X光同轴相衬成像原理的模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与基于强度衰减的传统X光成像技术相比,X光相衬成像技术在对软组织进行成像时具有低辐射量,高可见度等优点,因而在过去十年间引起了研究者的广泛重视并得到了迅速发展。
     本研究中讨论的微焦点源同轴相衬成像方法由于其对于光源限制较小且无需在光路中附加光学器件,因此被视为最具临床应用前景的相衬成像方法。本论文包括以下三方面内容,首先,采用刀口法定量评估相衬成像系统的成像质量;其次,建立数值模拟模型来指导实验室成像系统下各物理参数的最优化配置;最后,采用维纳滤波法来提高相衬成像中干涉条纹对的可见度。
     实验室构建了基于微焦点源的同轴相衬成像系统,为定量评估该成像系统下成像质量,本文中采用刀口法测量了该系统的调制传递函数。为修正因刀口加工精度和探测器上各像素点响应差异引入的测量误差,文中在对边缘响应曲线采用了分段指数拟合后,又对线扩散函数采用了拖尾截断和指数沿拓。刀口法所获系统调制传递函数与线对卡的离散结果非常接近,说明使用文中刀口法能够有效地测量系统的调制传递函数。
     为获得最佳的相衬成像结果,需要建立一套准确可靠的数值模拟工具来指导相衬成像系统下各物理参数的最优化配置。本文中数值模拟工具基于菲涅耳-基尔霍夫衍射积分,综合考虑了点源到样本距离、样本到探测器距离、微焦点源尺寸、复色光频谱分布、荧光屏的点扩散函数及探测器上像素点大小对相衬成像结果的影响。数值模拟模型下获得的强度剖面图与相同物理参数配置下实验结果较吻合,验证了该数值模拟模型的正确性和有效性。
     实际相衬成像结果因受到系统噪声、总的点扩散函数和空间采样率的影响,导致相衬成像下干涉条纹对可见度低。该章中首先通过数值模拟的方法验证了采用维纳滤波器来提高相衬图像可见度的可行性,随后采用维纳滤波器处理了一维情况下的实验数据,结果显示该滤波方法有效地提高了干涉条纹对的信噪比,增强了相衬成像结果的可见度。
Compared with the conventional X-ray imaging technique based only onattenuation, X-ray phase contrast imaging, in the field of soft-tissue imaging has suchvirtues as low radiation, high visibility and so on, thus leading to widespread respectand rapid development in the past decade.
     Without beam restriction or optical components along the beam path, the simplestmethod mentioned in this study, referred to as in-line X-ray phase contrast imaging(XPCi), is considered as the most straightforward XPCi implementation from the labto bedside. Three parts compose the main content of this paper. Firstly, edge methodwas used to quantitatively evaluate image quality from the XPCi system. Secondly, anumerical simulation tool was developed to guide the optimization of parametersunder the XPCi system. Finally, Wiener filtering was used to improve the visibility ofinterference patterns from the XPCi system.
     An in-line phase contrast imaging system using micro focus X-ray source wasbuilt in the laboratory. For quantitative evaluation of the image quality, edge methodwas used to measure the modulation transfer function (MTF) of the imaging system.In order to correct the measuring errors produced by both flaws in the edge andresponse difference in the pixels, curve-fitting on the different segmentation of edgeresponse function were used, as well as tail-truncating and exponent-stretching on theline spread function. Consistency was obtained between the MTF from the edge andthe discrete value from the test card, which verified the effectiveness of the edgemethod in the MTF measurement.
     To obtain optimal phase-contrast results, an accurate and reliable numericalsimulation tool is needed for the optimization of parameters under the lab-equippedimaging system. The simulation tool in this study is based on the Fresnel/Kirchhoffdiffraction integral with comprehensive considerations on the source-to-sampledistance, the sample-to-detector distance, the source size, the polychromaticdistribution, the point spread function of fluorescent screen and the pixel dimension ofCMOS detector. Consistency between the profile from the numerical simulation andthat from the experiment under the same parameters has verified the validity and theeffectiveness of the simulation tool.
