星地量子光通信单光子捕获概率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星光通信是卫星通信技术中一个新的发展方向。它是指利用激光光束作为信息载体在卫星-地面站和卫星间建立光通信链路。量子密码术,更确切地说是量子密钥分配,它是最近二十年发展起来的一种新的通信技术,它利用量子特性来得到或提高通信的保密性。采用单光子通信技术的量子密码通信,是最有可能首先得到实际应用的量子通信技术。将量子密码术与卫星光通信相结合,进行卫星光通信中的量子密钥分配技术研究,是一项非常有意义的研究工作。
     单光子捕获技术是自由空间量子密钥分配的关键技术。对于单光子捕获,一个重要问题就是单光子捕获概率问题。本论文以卫星光通信为背景,对星地量子光通信单光子捕获概率进行研究。主要包括以下几方面:
     进一步建立基于厄米-高斯光束处于TEM_(20)、TEM_(02)、TEM_(30)、TEM(03)及TEM_(11)模式下的单光子捕获概率理论模型,通过数值仿真给出厄米-高斯光束处于不同模式下单光子捕获概率的大小,为最佳模式选择提供理论依据。给出时间滤波的具体物理模型,将该模型与数值仿真结果相结合,分析在进行单光子捕获时需淘汰的模式及最佳模式,以及其它各种模式的实际应用价值。另外,结合时间滤波的物理模型分析基于拉盖尔-高斯光束各模式下的单光子捕获概率。
     对于星地激光链路,还需要考虑大气因素对单光子捕获概率的影响。本文主要研究了大气衰减效应对单光子捕获概率的影响,对已建立的单光子捕获概率理论模型进行了修正,基于修正后的理论模型进行了相应的仿真分析,得出经大气衰减后单光子捕获概率的量级为10~(-4)~10~(-6)。最后对大气衰减效应对单光子捕获概率影响的补偿办法进行了探讨,并结合实际情况给出光束远场发散角、接收机天线孔径的最佳参数。
Intersatellite optical communications can be considered as a new evolution of satellite communication technology. It uses laser as the carrier of information transmission to establish the optical communication links between the satellite and the ground station or satellites. Quantum cryptography, or more accurately, quantum key distribution, a new communication technology developed in last twenty years, is to obtain or improve communication secrecy by quantum characteristics. Quantum cryptography communication using the single-photon is the quantum communication technology that is most possible firstly to put into practice. The quantum key distribution technique in intersatellite optical communications, which combines the quantum cryptography and intersatellite optical communications, is extremely significative.
     Single-photon acquisition is the key technology of free-space quantum key distribution. Single-photon acquisition probability is very important. In this paper,based on intersatellite optical communications, single-photon acquisition probability in satellite-ground quantum optical communication is studied. As follows:
     This paper ulteriorly establishes theoretical model of single-photon acquisition probability based Hermite-Gaussian beams in TEM20、TEM_(02)、TEM_(30)、TEM_(03) and TEM_(11), and shows the probability in different modes by numerical emulation, which can be considered as the theoretic foundation to select the optimal mode. What’s more, this paper shows the physical model of time filtering, analyzes which mode is limited, which mode is optimal, and the practical value of other modes. In addition, single-photon acquisition probability based on Laguerre-Gaussian beam is analysed according to physical model of time filtering.
     For laser satellite-ground links, effects of atmosphere on single-photon acquisition probability also need be considered. In this paper, the effects of atmospheric attenuation on single-photon acquisition probability are studied, the single-photon acquisition probability theoretical model established is amended, the emulational analysis is carried out based revised theoretical model, and a conclusion that the order of single-photon acquisition probability after attenuation is 10~(-4)~10~(-6). Finally, some compensation methods of effects of atmospheric attenuation on single-photon acquisition probability are discussed, and the optimal parameters of far-field beam divergence angle and receiver antenna aperture according to practice are shown.
