必须设法解决如何独立计算总场/散射场左、右连接边界上的入射场场值问题。为此根据液晶材料的粘滞特性,将左、右连接边界上入射场场值的计算问题转化为具有不同介电张量分布的层状各向异性介质的入射场场值计算问题,解决了非周期液晶器件FDTD分析时的平面波源引入问题。
     (3) FDTD方法为获得精确解,其空间网格采样率需要随着计算区域总体尺寸的增大而增加,导致计算内存消耗大。伪谱时域方法(PSTD)因采用快速傅立叶变换算法求解空间微分,其空间网格采样率与总体尺寸无关,极大地减少了空间采样率。根据液晶盒的薄板结构特点,提出用混合PS-FDTD方法模拟光在液晶中的传播。即在电尺寸小而内部介质变化剧烈的液晶盒厚度方向上采用FDTD方法,而在电尺寸大而内部介质变化又较平滑、且与玻璃基板平行方向上采用PSTD方法,以此减少计算资源消耗。
     (4) FDTD方法的稳定条件限定了其最小空间网格尺寸对时间步长的要求,导致了在求解超精细结构细节问题时计算时间过长。针对相位调制型液晶器件中不存在横向磁场和横向电场耦合的情况,提出采用无条件稳定局部一维FDTD方法,以消除稳定条件对时间步长的限制。
     通过以上研究,解决了液晶等各向异性介质中FDTD方法的应用问题,为液晶光学特性模拟提供有效手段。
As an electrically controllable anisotropic medium, liquid crystals are widely used for displays and achieved great success. Recently, the application for non-displays such as beam control, wavefront transformation, and adaptive optics has attracted much attention and step into the practical application gradually. Besides, liquid crystals are very promising in the aspect of microwave and Terahertz wave for its wide range of transmittance spectra. Numerical simulation is an essential part in the research and development of liquid crystal devices, which can predict the optical properties of the device, optimize the parameters of the device, and provide the evidence of the device design and control.
     Numerical simulation of liquid crystal devices includes director simulation and optical property simulation. Optical property simulation studies about the interaction between light and liquid crystals, and simulates the light propagation through liquid crystal device. Finite-difference time-domain method (FDTD), as a numerical approach for the rigorous solution of Maxwell equations, is the most widely used method for the optical simulation of liquid crystals.
     This thesis mainly studied 2D time-domain computational method of electromagnetics for the optical simulation of liquid crystals, and explore the algorithms suitable for inhomogeneous anisotropic media with different spatial details (compared to the wavelength of incident light). The methods studied provide theoretic foundation for design and fabrication of liquid crystal device. The following are the main contents of the study:
     (1) When the FDTD method is used for the scattering analysis of layered anisotropic media, the subcomponents of Dy and Hy in the Maxwell equations on 1D auxiliary grid, which propagate in the direction either parallel with or perpendicular to the planar interface, can not be discretized separately. The reason is that the components of electric field are coupled together in the arbitrary off-diagonal anisotropic media. Thus the traditional 1D auxiliary FDTD method can not be applied to calculate the incident fields of layered anisotropic media directly. Therefore, the split-field technique is introduced to solve this problem.
     (2) When the FDTD method is used for the liquid crystal devices with non-periodic structure, due to the asymmetry between left and right boundaries, the periodic boundary conditions for the introduction of plane waves is not applicable. Thus, it is necessary to calculate the incident fields on the left boundary and that on the right boundary independently. For this purpose, according to the viscous characteristics of liquid crystals, the problem of the calculation of the incident fields on the left and right connecting boundaries can be simplified to the calculation of the incident fields of layered anisotropic media with different dielectric tensors. Therefore, the problem of the introduction of plane waves for the FDTD analysis of non-periodic liquid crystal devices is solved.
     (3) To obtain accurate results, the spatial sampling rate of FDTD method must be increased as the electrical size of the structure being modeled increased, thus leads to large memory consumption. Because a fast Fourier transform algorithm is used to represent the spatial derivatives in pseudospectral time-domain method (PSTD), the spatial sampling rate of PSTD method is independent of the overall electrical size of the structure being modeled, which greatly reduces the spatial sampling rate. In order to reduce the computational cost of FDTD method, hybrid PS-FDTD method is introduced to simulate the propagation of light through liquid crystals based on the characteristics of thin plate structure of liquid crystal cells. The FDTD method is applied to the thickness direction of a cell with a small thickness and fine structures, while the PSTD method is applied to the direction, paralleled with glass substrate, of a cell with a large surface and smooth internal media.
     (4) The time step in FDTD method is bounded by the minimum spatial grid for the numerical stability condition, which leads to the large computational time for the solution of problem with fine-scale geometric detail. For the phase-only liquid crystal device without coupling between transverse magnetic waves and transverse electric waves in it, an unconditionally stable locally one-dimensional FDTD method is proposed to remove the restriction of time step limited by the stability condtion.
     According to the research above, the application problem of FDTD method in anisotropic medium such as liquid crystals is solved, and it provides the premise and approach to optical simulation of liquid crystals.