     Because of the negative effects such as noise, total point spread function and spatial resolution under the lab-equipped imaging system, the visibility of interferencepatterns was low. Firstly the Wiener filter was used to validate its feasibility inimproving the image visibility under the simulation results, and then this filter wastested under one-dimensional experiment result. The experiment profile after filteringshowed a raise in signal-to-noise ratio, in other words, the visibility of phase contrastimage was improved.
引文
[1] F. Arfelli, M. Assante, V. Bonvicini, et al., Low-dose phasecontrast x-ray medical imaging, Physics in Medicine and Biology, 1998,43(10): 2845-2852
    [2] V. N. Ingal, E. A. Beliaevskaya, A. P. Brianskaya and R. D.Merkurieva, Phase mammography - a new technique for breast investigation,Physics in Medicine and Biology, 1998, 43(9): 2555-2567
    [3] T. J. Davis, D. Gao, T. E. Gureyev, et al., Phase-contrast imagingof weakly absorbing materials using hard X-rays, Nature, 1995, 373(6515):595-598
    [4] Atsushi Momose, Tohoru Takeda, Yuji Itai, Phase-contrast x-raycomputed tomography for observing biological specimens and organicmaterials, in Proceedings of the 5th international conference onsynchrotron radiation instrumentation, 1995, Stony Brook, New York (USA):AIP, 1434-1436
    [5] D. Chapman, W. Thomlinson, R. E. Johnston, et al., Diffractionenhanced x-ray imaging, Phys. Med. Biol, 1997, 42: 2015-2025
    [6]陈建文,高鸿奕,李儒新等, X光相衬成像,物理学进展, 2005, 225(2):175-194
    [7] A. Momose, Recent advances in X-ray phase imaging, JapaneseJournal of Applied Physics Part 1-Regular Papers Brief Communications &Review Papers, 2005, 44(9A): 6355-6367
    [8]肖体乔,徐至展,陈建文等,全息图的数字重现,光学学报, 1995, 15(2):129-134
    [9] S. W. Wilkins, T. E. Gureyev, D. Gao, et al., Phase-contrastimaging using polychromatic hard X-rays, Nature, 1996, 384(6607): 335-338
    [10] C. J. Kotre, I. P. Birch, Phase contrast enhancement of x-raymammography: a design study, Physics in Medicine and Biology, 1999, 44(11):2853-2866
    [11] A. Pogany, D. Gao, S. W. Wilkins, Contrast and resolution inimaging with a microfocus x-ray source, Review of Scientific Instruments,1997, 68(7): 2774-2782
    [12] T. E. Gureyev, S. W. Wilkins, On X-ray phase imaging with apoint source, J. Opt. Soc. Am. A, 1998, 15: 579-585
    [13]姜庆军,肖湘生,刘士远等,相干X线相衬成像的初步研究:离体大白鼠肝脏、肺脏成像实验,中国医学影像技术, 2003, 19(09): 1116-1117
    [14] D. Paganin, S. C. Mayo, T. E. Gureyev, et al., Simultaneousphase and amplitude extraction from a single defocused image of ahomogeneous object, Journal of Microscopy-Oxford, 2002, 206: 33-40
    [15]田玉莲,肖体乔,朱佩平等,同步辐射X光位相衬度成像—X光位相衬度照相术,核技术, 2004, 27(06): 417-421
    [16]骆玉宇,肖体乔,陈敏等,利用同步辐射扭摆器光源研究X光同轴轮廓成像质量,核技术, 2007, 30(02): 97-104
    [17] Lee Sang-Joon, Kim Guk Bae, Synchrotron microimaging techniquefor measuring the velocity fields of real blood flows, Journal of AppliedPhysics, 2005, 97(6): 064701 - 064701-064706
    [18] G. Margaritondo, G. Tromba, Coherence-based edge diffractionsharpening of x-ray images: A simple model, Journal of Applied Physics,1999, 85(7): 3406-3408
    [19] C. David, B. Nohammer, H. H. Solak,et al., Differential x-rayphase contrast imaging using a shearing interferometer, Applied PhysicsLetters, 2002, 81(17): 3287-3289