引文
1 R. G. Marshalek, G. S. Mecherle, P. R. Jordan. System-Level Comparison of Optical and RF Technologies for Space-to-Space and Space-to-Ground Communication Links Circa 2000. Proceedings of SPIE. 1996, 2699: 134~145
    2 V. W. S. Chan. Optical Space Communications. IEEE Journal in Quantum Electronics. 2002, 6(6): 959~975
    3桂有珍,韩正甫,郭光灿.量子密码术.物理学进展. 2002, 22(4): 371~382
    4吴令安.量子密码通信.物理. 1998, 27(9): 544~551
    5 C. H. Bennett, G. Brassard. Quantum Cryptography: Public Key Distribution and Coin Tossing. Proc. of IEEE Int. Conf. on Computer, System and Signal Processing. 1984: 175~179
    6 N. Gisin, G. Ribordy, W. Tittle, H. Zbinden. Quantum Cryptography. Review of Modern Physics. 2002, 74: 145~195
    7 J. G. Rarity, P. R. Tapster, P. M. Gorman, et al. Ground to Satellite Secure Key Exchange Using Quantum Cryptography. New Journal of Physics. 2002, 4: 82.1~82.21
    8 W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson. Practical Free-Space Quantum Key Distribution over 1 km. Physical Review Letters. 1998, 81(15): 3283~3286
    9 J. E. Nordholt, R. J. Hughes, G. L. Morgan, C. G. Peterson, C. C. Wipf. Present and Future Free-Space Quantum Key Distribution. Proc. of SPIE. 2002, 4635: 116~126
    10 M. Yin, A. Krier, S. Krier, et al. Mid-Infrared Diode Lasers for Free Space Optical Communications. Proc. of SPIE. 2006, 6399: 63990C-1~63990C-6
    11曾惠芳,肖芳惠.高功率光纤激光及其应用.激光技术. 2006, 30(4): 438~444
    12 Pavel Polynkin, Rostislav Roussev, M. M. Fejer, et al. Laser Transmitter for un-Dersea Communications Using Third-Harmonic Generation of Fiber-Laser System at 1.5μm. IEEE PHOTONICS TECHNOLOGY LETTERS. 2007, 19(17): 1328~1330
    13 A. Biswas, D. Boroson, B. Edwards. Mars Laser Communication Demonstration: What it would have been. Proc. of SPIE. 2007, 6105: 610502-1~610502-12
    14 Robert Lange, Berry Smutny. Optical Inter-Satellite Links Based on Homodyne BPSK Modulation: Heritage, Status and Outlook. Proc SPIE. 2005, 5712: 1~12
    15 Robert Lange, Berry Smutny. Homodyne BPSK-Based Optical Inter-SatelliteCommunication Links. Proc SPIE. 2007, 6457: 64570301~64570309
    16 Berry Smutny, Robert Lange, Hartmut K A Mpfner, et al. In-Orbit Verification of Optical Inter-Satellite Communication Links Based on Homodyne BPSK. Proc SPIE. 2008, 6877: 68770201~68770206
    17许楠,刘立人,刘德安,孙建锋,栾竹.自由空间相干光通信技术及发展.激光与光电子学进展. 2007, 44(8): 44~51
    18 Yijiang Chen, Jeffrey Charles, Hamid Hemmati, et al. Infrared Earth Tracking for Deep-Space Optical Communications: Feasibility Study Based on Laboratory Emulator. Proc SPIE. 2007, 6457: 64570A01~64570A17
    19 D. M. Boroson, A. Biswas, L. E. Berrnard. MLCD: Overview of NASA’s Mars Laser Communications Demonstration System. Proc SPIE. 2004, 5338: 16~28
    20 H. Hemmati, A. Biswas, D. M. Boroson, et al. Improvement of Interplanetary Laser Communication Data Rates. Proc IEEE. 2007, 95(10): 2082~2092
    21 H. Hemmati, A. Biswas, D. M. Boroson. 30-dB Data Rate Improvement for Interplanetary Laser Communication. Proc SPIE. 2008, 6877: 68770701~68770708
    22 C. H. Bennett, G. Brassard. Quantum Cryptography: Public Key Distribution and Coin Tossing. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India: IEEE, New York, 1984. 175~179
    23 A. K. Ekert. Quantum Cryptography Based on Bell’s Theorem. Physical Review Letters. 1991, 67(6): 661~663
    24 C. H. Bennett. Quantum Cryptography Using Any Two Nonorthogonal States. Physical Review Letters. 1992, 68(21): 3121~3124
    25 C. H. Bennett, Francois Bessette, Gilles Brassard, Louis Salvail and John Smolin. Experimental Quantum Cryptography. Journal of Cryptology. 1992, 5(1): 3~28
    26 B. C. Jacobs, J. D. Franson. Quantum Cryptography in Free Space. Optics Letters. 1996, 21(22): 1854~1856
    27 W. T. Buttler, R. J. Hughes, P. G. Kwiat, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, C. M. Simmons. Free-Space Quantum Key Distribution. Physical Review A. 1998, 57(4): 2379~2382