引文
1 I.-C. Khoo. Liquid Crystals. John Wiley & Sons, Inc., Hoboken, New Jersey. 2007
    2 D.-K. Yang and S.-T. Wu. Fundamentals of Liquid Crystal Devices. John Wiley & Sons Ltd, Atrium, Southern Gate, Chichester, West Sussex. 2006
    3 J. A. Castellano. Liquid Gold: The Story Of Liquid Crystal Displays and the Creation of an Industry. World Scientific Publishing. 2005
    4 A. K. Bhowmik, Z. Li and P. J. Bos, eds., Mobile Displays: Technology and Applications (John Wiley & Sons Ltd, Atrium, Southern Gate, Chichester, West Sussex. 2008)
    5 Basics of Liquid Crystal Displays (Web presentation developed by Mingxia Gu). http://www.personal.kent.edu/%7Emgu/LCD/home.htm
    6 P. F. McManamon, T. A. Dorschner, D. L. Corkum, et al. Optical Phased Array Technology. Proc. IEEE. 1996, 84(2): 268~298
    7 B. Winker, M. Mahajan and M. Hunwardsen. Liquid Crystal Beam Directors for Airborne Free-Space Optical Communications. IEEE Aerospace Conference Proceedings. 2004, 3: 1702~1708
    8 T.-H. Chao, H. Zhou, G. Reyes, et al. High-Speed High Density Holographic Memory using Electro-Optic Beam Steering Devices. Proc. SPIE. 2002, 4803: 70~73
    9 P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, et al. Modal Liquid Crystal Devices in Optical Tweezing: 3D Control and Scillating Potential Wells. Opt. Express. 2006, 14(10): 4525~4537
    10 B. Matkin. Steered Agile Beams Support for Army Requirements. Proc. SPIE. 2000, 3952: 4~14
    11 H. S. Kenyon. System Moves Light with Electrons, Not Gears. Signal Magazine.2006
    12 P. F. McManamon. A Review of Non Mechanical Beam Steering Options. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS. 2008: 575~576
    13 P. F. McManamon. An Overview of Optical Phased Array Technology and Status. Proc. SPIE. 2005, 5947: 59470I
    14 R. N. McRuer, L. R. McAdams and J. W. Goodman. Ferroelectric Liquid-Crystal Digital Scanner. Opt. Lett. 1990, 15(23): 1415~1417
    15 C. M. Titus, P. J. Bos and O. D. Lavrentovich. Efficient, Accurate Liquid Crystal Digital Light Deflector. Proc. SPIE. 1999, 3633: 244~253
    16 O. Pishnyak, L. Kreminska and O. D. Lavrentovich. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator. NASA/TM-2004-213197. 2004.
    17 J. Shi. Liquid Crystal Based Beam Steering. PhD Thesis, Kent State University. 2005
    18 J. Kim, C. Oh, M. J. Escuti, et al. Wide-Angle Nonmechanical Beam Steering using Thin Liquid Crystal Polarization Gratings. Proc. of SPIE. 2008, 7093: 709302
    19 C. Oh and M. J. Escuti. Time-Domain Analysis of Periodic Anisotropic Media at Oblique Incidence: an Efficient FDTD Implementation. Opt. Express. 2006, 14(24): 11870~11884
    20 N. A. Riza and S. A. Khan. Programmable High-Speed Polarization Multiplexed Optical Scanner. Opt. Lett. 2003, 28(7): 561~563
    21 S. A. Khan and N. A. Riza. Demonstration of 3-Dimensional Wide Angle Laser Beam Scanner using Liquid Crystals. Opt. Express. 2004, 12(5): 868~882
    22 R. Wilk, N. Vieweg, T. Hasek, et al. THz Spectroscopy on Liquid Crystals from the CB Family. 2007: 682~683
    23 T. R. Tsai, C. Y. Chen, C. L. Pan, et al. Terahertz Time-Domain Spectroscopy Studies of the Optical Constants of the Nematic Liquid Crystal 5CB. Appl. Optics. 2003, 42(13): 2372~2376
    24 R. P. Pan, T. R. Tsai, C. Y. Chen, et al. Optical Constants of Two Typical Liquid Crystals 5CB and PCH5 in the THz Frequency Range. J. Biol. Phys. 2003, 29(2-3): 335~338
    25 R. P. Pan, T. R. Tsai, C. Y. Chen, et al. The Refractive Indices of Nematic Liquid Crystal 4'-n-pentyl-4-cyanobiphenyl in the THz Frequency Range. Mol. Cryst. Liquid Cryst. 2004, 409: 137~144
    26 R. P. Pan, C. F. Hsieh, C. L. Pan, et al. Temperature-Dependent OpticalConstants and Birefringence of Nematic Liquid Crystal 5CB in the Terahertz Frequency Range. J. Appl. Phys. 2008, 103(9): 7
    27 M. Oh-e, H. Yokoyama, M. Koeberg, et al. High-Frequency Dielectric Relaxation of Liquid Crystals: THz Time-Domain Spectroscopy of Liquid Crystal Colloids. Opt. Express. 2006, 14(23): 11433~11441
    28 M. Oh-E, H. Yokoyama, M. Koeberg, et al. Liquid Crystal Colloids Studied by THz Time-Domain Spectroscopy. Mol. Cryst. Liquid Cryst. 2008, 480: 21~28
    29 C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, et al. Polarizing Terahertz Waves with Nematic Liquid Crystals. Opt. Lett. 2008, 33(11): 1174~1176
    30 C. Y. Chen, T. R. Tsai, C. L. Pan, et al. Room Temperature Terahertz Phase Shifter Based on Magnetically Controlled Birefringence in Liquid Crystals. Appl. Phys. Lett. 2003, 83(22): 4497~4499