    [20] A. Momose, Phase-sensitive imaging and phase tomography usingX-ray interferometers, Optics Express, 2003, 11(19): 2303-2314
    [21] T. Weitkamp, A. Diaz, C. David, et al., X-ray phase imagingwith a grating interferometer, Opt. Express, 2005, 13(16): 6296-6304
    [22] I. Koyama, A. Momose, J. Wu, et al., Biological imaging by X-rayphase tomography using diffraction-enhanced imaging, Japanese Journal ofApplied Physics Part 1-Regular Papers Brief Communications & ReviewPapers, 2005, 44(11): 8219-8221
    [23] A. Lewis Robert, D. Rogers Keith, J. Hall Christopher, et al.,Diffraction-enhanced imaging: improved contrast and lower dose x-rayimaging, 2002: SPIE, 286-297
    [24] Bravin Alberto, Fiedler Stefan, C. Thomlinson William,Very-low-dose mammography: new perspectives in diffraction enhancedimaging (DEI) mammography, 2002: SPIE, 167-173
    [25] K. A. Nugent, T. E. Gureyev, D. F. Cookson, et al., QuantitativePhase Imaging Using Hard X Rays, Physical Review Letters, 1996, 77(14):2961-2964
    [26] T. E. Gureyev, A. Roberts, K. A. Nugent, Partially coherentfields, the transport-of-intensity equation, and phase uniqueness,Journal of the Optical Society of America a-Optics Image Science andVision, 1995, 12(9): 1942-1946
    [27] T. E. Gureyev, S. W. Wilkins, On X-ray phase retrieval frompolychromatic images, Optics Communications, 1998, 147(4-6): 229-232
    [28] A. Olivo, R. Speller, Modelling of a novel x-ray phase contrastimaging technique based on coded apertures, Physics in Medicine andBiology, 2007, 52: 6555-6573
    [29] A. Olivo, R. Speller, A coded-aperture technique allowingx-ray phase contrast imaging with conventional sources, Applied PhysicsLetters, 2007, 91(7): 074106-074103
    [30] A. Olivo, C. D. Arvanitis, S. E. Bohndiek, et al., Firstevidence of phase-contrast imaging with laboratory sources and activepixel sensors, Nuclear Instruments and Methods in Physics ResearchSection A: Accelerators, Spectrometers, Detectors and AssociatedEquipment, 2007, 581(3): 776-782
    [31] Zhang Da, M. Donovan, L. L. Fajardo, et al., PreliminaryFeasibility Study of an In-line Phase Contrast X-Ray Imaging Prototype,Biomedical Engineering, IEEE Transactions on, 2008, 55(9): 2249-2257
    [32] Xizeng Wu, Hong Liu, Clinical implementation of x-rayphase-contrast imaging: Theoretical foundations and designconsiderations, Medical Physics, 2003, 30(8): 2169-2179
    [33] T. E. Gureyev, S. Mayo, S. W. Wilkins, et al., QuantitativeIn-Line Phase-Contrast Imaging with Multienergy X Rays, Physical ReviewLetters, 2001, 86(25): 5827-5830
    [34] Liberato De Caro, Alessia Cedola, Cinzia Giannini, et al.,In-line phase-contrast imaging for strong absorbing objects, Physics inMedicine and Biology, 2008, 53: 6619-6637
    [35] A. Olivo, R. Speller, Experimental validation of a simple modelcapable of predicting the phase contrast imaging capabilities of any x-rayimaging system, Physics in Medicine and Biology, 2006, 51: 3015-3030
    [36] A. Peterzol, A. Olivo, L. Rigon, et al., The effects of theimaging system on the validity limits of the ray-optical approach to phasecontrast imaging, Medical Physics, 2005, 32(12): 3617-3627
    [37]陈敏,肖体乔,骆玉宇等,微聚焦管硬X光位相衬度成像,物理学报,2004, 53(9): 2953-2957