    28 R. J. Hughes, W. T. Buttler, P. G. Kwiat, et al. Quantum Cryptography for Secure Free-Space Communications. Proceedings of SPIE. 1999, 3615: 98~103
    29 R. J. Hughes, W. T. Buttler, P. G. Kwiat, et al. Free-Space Quantum Cryptography in Daylight. Proceedings of SPIE. 2000, 3932: 117~126
    30 W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, et al. Daylight Quantum Key Distribution over 1.6km. Physical Review Letters. 2000, 84(24): 5652~5655
    31 R. J. Hughes, J. E. Nordholt, D. Derkacs, C. G. Peterson. Practical Free-SpaceQuantum Key Distribution over 10km in Daylight and at Night. New Journal of Physics. 2002, 4: 43.1~43.14
    32 C. Kurtsiefer, P. Zarda, M. Halder, et al. A Step towards Global Key Distribution. Nature. 2002, 419: 450
    33 M. Furst, T. Schmitt-Manderbach, H. Weier, I. Ordavo, H. Weinfurter. Free-Space Quantum Cryptography for Metropolitan Areas. Proceedings of SPIE. 2006, 6399: 63990I-1~63990I-6
    34 M. Furst, H. Weier, T. Schmitt-Manderbach, R. Ursin, et al. Free-Space Quantum Key Distribution over 144km. Proceedings of SPIE. 2006, 6399: 63990G-1~63990G-7
    35 P. Villoresi, T. Jennewein, F. Tamburini, et al. Experimental Verification of the Feasibility of a Quantum Channel Between Space and Earth. New Journal of Physics. 2008, 10: 38.1~38.12
    36邵进,吴令安.用单光子偏振态的量子密码通信实验.量子光学. 1995, 1(1): 41~44
    37张涌.量子保密通信研究.华东师范大学博士学位论文, 1997
    38吴伟,刘伟涛,冯少晖,欧保全,梁林梅,李承祖.一种稳定的自由空间量子密钥分配实验系统.量子光学学报. 2004, 10(3): 135~138
    39王川,张竞夫,王平晓,邓富国,艾清,龙桂鲁.自由空间中量子密码通讯实验.中国科学G辑. 2005, 35(2): 149~157
    40李晓峰.星地激光通信链路原理与技术.北京:国防工业出版社, 2007: 76~82 108~110
    41 J. E. Nordholt, R. J. Hughes, G. L. Morgan, et al. Present and Future Free-Space Quantum Key Distribution. Proc. of SPIE. 2002, 4635: 116~126
    42杨宇光,祝世雄.量子密钥分发协议中通信双方的身份认证问题.通信技术. 2002, 7: 79~84
    43 D. S. Pearson, C. Elliott. On the Optimal Mean Photon Number for Quantum Cryptograpy. arXiv: quant-ph/0403065, 2004
    44 C. H. Bennett, G. Brassard, J. M. Robert. Privacy Amplification by Public Discussion. SIAM J Computer. 1988, 17: 210~229
    45 C. H. Bennett, G. Brassard, C. Crepeau, U. M. Maurer. Generalized Privacy Amplification. IEEE Transaction on Information Theory. 1995, 41: 1915~1923
    46马瑞霖.量子密码通信.北京:科学出版社, 2006: 42~44
    47 Paul D. Townsend. Quantum Cryptography on Optical Fiber Networks. Optical Fiber Technology. 1998, 4(4): 345~370
    48 D. Elser, T. Bartley, B. Heim, et al. Feasibility of Free Space Quantum Key Distribution with Coherent Polarization States. New Journal of Physics. 2009, 11:04501401~04501413
    49梁创,廖静,梁冰,吴令安.硅雪崩光电二极管单光子探测器.光子学报. 2000, 29(12): 1142~1147
    50陈卉卉.卫星光通信信道编码技术研究.哈尔滨工业大学硕士学位论文, 2007
    51吴健,杨春平,刘建斌.大气中的光传输理论.北京:北京邮电大学出版社, 2005
    52 K. J. Ritter, T. D. Wilkerson. High-Resolution Spectroscopy of the Oxygen A Band. J. Mol. Spectrosc. 1987, 121: 1~19
    53崔厚欣,齐汝宾,陈文亮,徐可欣.可调谐激光波长调制技术检测氧气浓度.中国激光. 2008, 35(10): 1558~1562
    54朱震,陈凌.自由空间光通信技术.光通信技术. 2003(1): 22~26
    55中国科学院空间科学与应用研究中心.宇航空间环境手册.北京:中国科学技术出版社, 2000
    56盛裴轩,毛节泰,李建国,张霭琛,桑建国,潘乃先.大气物理学.北京:北京大学出版社, 2003: 37~40 48~53
    57 R. Erdmann. Proposed Methods of Addressing Some Rate and Range Limits in Quantum Cryptogralhy. Proceedings of SPIE. 2002, 4821: 486~493
    58周炳琨,高以智,陈倜嵘,陈家骅.激光原理.北京:国防工业出版社, 2004: 24~95
    59张光宇,马晶,谭立英.基于厄米-高斯光束的单光子捕获理论研究.光子学报. 2005, 34(8): 1201~1204
    60 Miao Er-long, Han Zheng-fu, Gong Shun-sheng, Zhang Tao, Diao Da-sheng and Guo Guang-can. Background Noise of Satellite-to-Ground Quantum Key Distribution. New Journal of Physics. 2005, 7: 215.1~215.8
    61王雨三,张中华,林殿阳.光电子学原理与应用.哈尔滨:哈尔滨工业大学出版社, 2005: 70~74
    62于思源,刘剑峰,张光宇,马晶,谭立英.基于拉盖尔-高斯光束的单光子捕获理论研究.应用光学. 2008, 29(2): 303~306
    63张杰,宋成杰,张昌雷,崔一平.大气激光通信影响因素分析及信道建模.电子器件. 2004, 27(1): 202~205
    64谢维杰,李龙海,周保学,蔡伟民.氧气常压介质阻挡放电的发射光谱及能量传递机理.物理化学学报. 2008, 24(5): 827~832

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700