    31 C. Y. Chen, C. F. Hsieh, Y. F. Lin, et al. Magnetically Tunable Room-Temperature 2 pi Liquid Crystal Terahertz Phase Shifter. Opt. Express. 2004, 12(12): 2625~2630
    32 R. P. Pan, C. Y. Chen, T. R. Tsai, et al. Terahertz Phase Shifter with Nematic Liquid Crystal in a Magnetic Field. Mol. Cryst. Liquid Cryst. 2004, 421: 157~164
    33 T. R. Tsai, C. Y. Chen, R. P. Pan, et al. Electrically Controlled Room Temperature Terahertz Phase Shifter with Liquid Crystal. IEEE Microw. Wirel. Compon. Lett. 2004, 14(2): 77~79
    34 H. Y. Wu, C. F. Hsieh, T. T. Tang, et al. Electrically Tunable Room-Temperature
    2 pi Liquid Crystal Terahertz Phase Shifter. IEEE Photonics Technol. Lett. 2006, 18(13-16): 1488~1490
    35 C. F. Hsieh, R. P. Pan, T. T. Tang, et al. Voltage-Controlled Liquid-Crystal Terahertz Phase Shifter and Quarter-Wave Plate. Opt. Lett. 2006, 31(8): 1112~1114
    36 C.-L. Pan and R.-P. Pan. Liquid-Crystal-Based Electrically Tunable THz Optical Devices. 2007, 6487: 648709~648706
    37 C. L. Pan, C. F. Hsieh, R. P. Pan, et al. Control of Enhanced THz Transmission Through Metallic Hole Arrays Using Nematic Liquid Crystal. Opt. Express. 2005, 13(11): 3921~3930
    38 R.-P. Pan, C.-Y. Chen, C.-F. Hsieh, et al. A Liquid-Crystal-Based TerahertzTunable Lyot Filter. 2005: 981~982
    39 C. Y. Chen, C. L. Pan, C. F. Hsieh, et al. Liquid-Crystal-Based Terahertz Tunable Lyot Filter. Appl. Phys. Lett. 2006, 88(10): 3
    40 I. C. Ho, C.-L. Pan, C.-F. Hsieh, et al. Liquid-Crystal-Based Terahertz Tunable Sole Filter. Opt. Lett. 2008, 33(13): 1401~1403
    41 S. A. Jewelll, E. Hendry, T. H. Isaac, et al. Tuneable Fabry-Perot Etalon for Terahertz Radiation. New Journal of Physics. 2008, 10: 033012
    42 C. J. Lin, Y. T. Li, C. F. Hsieh, et al. Manipulating Terahertz Wave by a Magnetically Tunable Liquid Crystal Phase Grating. Opt. Express. 2008, 16(5): 2995~3001
    43 H. Woehler and M. E. Becker. Numerical Modeling of LCD Electro-Optical Performance. Opto-Electron. Rev. 2002, 10(1): 23~33
    44 T. X. Wu, R. Lu and Q. Hong. On the Modeling of Liquid Crystal Displays. Proc. IEEE. 2003: 886~887
    45 DIMOS. http://www.autronic-melchers.com (DIMOS为德国AUTRONIC-MELCHERS公司的指向矢仿真软件)
    46 LCD Master. http://www.shintech.jp/eng/index.html (LCD Master为日本Shintech公司的指向矢仿真软件)
    47 Techwitz LCD. http://www.sanayisystem.com/english/index.htm (Techwitz LCD为韩国Sanayisystem公司的指向矢仿真软件)
    48 LCD-DESIGN. http://www.bfo.com.hk/chi/products_c_simulation.html (LCD-DESIGN为香港贝纳仪器公司的指向矢仿真软件)
    49 LCQuest. http://www.eng.ox.ac.uk/lcquest/#secReferences (LCQuest为英国牛津大学开发的指向矢仿真软件)
    50 J. E. Anderson, P. E. Watson and P. J. Bos. LC3D: Liquid Crystal Display 3-D Director Simulation Software and Technology Guide. Artech House Publishers, Boston. 2001
    51 S. T. Tang. Polarization Optics of Liquid Crystal and its Application. PhD Thesis, Hong Kong University of Science and Technology. 2001
    52 P. Yeh and C. Gu. Optics of Liquid Crystal Displays. John Wiley & Sons, New York. 1999
    53 D. W. Berreman. Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation. J. Opt. Soc. Am. 1972, 62(4): 502~510
    54 C. Moler and C. V. Loan. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review. 2003, 45(1): 3-000
    55 H. Wohler, G. Haas and M. Fritsch. Faster 4×4 Matrix Method for Uniaxial Inhomogeneous Media. J. Opt. Soc. Am. A. 1988, 5(9): 1554~1557
    56 I. Abdulhalim. Analytic Propagation Matrix Method for Linear Optics of Arbitrary Biaxial Layered Media. J. Opt. A: Pure Appl. Opt. 1999, 1: 646~653
    57 G. F. Barrick. An Interpolating Polynomial Method for Liquid Crystal Display Optics. Jpn. J. Appl. Phys. 2002, 41: 5480~5485
    58 Z. Lu. Accurate and Efficient Calculation of Light Propagation in One-Dimensional Inhomogeneous Anisotropic Media through Extrapolation. J. Opt. Soc. Am. A. 2007, 24: 236~242
    59 G. F. Barrick. Analysis of Numerical Methods for One-Dimensional Liquid Crystal Display Optics. PhD Thesis, Kent State University. 2000
    60 P. Yeh. Extended Jones Matrix Method. J. Opt. Soc. Am. 1982, 72(4): 507~513
    61 A. Lien. A Detailed Derivation of Extended Jones Matrix Representation for Twisted Nematic Liquid Crystal Displays. Liq. Cryst. 1997, 22(2): 171~175
    62 O. A. Peverini, D. Olivero and C. Oldano. Reduced-Order Model Technique for the Analysis of Anisotropic Inhomogeneous Media: Application to Liquid-Crystal Displays. J. Opt. Soc. Am. A. 2002, 19(9): 1901~1909
    63 H. L. Ong. Electromagnetic Fields in Layered-Inhomogeneous Uniaxial Media: Validation Criterion and Higher-Order Solutions of the GOA. Phys. Rev. A. 1985, 32(2): 1098~1105