    [38] S. Zabler, P. Cloetens, J. P. Guigay, et al., Optimization ofphase contrast imaging using hard x rays, Review of Scientific Instruments,2005, 76(7): 073705-073707
    [39] Y. I. Nesterets, S. W. Wilkins, T. E. Gureyev, et al., On theoptimization of experimental parameters for x-ray in-line phase-contrastimaging, Review of Scientific Instruments, 2005, 76(9):093706-093706-093716
    [40]倪文磊,全息测量下X光相位衬度断层成像重建算法:[博士学位论文],北京大学,2007
    [41] A. Olivo, F. Arfelli, G. Cantatore, et al., An innovativedigital imaging set-up allowing a low-dose approach to phase contrastapplications in the medical field, Medical Physics, 2001, 28(8):1610-1619
    [42] A. Olivo, S. E. Bohndiek, J. A. Griffiths, et al., Anon-free-space propagation x-ray phase contrast imaging method sensitiveto phase effects in two directions simultaneously, Applied PhysicsLetters, 2009, 94(4): 044108-044104
    [43] A. Olivo, K. Ignatyev, P. R. T. Munro, et al., Design andrealization of a coded-aperture based X-ray phase contrast imaging forhomeland security applications, Nuclear Instruments and Methods inPhysics Research Section A: Accelerators, Spectrometers, Detectors andAssociated Equipment, 2009, 610(2): 604-614
    [44] A. Olivo, R. Speller, Polychromatic phase contrast imaging asa basic step towards a widespread application of the technique, NuclearInstruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment, 2007, 580(2):1079-1082
    [45] R. A. Lewis, Medical phase contrast X-ray imaging: currentstatus and future prospects, Physics in Medicine and Biology, 2004, 49(16):3573-3583
    [46] T. J. Hamilton, C. J. Bailat, C. Rose-Petruck, et al.,Acoustically modulated x-ray phase contrast imaging, Physics in Medicineand Biology, 2004, 49(21): 4985-4996
    [47] Christopher M Laperle, Theron J Hamilton, Philip Wintermeyer,et al., Low density contrast agents for x-ray phase contrast imaging: theuse of ambient air for x-ray angiography of excised murine liver tissue,Physics in Medicine and Biology, 2008, 53(23): 6911-6923
    [48] Yoshio Suzuki, Naoto Yagi, Kentaro Uesugi, X-rayrefraction-enhanced imaging and a method for phase retrieval for a simpleobject, Journal of Synchrotron Radiation, 2002, 9(3): 160-165
    [49] Xi Zhang, Xiao-Song Liu, Xin-Rong Yang, et al., Mouse bloodvessel imaging by in-line X-ray phase-contrast imaging, Physics inMedicine and Biology, 2008, 53: 5735-5743
    [50] Wu Xizeng, Liu Hong, An experimental method of determiningrelative phase-contrast factor for X-ray imaging systems, Medical Physics,2004, 31(5): 997-1002
    [51] M.Born, E.Wolf, Principles of Optics, 6th ed., 1980
    [52] J.M.Cowley, Diffraction Physics, 1995
    [53]程静,韩申生,邵雯雯等,部分相干X光相位成像研究,光学学报,1999, 19(5): 596:603
    [54] Lengeler, Coherence in X-ray physics, Naturwissenschaften,2001, 88(6): 249-260
    [55]郁道银,谭恒英,工程光学,北京:机械工业出版社, 2006
    [56] Manuel Sanchez del Rio, Roger J. Dejus, XOP: recentdevelopments, in Crystal and Multilayer Optics, 1998, San Diego, CA, USA:SPIE, 340-345
    [57] Kim, Joung Hee, Jung Haijo, Hong, O. Jin, Jeong, et al.,Micrometer resolution imaging using unmonochromatized synchrotron x-rays:Phantom, human breast tissue, and live animal imaging studies, 2001,Bellingham, WA, INTERNATIONAL: Society of Photo-Optical InstrumentationEngineers, XV, 936 p.
