高速电子学及其在量子信息技术中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物理学、化学和生物学等众多基础学科领域的检测技术追求更小的时间尺度,因而也就需要实现更高的时间精度。如何实现纳秒甚至皮秒级精度的时间测量是高速电子学的热点之一。本文对高精度时间信号的处理和检测技术进行了研究,设计出一套高精度时间甑别电路并将其应用于量子信息技术等领域,包含以下几个方面的内容:
     1.针对远程量子密钥分配系统需要亚纳秒级时间同步的需求,详细分析了自由空间量子密钥分配系统同步误差的来源,指出了空间光信号的传输时间精度判定误差主要来源于大气湍流等引起的光强抖动,首次提出了利用恒比甑别法降低同步误差的设想,并研制出对应的恒比甑别时间同步系统。通过野外的实地测试,在1.5公里单向传输时实现了95ps时间同步精度,往返3公里时间精度达到119ps,达到国际同类工作的先进水平;
     2.设计并完成了红外单光子探测器的研制过程中的高速微弱信号的放大、甄别和窄脉冲成型等工作,解决了红外单光子探测器研制中的部分难题;
     3.首次提出将半导体红外单光子探测技术应用于拉曼光谱测量并搭建了测试系统。这项技术将拉曼激发波长平移到近红外波段,避免了短波激发的强荧光信号淹没弱拉曼信号的问题,使得荧光材料的拉曼测量成为可能;
     4.利用红外单光子探测器的窄门控技术,提出采用门扫描模式测量荧光寿命的方法并在实验上予以实现。与传统的荧光寿命测量方法相比,不仅将测量波长拓展到近红外波段,而且解决了常开模式单光子探测器时间积累暗计数的问题,可实现更高灵敏度的时间谱测量;对铒镱共掺磷酸盐玻璃的荧光发射光谱和荧光寿命测量证实了该系统的实用性,为红外波段荧光光谱分析提供了一种新的测量手段。
Precise time measurement is important in fundamental research field such as physics, chemistry and biology. It is always been a hinder for high speed electronics to realize time measurement in nanosecond and picosecond scale. In this thesis high speed electonics for accurate time pick-up is studied. The whole work consists of the following contents:
     1. The synchronization error of free space quantum key distribution (QKD) has been studied in detail. We deduced that in long distance free space QKD, the synchronization error originates from the intensity fluctuation due to atmospheric turbulence. We have introduced the constant fraction discrinator (CFD) to decrease the synchronization error. We built a high precision CFD and applied it to the synchronization testing system. The synchronization error of a 1.5km one way transimission is 95ps. When the distance extends to 3km, the error is slightly increased to 119ps with CFD.
     2. We have conmpleted circuit design for high speed amplifier, discriminator and narrow pulse generating etc., which are important parts for infrared single photon detector (SPD).
     3. We have brought the infrared SPD into raman spectroscopy researching and built a infred raman testing system. When excited with ultraviolet and visiable light, the Raman signal is fully buried by the strong fluorescence. By using infred light source as excited light, the fluorescence emission can be avoided.
     4. With the advantage of infrared SPD, We can measure the fluorescence lifetime with gated mode. Not only the measurement wavelength is extended to near infrared, but also the problem of dark count accumulation of traditional SPD is solved. Compared with the classic fluorescence lifetime measurement technique, this new device can provide a brandnew method to infrad fluorescence analyzing. In practice, the fluorescence emission spectrum and lifetime of Erbium dropped laserglass are measured with this new method, which confirm its feasibility.
引文
[1]陈佳圭.微弱信号检测,中央广播电视大学出版社 1987
    [2]曾庆勇.微弱信号检测(第二版)浙江大学出版社,2003
    [3]戴逸松.微弱信号检测方法及仪器.国防工业出版社.1994
    [4]高晋占,微弱信号检测,清华大学出版社 2006
    [5]Hamamatsu Inc.,Photomultiplier Tubes,Basics and Applications,Third Edition,2006
    [6]光电技术,缪家鼎,徐文娟,牟同升.浙江大学出版社,杭州,2005.
    [7]光电技术,刘振玉.北京理工大学出版社,北京,1990.
    [8]固体物理学,黄昆,韩汝琦.高等教育出版社,北京,1988.