    64 H. L. Ong and R. B. Meyer. Geometrical-Optics Approximation for the Electromagnetic Fields in Layered-Inhomogeneous Liquid-Crystalline Structures. J. Opt. Soc. Am. A. 1985, 2(2): 198~201
    65 W. Liu, J. Kelly and J. Chen. Electro-Optical Performance of a Self-Compensating Vertically-Aligned Liquid Crystal Display Mode. Jpn. J. Appl. Phys. 1999, 38: 2779~2784
    66 W. Liu and J. Kelly. Optical Properties of a Switchable Diffraction Grating. Mol. Cryst. Liq. Cryst. 2001, 358: 199~208
    67 G. Panasyuk, J. Kelly and D. W. Allender. Geometric Optics Approach in Liquid Crystal Films with Three Dimensional Director Variations. Phys. Rev. E. 2003, 67: 041702(041701~041710)
    68 G. Panasyuk, J. R. Kelly and P. Bos. The Geometrical Optics Approach for Multidimensional Liquid Crystal Cells. Liq. Cryst. 2004, 31(11): 1503~1515
    69 M. Sluijter, D. K. G. de Boer and J. J. M. Braat. General Polarized Ray-Tracing Method for Inhomogeneous Uniaxially Anisotropic Media. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2008, 25(6): 1260~1273
    70 M. Sluijter, D. K. G. de Boer and H. P. Urbach. Ray-Optics Analysis of Inhomogeneous Biaxially Anisotropic Media. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2009, 26(2): 317~329
    71 M. Sluijter, D. K. G. de Boer and H. Paul Urbach. Ray-Tracing Simulations of Liquid-Crystal Devices. Mol. Cryst. Liq. Cryst. 2009, 502: 164 ~ 177
    72 M. D. Feit and J. J. A. Fleck. Light Propagation in Graded-Index Optical Fibers. Appl. Opt. 1978, 17(24): 3990~3998
    73 E. E. Kriezis and S. J. Elston. A Wide Angle Beam Propagation Method for the Analysis of Tilted Nematic Liquid Crystal Structures. J. Mod. Opt. 1999, 46(8): 1201~1212
    74 E. E. Kriezis and S. J. Elston. Light Wave Propagation in Periodic Tilted Liquid Crystal Structures: a Periodic Beam Propagation Method. Liq. Cryst. 1999, 6(11): 1663~1669
    75 E. E. Kriezis and S. J. Elston. Wide-Angle Beam Propagation Method for Liquid-Crystal Device Calculations. Appl. Opt. 2000, 39(31): 5707~5714
    76 A. J. Davidson and S. J. Elston. Three-Dimensional Beam Propagation Model for the Optical Path of Light Through a Nematic Liquid Crystal. J. Mod. Opt. 2006, 53: 979~989
    77 S. Tang and J. Kelly. An Alternative Description of Multi-Dimensional Optics in Liquid Crystals and Uniaxial Media Solved by Operators and Sparse Linear Systems. Mol. Cryst. Liq. Cryst. 2007, 478: 175 ~ 199
    78 A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House Publishers, Boston. 2005
    79 B. Witzigmann, P. Regli and W. Fichtner. Rigorous Electromagnetic Simulation of Liquid Crystal Displays. J. Opt. Soc. Am. A. 1998, 15(3): 753~757
    80 E. E. Kriezis and S. J. Elston. Finite-Difference Time Domain Method for Light Wave Propagation within Liquid Crystal Devices. Opt. Commun. 1999, 165: 99~105
    81 E. E. Kriezis and S. J. Elston. Light Wave Propagation in Liquid Crystal Displays by the 2-D Finite-Difference Time-Domain Method. Opt. Commun. 2000, 177: 69~77
    82 E. E. Kriezis, S. K. Filippov and S. J. Elston. Light Propagation in Domain Walls in Ferroelectric Liquid Crystal Devices by the Finite-Difference Time-Domain Method. J. Opt. A: Pure Appl. Opt. 2000, 2: 27~33
    83 E. E. Kriezis and S. J. Elston. Numerical Modelling of Multi-Dimensional Liquid Crystal Optics: Finite-Difference Time-Domain Method. Mol. Cryst. Liq. Cryst. 2001, 359: 289~299
    84 C. V. Brown, E. E. Kriezis and S. J. Elston. Optical Diffraction from a Liquid Crystal Phase Grating. J. Appl. Phys. 2002, 91(6): 3495~3500
    85 E. E. Kriezis. Numerical Modelling of Light Wave Propagation in Reflective Liquid Crystal Microdisplay Devices. J. Mod. Opt. 2002, 49(13): 2065~2081
    86 E. E. Kriezis, C. J. P. Newton, T. P. Spiller, et al. Three-Dimensional Simulations of Light Propagation in Periodic Liquid-Crystal Microstructures. Appl. Opt. 2002, 41(25): 5346~5356
    87 E. E. Kreizis, S. J. Elston and C. J. Newton. 3-D Optical Simulations of Azimuthal Bistable Nematic Devices. Mol. Cryst. Liq. Cryst. 2004, 413: 321/[2457]~2331/[2467]
    88 C. M. Titus, P. J. Bos and J. R. Kelly. Comparison of Analytical Calculations to Finite-Difference Time-Domain Simulations of One-Dimensional Spatially Varying Anisotropic Liquid Crystal Structures. Jpn. J. Appl. Phys. 1999, 38: 1488~1494
    89 C. M. Titus. Refractive and Diffractive Liquid Crystal Beam Steering Devices. PhD Thesis, Kent State University. 2000
    90 B. Wang, D. B. Chung and P. J. Bos. Finite-Difference Time-Domain Optical Calculations of Polymer-Liquid Crystal Composite Electrodiffractive Device. Jpn. J. Appl. Phys. 2004, 43(1): 176~181