    [58] B. J. Kozioziemski, J. A. Koch, A. Barty, et al., Quantitativecharacterization of inertial confinement fusion capsules using phasecontrast enhanced x-ray imaging, Journal of Applied Physics, 2005, 97(6):0631031-0631039
    [59] K. Hirano, T. Miyoshi, N. Igarashi, et al., X-ray phase imagingof biological soft tissue using a direct-sensing x-ray HARP tube camera,Physics in Medicine and Biology, 2007, 52(9): 2545-2552
    [60] M. Sanchez del Rio, R. J. Dejus, XOP: A multiplatform graphicaluser interface for synchrotron radiation spectral and optics calculations,1997
    [61]魏逊,肖体乔,陈敏等, X光相衬成像用于生物碱沉淀研究的可行性,核技术, 2004, 27(10): 721-724
    [62]姜庆军,冯赟,肖湘生等,离体生物样本无对比剂血管成像:硬X线同轴轮廓相衬成像术的实验研究,中国医学影像技术, 2005, 21(08): 1172-1174
    [63]刘丽想,杜国浩,胡雯等,利用定量相衬成像消除X光同轴轮廓成像中散射的影响,物理学报, 2006, 55(12): 6387-6394
    [64]肖体乔,徐洪杰,陈敏等,一种新型X光相衬成像实验室系统,核技术, 2003, 26(10): 743-747
    [65] B. Golosio, P. Delogu, I. Zanette, et al., Phase contrastimaging simulation and measurements using polychromatic sources withsmall source-object distances, Journal of Applied Physics, 2008, 104(9):093102-093102-093109
    [66] A. Olivo, R. Speller, Image formation principles incoded-aperture based x-ray phase contrast imaging, Physics in Medicineand Biology, 2008, 53(22): 6461-6474
    [67]邵军明,路宏年,蔡慧, X光成像系统点扩展函数理论模型及其实验验证,光学技术, 2005, 31(01): 104-106
    [68]翟中生,赵斌,相干光照明下无衍射系统的点扩散函数的测量,光电子技术, 2006, 26(04): 255-258
    [69] H. Uchida, K. Hasuike, K. Torii, et al., Quantitative methodof measuring spot size of microfocus X-ray generator, Japanese Journalof Applied Physics Part 1-Regular Papers Brief Communications & ReviewPapers, 2006, 45(6A): 5277-5279
    [70] D. Zhang, J. Rong, R. Chu, et al., DQE measurements inmagnification X-ray imaging, Journal of X-Ray Science and Technology,2006, 14(2): 141-150
    [71] F. Ouandji, E. Potter, W. R. Chen, et al., Characterizationof a CCD-based digital x-ray imaging system for small-animal studies:properties of spatial resolution, Applied Optics, 2002, 41(13): 2420-2427
    [72] D. Zhang, J. Rong, W. R. Chen, et al., Impact of additive noiseon system performance of a digital X-ray imaging system, Ieee Transactionson Biomedical Engineering, 2007, 54(1): 69-73
    [73] J. Rong Xiujiang, C. Shaw Chris, A. Johnston Dennis, et al.,Microcalcification detectability for four mammographic detectors:Flat-panel, CCD, CR, and screen/film, Medical Physics, 2002, 29(9):2052-2061
    [74] K. Bi, X. Xu, L. Xi, et al., DR-WFOI fusion system for thereal-time molecular imaging in vivo, Chinese Optics Letters, 2008, 6(12):893-895
    [75]叶昶,仲爱军,骆清铭,用于小动物研究的数字X线成像系统,中国医疗器械杂志, 2004, 28(3): 179-182
    [76] H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, et al., A simple methodfor determining the modulation transfer function in digital radiography,Medical Imaging, IEEE Transactions on, 1992, 11(1): 34-39
