自由空间量子密钥分配实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的飞速发展,信息安全与通信保密日益重要与突出。保密通信不仅在军事、国防等领域发挥独特作用,而且在当今的经济和日常通信等方面也日渐重要。在众多的保密通信手段中,密码术是最重要的一种技术措施。密码学的应用已经渗透到了社会生活的各个领域,如数据加密、网络安全、电子现金等。
     经典的保密通信系统通常把通信的安全性建立在计算复杂性基础上。然而量子计算机及相应量子算法的发展使这种加密系统面临着重大挑战。量子密码术是量子物理学和密码学相结合的一门新兴科学,它成功地解决了传统密码学中单靠数学无法解决的问题。根据量子力学中的Heisenberg测不准原理及量子不可克隆原理,任何窃听者无法窃听量子保密通信中的信息而不被发现。自从量子密码术产生以来,世界很多国家都投入了巨大的人力和财力积极地进行相关实验研究。量子密钥分配是量子密码术的关键组成部分,对量子密钥分配进行实验研究,可以加深我们对量子信息理论和实践的理解,对于探索新型的量子信息处理方法,发展量子信息新技术以及加速量子信息技术在国防上的实际应用有积极意义。
     本文主要研究了量子密钥分配的理论基础和通信协议,讨论了量子密钥分配试验中的相关技术,并对我们的自由空间量子密钥分配实验做了详细讨论。文章主要包括以下几个部分:
     1.简要介绍经典的保密通信体系,并由此引出了量子密钥分配,比较了两者的不同,对其绝对安全性用量子力学基本原理加以证明。
     2.研究了量子密钥分配方案,并就各种方案的安全性和效率作了简要的分析。对量子密钥分配协议的新发展也作了简要的介绍。对此研究领域内实验的快速进展作了回顾,介绍了实验方面的最新研究成果。
     3.介绍量子密钥传输的具体过程,分析了量子密钥传输中的相关技术问题,主要对光源、信道、单光子探测器作了具体的讨论,并结合具体的实验条件和课题目标选择了我们的实验技术方案。
     4.以BB84协议为例详细说明我们所做的自由空间量子密钥分配实验系统,并与B92协议的实验系统做了对比。描述了实验的完整过程,对实验结果做了详尽的讨论,对实验的误差来源做了分析,并提出了有针对性的改进意见。实验得到的传输粗码率达60kbits/s,误码率在5%以下。
With the rapid development of information technology, the securities of communication and information have become more and more important. Secret communication not only plays a very particular role in military science and defense technology ,but also becomes very significant in the field of bussiness and daily communication.Cryptography is one of the most important technique measures in vast ways of secret communication.The application of cryptography has infiltrated all the fields of social life,as in data encryption,web security, digital cash and so on.Classic secret communication system employed at present usually base the security of communication on the arithmetic complexity. However, this system is confronted with a great challenge because of the rapid development of quantum computer and quantum algorithm.Quantum cryptography is a newly science which is the combination of quantum mechanics and cryptography.It successfully resolved the problem can not be resolved only with mathematical methods. Any eavesdropper who tries to eavesdrop the information in the quantum communications can be detected surely,based on the Heisenberg uncertainty principle and no-cloning theorem. Many countries invest large amount of people and financial resources into quantum key distribution(QKD) experiments since the birth of quantum cryptography. QKD is the key part of the quantum cryptography. The experimental researches of QKD can deepen our comprehension of the theory and practice of quantum information science.It has can help us explore in quantum information measures and develop new technologies and can accelerate the practical application quantum information theory to our national defense.This article has several parts as follows :1. After chiefly presenting the classic cryptography , we particularly introduce QKD,and notify the differences of them. We prove the absolutely security of QKD using the basic laws of quantum mechanics.2. We explain the prevalent protocols for QKD,and analyse the security and efficiency of all the protocols.We also introduce the recent developments of QKD protocols,and review the fresh progress of QKD experiments.3. We study the process of QKD, and analyse the concrete technic issue of QKD, focusing on the material discussion of sigle-photon sources,quantum channels,single-photon detector,and choose the technical scheme based on our current experimental condition and subject objective.
    4. Using BB84 protocol as the example ,we elaborate on our free-space QKD experimental system,and contrast with B92 protocol 0 Depicit the integrity process of the experiment, discuss the experimental results at large, analyse the sourse of error ,and aiming at improve our system, we advance some notions for ameliorating. The raw key bit rate we got is about 60kbits/s, with a bit error rate less than 5%.
引文
[1] 冯登国,裴定一,密码学导引,北京:科学出版社,1999
    [2] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM 21, 2 (Feb. 1978), 120—126.
    [3] H. Zbinden, H. Bechman-Pasquinucci, N. Gisin and G. Ribordy, "Quantum cryptography," Appl. Phys. B 67, 743-748 (1998).
    [4] Peter W. Shor, Algorithms for Quantum Computation: Discrete Logarithms and Factoring, In Proceedings, 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, November 20—22, 1994, IEEE Computer Society Press, pp. 124—134.
    [5] Claude E. Shannon, Communication Theory of Secrecy Systems, Bess System Technical Journal, 28, 656-715 (1949)
    [6] 李承祖,黄明球、陈平形、梁林梅,量子通信和量子计算,长沙:国防科技大学出版社,2000
    [7] 曾谨言,裴寿镛,龙桂鲁,量子力学新进展(第一辑),北京:北京大学出版社,2000
    [8] 曾谨言,裴寿镛,龙桂鲁,量子力学新进展(第二辑),北京:北京大学出版社,2001
    [9] 曾谨言,裴寿镛,龙桂鲁,量子力学新进展(第三辑),北京:清华大学出版社,2003
    [10] Bennett C H, Brassard G, Breidbart S, et al, Quantum Cryptography, or Unforgeable Subway Tokens[C]. Advances in Cryptology: Proceedings of Crypto'82, New York: Plenum, 1982. 267—275.
    [11] 熊红凯,施惠昌,戴善荣,通信密码学前瞻:量子密码技术,上海大学学报,2000,6.150-156.
    [12] Duan L M, Guo G C, A Probabilistic Cloning Machine for Replicating Two Nonorthogonal States, Phys. Lett. A, 243, 261-264, 1998
    [13] Duan L M, Guo G C, Probabilistic Cloning and Identification of Linearly Independent Quantum States, Phys. Rev. Lett., 80, 4999-5002, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700