    91 X. Wang, B. Wang and P. J. Bos. Finite-Difference Time-Domain Simulation of a Liquid-Crystal Optical Phased Array. J. Opt. Soc. Am. A. 2005, 22(2): 346~354
    92 V. Ilyina, S. J. Cox and T. J. Sluckin. FDTD Method for Light Interaction with Liquid Crystals. Mol. Cryst. Liq. Cryst. 2004, 422: 1/[271]~210/[280]
    93 V. Ilyina and S. Subota. Numerical Study of Liquid Crystal-Induced Optical Singularities. Mol. Cryst. Liq. Cryst. 2006, 453: 275 ~ 291
    94 D. K. Hwang and A. D. Rey. Computational Modeling of the Popagation of Light Through Liquid Crystals Containing Twist Disclinations Based on the Finite-Difference Time-Domain Method. Appl. Opt. 2005, 44(21): 4513~4522
    95 D. K. Hwang and A. D. Rey. Computational Studies of Optical Textures of Twist Disclination Loops in Liquid-Crystal Films by Using the Finite-Difference Time-Domain Method. J. Opt. Soc. Am. A. 2006, 23(2): 483~496
    96 C.-L. Ting, T.-H. Lin and C.-C. Liao. Optical Simulation of Cholesteric Liquid Crystal Displays Using the Finite-Difference Time-Domain Method. Opt. Express. 2006, 14(12): 5594~5606
    97王谦,余飞鸿,潘为民等.扭曲向列型LCD电光特性计算的理论研究.光子学报. 2000, 29(4): 330~338
    98王谦,余飞鸿,岑兆丰等.用于液晶电光特性计算的无奇异点2×2矩阵研究.光子学报. 2000, 29(12): 1113~1117
    99张永胜,朱鹤年.计算单轴旋光晶体光学性质的新矩阵:旋光Jones矩阵.液晶与显示. 2002, 18(3): 212~218
    100任广军,李国华.液晶磁控效应的Jones矩阵研究.液晶与显示. 2003, 18(5): 357~361
    101叶必卿.液晶空间光调制器特性研究及在全息测量中的应用.浙江大学. 2006
    102陈婷,冯仕猛.复指数矩阵法研究螺旋液晶光学传播特性.光学学报. 2008, 28(9): 1805~1811
    103 J. P. Berenger. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 1994, 114(2): 185~200
    104 W. C. Chew and W. H. Weedon. A 3D Perfectly Matched Medium from Modified Maxwel's Equations with Stretched Coordinates. Microw. Opt. Technol. Lett. 1994, 7(13): 599~604
    105 S. D. Gedney. An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices. IEEE Trans. Antennas Propag. 1996, 44(12): 1630~1639
    106 J. P. Berenger. Perfectly Matched Layer (PML) for Computational Electromagnetics. Morgan & Claypool. 2007
    107 A. P. Zhao. The Limitations of the Perfectly Matched Layers Based on E-H fields for Arbitrary Anisotropic Media - Reply to "Comment on 'On the Matching Conditions of Different PML Schemes Applied to Multilayer Isotropic Dielectric Media'". Microw. Opt. Technol. Lett. 2002, 32(3): 237~241
    108 A. P. Zhao. Generalized-material-independent PML Absorbers used for the FDTD Simulation of Electromagnetic Waves in 3-D arbitrary Anisotropic Dielectric and Magnetic Media. IEEE Trans. Microw. Theory Tech. 1998, 46(10): 1511~1513
    109 U. Oguz, L. Gurel and O. Arikan. An Efficient and Accurate Technique for the Incident-Wave Excitations in the FDTD Method. IEEE Trans. Microw. Tech. 1998, 46(6): 869~882
    110 C. Guiffaut and K. Mahdjoubi. A Perfect Wideband Plane Wave Injector for FDTD Method. 2000, 1: 236~239
    111 T. M. Tan and M. Potter. 1-D Multipoint Auxiliary Source Propagator for the Total-Field/Scattered-Field FDTD Formulation. IEEE Antennas Wirel. Propag. Lett. 2007, 6: 144~148
    112 K. Demarest, R. Plumb and Z. B. Huang. FDTD Modeling of Scatterers in Stratified Media. IEEE Trans. Antennas Propag. 1995, 43(10): 1164~1168
    113 T. T. Hsu and L. Carin. FDTD Analysis of Plane-Wave Diffraction from Microwave Devices on an Infinite Dielectric Slab. IEEE Microw. Guided Wave Lett. 1996, 6(1): 16~18
    114 P. B. Wong, G. L. Tyler, J. E. Baron, et al. A Three-wave FDTD Approach to Surface Scattering with Applications to Remote Sensing of Geophysical Surfaces. IEEE Trans. Antennas Propag. 1996, 44(4): 504~514
    115 C. D. Moss, F. L. Teixeira and J. A. Kong. Analysis and Compensation of Numerical Dispersion in the FDTD Method for Layered, Anisotropic Media. IEEE Trans. Antennas Propag. 2002, 50(9): 1174~1184
    116 J. B. Schneider. Plane Waves in FDTD Simulations and a Nearly Perfect Total-Field/Scattered-Field Boundary. IEEE Trans. Antennas Propag. 2004, 52(12): 3280~3287
    117 J. B. Schneider and K. Abdijalilov. Analytic Field Propagation TFSF Boundary for FDTD Problems Involving Planar Interfaces: PECs, TE, and TM. IEEE Trans. Antennas Propag. 2006, 54(9): 2531~2542
    118 K. Abdijalilov and J. B. Schneider. Analytic Field Propagation TFSF Boundary for FDTD Problems Involving Planar Interfaces: Lossy Material and Evanescent Fields. IEEE Antennas Wirel. Propag. Lett. 2006, 5(1): 454~458
    119 Y. Yi, B. Chen, D. G. Fang, et al. A New 2-D FDTD Method Applied to Scattering by Infinite Objects with Oblique Incidence. IEEE Trans. Electromagn. Compat. 2005, 47(4): 756~762