    [9]安毓英,曾晓东,《光电探测原理》,西安电子科技大学出版社(2004)
    [10]光电了物理基础,徐国昌,凌一鸣.东南大学出版社,南京,2000.
    [11]张广军,《光电测试技术》,中国计量出版社(2003)
    [12]G.F.Knoll,"Radiation detection and measurement," John Wiley & Sons,Inc.(1979)
    [13]Optical Radiation Detectors,E.L.Derenik.Wiley,NewYork,1984.
    [14]Physical Deteetor of Optical Radiation,W.Budde.Academic Press,New York,1984.
    [15]R.J.Keyes,ed.,Optical and Infrared Detectors,Springer-Verlag,Berlin,Heidelberg,New York,1977.
    [16]光电管与光电倍增管,史玫德.国防工业出版社,北京,1981.
    [17]Photomultiplier Tubes:Basies and Applieations,Hmamaatsu Photonies.1999.
    [18]W.T.Tsang,《半导体光检测器》,电子工业出版社,清华大学出版社(1992)
    [19]K.G.McKay and K.B.McAfee,"Electron multiplication in silicon and germanium," Phys.Rev.91,1079(1953)
    [20]K.G.McKay,"Multiplication noise in uniform avalanche diodes," IEEE Trans.Electron Devices 13,164(1966)
    [21]Charles H.Bennett.Logical reversibility of computation.IBM Journal of Research and Development,17(6):525-532,1973.
    [22]Paul Benioff.Quantum mechanical hamiltonian models of turing machines.Journal of Statistical Physics,29:515-546,1982.
    [23]Richard E.Feynman.Simulating physics with computers.International Journal of Theoretical Physics,21(6/7):467-488,1982.
    [24]David Deutsch.Quantum theory,the church-turing principle and the universal quantum computer.In Proceedings of the Royal Society of London A 400,pages 97-117,1985.
    [25]莫小范,博士学位论文,中国科学技术大学,2006.
    [26]桂友珍,博士学位论文,中国科学技术大学,2004.
    [27]Gilbert Sandford Vernam.Cipher printing telegraph system for secret wire and radio telegraphic communication.Journal of the American Institute of Electrical Engineers,45:109-115,1926.
    [28]Claude Elwood Shannon.Communication theory of secrecy systems.Bell Systems Technical Journal,28:656-715,1949.
    [29]Peter W.Shor.Algorithms for quantum computation:Discrete log and factoring.In Proceedings of the 35th IEEE Symposium on Foundations of Computer Science,pages 20-22,1994.
    [30]Charles H.Bennett and Gilles Brassard.Quantum cryptography:Public key distribution and coin tossing.In Proceedings of International Conference on Computers,Systems and Signal Processing,pages 175-179,1984.
    [31]Charles H.Bennett,Fran,cois Bessette,Gilles Brassard,Louis Salvail,and John Smolin.Experimental quantum cryptography.Journal of Cryptology,5(1):3-28,1992.
    [32]苗二龙,博士学位论文,中国科学技术大学 2006.
    [33]Lov K.Grover.A fast quantum mechanical algorithm for database search.In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,pages 212-219,1996.
    [34]郭光灿,量子信息技术,中国科学院院刊,p325,2002
    [35]Lakowicz J.R.Principles of Fluorenscene Spectroscopy.New York:Plenum Press.1983
    [36]Lakowicz J.R.Principles of Fluorenscene Spectroscopy.2nd edition,New York:Plenum Press.1999
    [37]陈国珍.荧光分析法第2版.北京:科学出版社.1990
    [38]许金钩,王尊本,荧光分析法,科学出版社,2006
    [39]稀土功能材料,郑子樵,李红英.化学工业出版社,北京,2003.
    [40]新型功能材料,贡长生,张克立.化学工业出版社,北京,2001.
    [41]稀土发光材料及其应用,李建宇.化学工业出版社,北京,2003.
    [42]稀土化学,苏锵.河南科学技术出版社,郑州,1993.
    [43]董宁,博士学位论文,中国科学技术大学,2006
    [44]YS Hu,WD.Zhuang,HQ.Ye,55.Zhang,YFang,X.W.Huang.journal of Luminescence111(2005),139.
    [45]B.W.D,Andrade,J.Brooks,V.Admaovleh,M.E.ThomPson,S.R.Forrest.Advanced Mateterials 14(2002),1032.