    [77]康立丽,邓晓刚,陈阳等,影像系统MTF算法实现及分析,北京生物医学工程, 2002, 21(03): 180-182
    [78]梁丽红,路宏年, X光数字成像系统传递函数模型,北京航空航天大学学报, 2005, 31(9): 1018-1021
    [79]周俸才,管永红,闪光X光照相系统调制传递函数测量,光子学报,2001, 30(2): 218-224
    [80]喻春雨,新型X光影像探侧器及成像系统研究:[博士学位论文],南京理工大学,2006
    [81] Ehsan Samei, Michael J. Flynn, David A. Reimann, A method formeasuring the presampled MTF of digital radiographic systems using an edgetest device, Medical Physics, 1998, 25(1): 102-113
    [82] Hartmut Illers, Egbert Buhr, Susanne Gunther-Kohfahl, et al.,Measurement of the modulation transfer function of digital X-raydetectors with an opaque edge-test device, Radiation Protection Dosimetry,2005, 114(1-3): 214-219
    [83] Yue Min Zhu, Valerie Kaftandjian, Gilles Peix, et al.,Modulation transfer function evaluation of linear solid-statex-ray-sensitive detectors using edge techniques, Appl. Opt., 1995, 34(22):4937-4943
    [84]谌凌, X光直接数字成像系统的图像质量分析,评估和改善:[硕士学位论文],上海交通大学,2006
    [85] I. A. Cunningham, B. K. Reid, Signal and noise in modulationtransfer function determinations using the slit, wire, and edgetechniques, Medical Physics, 1992, 19(4): 1037-1044
    [86] Tatsuya Yamazaki, Makoto Nokita, Shinsuke Hayashida, et al.,A method to measure the presampling MTF using a novel edge test deviceand algorithm, in Medical Imaging 2004: Physics of Medical Imaging, 2004,San Diego, CA, USA: SPIE,696-704
    [87] E Samei, J Dobbins, R Saunders, et al., IEC 62220-1: Medicalelectrical equipment– Characteristics of digital X-ray imaging devices– Part 1: IEC 62220-1: Medical electrical equipment– Characteristicsof digital X-ray imaging devices– Part 1: Determination of the detectivequantum efficiency, 2003, Geneva, Switzerland: InternationalElectrotechnical Commission (IEC)
    [88] E Samei, J Dobbins, R Saunders, et al., IEC 61267: Medicaldiagnostic X-ray equipment– Radiation conditions for use in thedetermination of Determination of the detective quantum efficiency, 2003,Geneva, Switzerland: International Electrotechnical Commission (IEC)
    [89] John M. Boone, J. Anthony Seibert, An accurate method forcomputer-generating tungsten anode x-ray spectra from 30 to 140 kV,Medical Physics, 1997, 24(11): 1661-1670
    [90] John M. Boone, Thomas R. Fewell, Robert J. Jennings, Molybdenum,rhodium, and tungsten anode spectral models using interpolatingpolynomials with application to mammography, Medical Physics, 1997,24(12): 1863-1874
    [91] J. H. Siewerdsen, A. M. Waese, D. J. Moseley, et al., Spektr:A computational tool for x-ray spectral analysis and imaging systemoptimization, Medical Physics, 2004, 31(11): 3057-3067
    [92] G. Poludniowski, G. Landry, F. DeBlois, et al., SpekCalc: aprogram to calculate photon spectra from tungsten anode x-ray tubes,Physics in Medicine and Biology, 2009(19): N433-N438
    [93] R.C.冈萨雷斯, R.E.伍兹,数字图像处理,北京:电子工业出版社, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700