    120 S. C. Winton, P. Kosmas and C. M. Rappaport. FDTD Simulation of TE and TM Plane Waves at Nonzero Incidence in Arbitrary Layered Media. IEEE Trans. Antennas Propag. 2005, 53(5): 1721~1728
    121 P. Kosmas. Review of an FDTD TF/SF Formulation Based on Auxiliary 1-D Grids. 2007: 120~123
    122 I. R. Capoglu and G. S. Smith. A Total-Field/Scattered-Field Plane-Wave Source for the FDTD Analysis of Layered Media. IEEE Trans. Antennas Propag. 2008, 56(1): 158~169
    123 G. L. Sun and C. W. Trueman. Optimized Finite-Difference Time-Domain Methods based on the (2,4) Stencil. IEEE Trans. Microw. Theory Tech. 2005, 53(3): 832~842
    124 J. S. Juntunen and T. D. Tsiboukis. Reduction of Numerical Dispersion in FDTD Method through Artificial Anisotropy. IEEE Trans. Microw. Theory Tech. 2000, 48(4): 582~588
    125 Q. H. Liu. The PSTD Algorithm: A Time-Domain Method Requiring Only Two Cells Per Wavelength. Microw. Opt. Technol. Lett. 1997, 15(3): 158~165
    126 Q. H. Liu. PML and PSTD Algorithm for Arbitrary Lossy Anisotropic Media. IEEE Microw. Guided Wave Lett. 1999, 9(2): 48~50
    127 T. Namiki. A New FDTD Algorithm Based on Alternating-Direction Implicit Method. IEEE Trans. Microw. Theory Tech. 1999, 47(10): 2003~2007
    128 F. H. Zheng, Z. Z. Chen and J. Z. Zhang. A Finite-Difference Time-Domain Method without the Courant Stability Conditions. IEEE Microw. Guided Wave Lett. 1999, 9(11): 441~443
    129 T. Namiki. 3-D ADI-FDTD Method - Unconditionally Stable Time-Domain Algorithm for Solving Full Vector Maxwell's Equations. IEEE Trans. Microw. Theory Tech. 2000, 48(10): 1743~1748
    130 F. H. Zheng, Z. Z. Chen and J. Z. Zhang. Toward the Development of a Three-Dimensional Unconditionally Stable Finite-Difference Time-Domain Method. IEEE Trans. Microw. Theory Tech. 2000, 48(9): 1550~1558
    131 B. Fornbeg. A Short Proof of the Unconditional Stability of the ADI-FDTD Scheme. Department of Applied Mathematics, University of Colorado. Technical Report #472,. 2001.
    132 S. G. Garcia, R. G. Rubio, A. R. Bretones, et al. Revisiting the Stability of Crank-Nicolson and ADI-FDTD. IEEE Trans. Antennas Propag. 2007, 55(11): 3199~3203
    133 S. Ogurtsov, G. Pan and R. Diaz. Examination, Clarification, and Simplification of Stability and Dispersion Analysis for ADI-FDTD and CNSS-FDTD Schemes. IEEE Trans. Antennas Propag. 2007, 55(12): 3595~3602
    134 T. Namiki and K. Ito. Investigation of Numerical Errors of the Two-Dimensional ADI-FDTD Method. IEEE Trans. Microw. Theory Tech. 2000, 48(11): 1950~1956
    135 F. H. Zheng and Z. Z. Chen. Numerical Dispersion Analysis of the Unconditionally Stable 3-D ADI-FDTD Method. IEEE Trans. Microw. Theory Tech. 2001, 49(5): 1006~1009
    136 S. W. Staker, C. L. Holloway, A. U. Bhobe, et al. Alternating-Direction Implicit (ADI) Formulation of the Finite-Difference Time-Domain (FDTD) Method: Algorithm and Material Dispersion Implementation. IEEE Trans. Electromagn. Compat. 2003, 45(2): 156~166
    137 A. P. Zhao. Analysis of the Numerical Dispersion of the 2-D Alternating-Direction Implicit FDTD Method. IEEE Trans. Microw. Theory Tech. 2002, 50(4): 1156~1164
    138 A. P. Zhao. The Influence of the Time Step on the Numerical Dispersion Error of an Unconditionally Stable 3-D ADI-FDTD Method: A Simple and Unified Approach to Determine the Maximum Allowable Time Step Required by a Desired Numerical Dispersion Accuracy. Microw. Opt. Technol. Lett. 2002, 35(1): 60~65
    139 G. L. Sun and C. W. Trueman. A Simple Method to Determine the Time-Step Size to Achieve a Desired Dispersion Accuracy in ADI-FDTD. Microw. Opt. Technol. Lett. 2004, 40(6): 487~490
    140 G. L. Sun and C. W. Trueman. Some Fundamental Characteristics of the One-Dimensional Alternate-Direction-Implicit Finite-Difference Time-Domain Method. IEEE Trans. Microw. Theory Tech. 2004, 52(1): 46~52
    141 G. Sun and C. W. Trueman. Analysis and Numerical Experiments on the Numerical Dispersion of Two-Dimensional ADI-FDTD. IEEE Antennas Wirel. Propag. Lett. 2003, 2: 78~81
    142 M. Darms, R. Schuhmann, H. Spachmann, et al. Dispersion and Asymmetry Effects of ADI-FDTD. IEEE Microw. Wirel. Compon. Lett. 2002, 12(12): 491~493
    143 S. G. Garcia, L. Tae-Woo and S. C. Hagness. On the Accuracy of the ADI-FDTD Method. IEEE Antennas Wirel. Propag. Lett. 2002, 1: 31~34
    144 J. Chen, Z. Wang and Y. C. Chen. Higher-Order Alternative Direction Implicit FDTD Method. Electron. Lett. 2002, 38(22): 1321~1322
    145 Z. Wang, J. Chen and Y. C. Chen. Development of a Higher-Order ADI-FDTD Method. Microw. Opt. Technol. Lett. 2003, 37(1): 8~12
    146 W. M. Fu and E. L. Tan. Stability and Dispersion Analysis for Higher Order 3-D ADI-FDTD Method. IEEE Trans. Antennas Propag. 2005, 53(11): 3691~3696
    147 F. Xiao, X. H. Tang and H. H. Ma. High-Order US-FDTD Based on the Weighted Finite-Difference Method. Microw. Opt. Technol. Lett. 2005, 45(2): 142~144
    148 M. Wang, Z. Wang and J. Chen. A Parameter Optimized ADI-FDTD Method. IEEE Antennas Wirel. Propag. Lett. 2003, 2: 118~121
    149 W. M. Fu and E. L. Tan. A Parameter Optimized ADI-FDTD Method Based on the (2,4) Stencil. IEEE Trans. Antennas Propag. 2006, 54(6): 1836~1842
    150 A. P. Zhao. Improvement on the Numerical Dispersion of 2-D ADI-FDTD with Artificial Anisotropy. IEEE Microw. Wirel. Compon. Lett. 2004, 14(6): 292~294
    151 K. V. Srivastava, V. V. Mishra and A. Biswas. An Accurate Analysis of Numerical Dispersion for 3-d ADI-FDTD with Artificial Anisotropy. Microw. Opt. Technol. Lett. 2007, 49(12): 3109~3112
    152 K. B. Kong, J. S. Kim and S. O. Park. Reduction of Numerical Dispersion by Optimizing Second-Order Cross Product Derivative Term in the ADI-FDTD Method. Microw. Opt. Technol. Lett. 2008, 50(1): 123~127
    153 A. Zhao. More Accurate and Efficient Unconditionally Stable FDTD Method.Electron. Lett. 2002, 38(16): 862~864
    154 S. Liu, P. Wu, S. M. Gu, et al. One-Step Unconditionally Stable FDTD Method and its Numerical Dispersion Analysis. 2008: 700~703
    155 S. M. Wang, F. L. Teixeira and J. Chen. An Iterative ADI-FDTD with Reduced Splitting Error. IEEE Microw. Wirel. Compon. Lett. 2005, 15(2): 92~94
    156 S. M. Wang and J. Chen. A Performance Study of the Iterative ADI-FDTD Method. IEEE Trans. Antennas Propag. 2005, 53(10): 3413~3417
    157 I. Ahmed and Z. Z. D. Chen. Accuracy Improved ADI-FDTD Methods. Int. J. Numer. Model.-Electron. Netw. Device Fields. 2007, 20(1-2): 35~46
    158 I. Ahmed and Z. Z. Chen. Error Reduced ADI-FDTD Methods. IEEE Antennas Wirel. Propag. Lett. 2005, 4: 323~325
    159 G. Sun and C. W. Trueman. Unconditionally Stable Crank-Nicolson Scheme for Solving Two-Dimensional Maxwell's Equations. Electron. Lett. 2003, 39(7): 595~597
    160 G. Sun and C. W. Trueman. Approximate Crank-Nicolson Schemes for the 2-D Finite-Difference Time-Domain Method for TEZ Waves. IEEE Trans. Antennas Propag. 2004, 52(11): 2963~2972
    161 G. Sun and C. W. Trueman. Unconditionally-Stable FDTD Method Based on Crank-Nicolson Scheme for Solving Three-Dimensional Maxwell Equations. Electron. Lett. 2004, 40(10): 589~590
    162 G. L. Sun and C. W. Trueman. Efficient Implementations of the Crank-Nicolson Scheme for the Finite-Difference Time-Domain Method. IEEE Trans. Microw. Theory Tech. 2006, 54(5): 2275~2284
    163 E. L. Tan. Efficient Algorithm for the Unconditionally Stable 3-D ADI-FDTD Method. IEEE Microw. Wirel. Compon. Lett. 2007, 17(1): 7~9
    164 A. P. Zhao. A Novel Implementation for Two-Dimensional Unconditionally Stable FDTD Method. Microw. Opt. Technol. Lett. 2003, 38(6): 457~462
    165 R. Qiang and J. Chen. AMG Enhanced CN-FDTD Method for Low Frequency Electromagnetic Applications. 2004: 1503~1506
    166 R. Qiang, D. G. Wu, J. Chen, et al. A CN-FDTD Scheme and its Application to VLSI Interconnects/Substrate Modeling. 2004: 97~101
    167 R. Qiang, D. G. Wu, J. Chen, et al. An Efficient Two-Dimensional FDTD Method for Bio-Electromagnetic Applications. IEEE Trans. Magn. 2006, 42(4):1391~1394
    168 Y. Yang, R. S. Chen and E. K. N. Yun. The Unconditionally Stable Crank-Nicolson FDTD Method for Three-Dimensional Maxwell's Equations. Microw. Opt. Technol. Lett. 2006, 48(8): 1619~1622
    169 Y. Yang, R. S. Chen, D. X. Wang, et al. Unconditionally Stable Crank-Nicolson Finite-Different Time-Domain Method for Simulation of Three-Dimensional Microwave Circuits. IET Microw. Antennas Propag. 2007, 1(4): 937~942
    170 J. Lee and B. Fornberg. Some Unconditionally Stable Time Stepping Methods for the 3D Maxwell's Equations. J. Comput. Appl. Math. 2004, 166(2): 497~523
    171 J. Shibayama, M. Muraki, J. Yamauchi, et al. Efficient Implicit FDTD Algorithm based on Locally One-Dimensional Scheme. Electron. Lett. 2005, 41(19): 1046~1047
    172 J. W. Lee and B. Fornberg. A Split Step Approach for the 3-D Maxwell's Equations. J. Comput. Appl. Math. 2003, 158(2): 485~505
    173 Q. F. Liu, Z. Z. Chen and W. Y. Yin. An Efficient Unconditionally Stable Three-Dimensional LOD-FDTD Method. 2008: 45~48
    174 I. Ahmed, E. K. Chua and E. P. Li. The Stability Analysis of the Three-Dimensional LOD-FDTD Method. 2008: 60~63
    175 T. Namiki and K. Ito. Numerical Simulation Using ADI-FDTD Method to Estimate Shielding Effectiveness of Thin Conductive Enclosures. IEEE Trans. Microw. Theory Tech. 2001, 49(6): 1060~1066
    176 W. M. Fu and E. L. Tan. Stability and Dispersion Analysis for ADI-FDTD Method in Lossy Media. IEEE Trans. Antennas Propag. 2007, 55(4): 1095~1102
    177 S. G. Garcia, R. G. Rubio, A. R. Bretones, et al. Extension of the ADI-FDTD Method to Debye Media. IEEE Trans. Antennas Propag. 2003, 51(11): 3183~3186
    178 X. T. Dong, N. V. Venkatarayalu, B. Guo, et al. General Formulation of Unconditionally Stable ADI-FDTD Method in Linear Dispersive Media. IEEE Trans. Microw. Theory Tech. 2004, 52(1): 170~174
    179 L. J. Xu and N. C. Yuan. PLJERC-ADI-FDTD Method for Isotropic Plasma. IEEE Microw. Wirel. Compon. Lett. 2005, 15(4): 277~279
    180 K. Y. Jung and F. L. Teixeira. Multispecies ADI-FDTD Algorithm for Nanoscale Three-Dimensional Photonic Metallic Structures. IEEE Photonics Technol. Lett. 2007, 19(5-8): 586~588
    181 J. Shibayama, R. Ando, A. Nomura, et al. Simple Trapezoidal Recursive Convolution Technique for the Frequency-Dependent FDTD Analysis of a Drude-Lorentz Model. IEEE Photonics Technol. Lett. 2009, 21(1-4): 100~102
    182 J. Shibayama, R. Takahashi, A. Nomura, et al. Concise Frequency-Dependent Formulation for LOD-FDTD Method using Z Transforms. Electron. Lett. 2008, 44(16): 949~950
    183 J. Shibayama, R. Takahashi, J. Yamauchi, et al. Frequency-Dependent LOD-FDTD Implementations for Dispersive Media. Electron. Lett. 2006, 42(19): 1084~1086
    184 J. Shibayama, R. Takahashi, J. Yamauchi, et al. Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides. IEEE Photonics Technol. Lett. 2008, 20(9-12): 824~826
    185 K. Y. Jung, F. L. Teixeira and R. Lee. Complex Envelope PML-ADI-FDTD Method for Lossy Anisotropic Dielectrics. IEEE Antennas Wirel. Propag. Lett. 2007, 6: 643~646
    186 K. Y. Jung and F. L. Teixeira. Photonic Crystals with a Degenerate Band Edge: Field Enhancement Effects and Sensitivity Analysis. Phys. Rev. B. 2008, 77(12): 125108(125109)
    187 K. Y. Jung and F. L. Teixeira. Numerical Study of Photonic Crystals with a Split Band Edge: Polarization Dependence and Sensitivity Analysis. Phys. Rev. A. 2008, 78(4): 043826(043827)
    188 S. G. Garcia, T. M. HungBao, R. G. Martin, et al. On the Application of Finite Methods in Time Domain to Anisotropic Dielectric Waveguides. IEEE Trans. Microw. Theory Tech. 1996, 44(12): 2195~2206
    189 W. C. Chew. Electromagnetic Theory on a Lattice. J. Appl. Phys. 1994, 75(10): 4843~4850
    190 A. P. Zhao. Application of the Material-Independent PML Absorbers to the FDTD Analysis of Electromagnetic Waves in Nonlinear Media. Microw. Opt. Technol. Lett. 1998, 17(3): 164~168
    191 H. Southwell. Gradient-Index Antireflection Coatings. Opt. Lett. 1983, 8: 584~586
    192 X. Gao, M. S. Mirotznik and D. W. Prather. A Method for Introducing Soft Sources in the PSTD Algorithm. IEEE Trans. Antennas Propag. 2004, 52(7): 1665-1671
    193 Y. F. Leung and C. H. Chan. Combining the FDTD and PSTD Methods. Microw. Opt. Technol. Lett. 1999, 23(4): 249~254
    194 Q. Li, Y. Chen and C. K. Li. Hybrid PSTD-FDTD Technique for Scattering Analysis. Microw. Opt. Technol. Lett. 2002, 34(1): 19~24
    195 X. Gao, M. S. Mirotznik, S. Y. Shi, et al. 3D Simulations of Electrically Large Thin Plates using the Hybrid PSTD-FDTD Algorithm. Microw. Opt. Technol. Lett. 2005, 45(6): 502~507
    196 J. Chen and J. G. Wang. A Novel WCS-FDTD Method with Weakly Conditional Stability. IEEE Trans. Electromagn. Compat. 2007, 49(2): 419~426
    197 W. H. Yu, T. Su and R. Mittra. A Novel Separable Backward-Central FDTD Method. Microw. Opt. Technol. Lett. 2006, 48(2): 212~215
    198汤炜. ADI-FDTD及其混合算法在电磁散射中的应用.西安电子科技大学. 2005
    199 G. Liu and S. D. Gedney. Perfectly Matched Layer Media for an Unconditionally Stable Three-Dimensional ADI-FDTD Method. IEEE Microw. Guided Wave Lett. 2000, 10(7): 261~263
    200 S. M. Wang and F. L. Teixeira. An Efficient PML Implementation for the ADI-FDTD Method. IEEE Antennas Wirel. Propag. Lett. 2003, 13(2): 72~74
    201 V. E. do Nascimento, B. H. V. Borges and F. L. Teixeira. Split-Field PML Implementations for the Unconditionally Stable LOD-FDTD Method. IEEE Microw. Wirel. Compon. Lett. 2006, 16(7): 398~400
    202 G. Lazzi. Unconditionally Stable D-H FDTD Formulation with Anisotropic PML Boundary Conditions. IEEE Microw. Wirel. Compon. Lett. 2001, 11(4): 149~151
    203徐林.液晶光学相控阵相位延迟及衍射效率研究.博士学位论文,哈尔滨工业大学. 2008
    204 M. W. Kowarz. Diffraction Effects in the Near Field. PhD Thesis, University of Rochester. 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700