    [46]Y.J.Chen,G-M.Qiu,X.J.Geng,L.J.Xiao,YGTian,YB.Sun.Jurnal of Rare earths,22(2004),34.
    [47]R.Sehmeehel,M.Kennedy,H.vonSeggern,H.Winkler,M.Kolbe,R.A.Fiseher,X.M.Li,A.Benker,M.Winterer,H.Hahn.Jurnal of Applied Physics 89(2001),1679
    [48]H.Guo,W.PZhang,L.R.Lou,A.Brioude,J Mugnier.Thin solid films 458(2004),274
    [49]P.S.Tang,A.L.Meier,D,J.Towner,BW.Wessels.Optical Letters 30(2005),254
    [50]戴世勋,张军杰,杨建虎,徐时清,汪国年.光纤与电缆及其应用技术,4(2004),1
    [51]杨建虎,戴世勋,胡丽丽,蒋中宏.激光与光电子学进展40(2003),33.
    [52]赵士龙,徐时清,李顺光,陈宝玉,胡丽丽,LD泵浦的镱铒共掺磷酸盐玻璃的光谱性质和激光性质,中国稀土学报,23(2005)544
    [53]李建勇,李成仁,李淑凤,宋昌烈,宋琦,掺铒、镱铒共掺硅酸盐玻璃1.54um荧光寿命测量,光学技术,32(2006),416
    [1]C.H.Bennett,G.Brassard,"Quantum cryptography:public key distribution and cointossing," in Proceedings of IEEE International.Conference Computers,Systems and Signal Processing(Bangalore,India,1984),pp.175-179
    [2]A.K.Ekert,"Quantum cryptography based on Bell's theorem," Phys.Rev.Lett.67,661(1991).
    [3]莫小范,博士学位论文,中国科学技术大学,2008
    [4]陈巍,博士学位论文,中国科学技术大学,2008
    [5]温浩,博士学位论文,中国科学技术大学,2008
    [6]Xiao-Fan Mo,Bing Zhu,Zheng-Fu Han,You-Zhen Gui,and Guang-Can Guo,"Faraday-Michelson system for quantum cryptography",OPTICS LETTERS.Vol.30,No.19(2005)
    [7]C.Gobby,Z.L.Yuan,A.J.Shields,"Quantum key distribution over 122 km of standard telecom fiber," Appl.Phys.Lett.84,3762(2004).
    [8]J.G.Raity et al.,New Journal of Physics 4(2002)82.1-82.21
    [9]J.G.Rarity,P.R.Tapster,and P.M.Gorman,"Secure free-space key exchange to 1.9 km and beyond," J.Mod.Opt.48,1887-1901(2001)
    [10]R.J.Hughes,J.E.Nordholt,D.Derkacs,and C.G.Peterson,"Practical free-space quantum key distribution over 10 km in daylight and at night," New J.Phys.4,43(2002)
    [11]C.Kurtsiefer,P.Zarda,M.Halder,H.Weinfurter,P.M.Gorman,P.R.Tapster,J.G.Rarity,"A step towards global key distribution," Nature 419,450(2002).
    [12]R.Ursin,F.Tiefenbacher,T.Schmitt-Manderbach,et al.,quant-ph/0607182
    [13]Er-long Miao,Zheng-fu Han,Shun-sheng Gong,Tao Zhang,Da-sheng Diao and Guang-can Guo,"Background noise of satellite-to-ground quantum key distribution",New J.Phys 7,215(2005)
    [14]苗二龙,博士学位论文,中国科学技术大学,2006
    [15]H.H.Su,M.A.Plonus,"Optical-Pulse Propagation in a Turbulent Medium "Journal of the Optical Society of America,Vol.61,No.2,(1971)
    [16]C.H.Liu,"Pulse statistics in random media," in "Wave Propagation in Random Media(Scintillation)",V.I.Tatarskii,A.Ishimaru,V.U.Zavorotny,editors,291-304,SPIE and IOP Press(1993).
    [17]Arun K.Majumdar and Jennifer C.Ricklin,"Effects of the atmospheric channel on free-space laser communications",Proc.SPIE Vol.5892,58920K(2005)
    [18]J.H.Shapiro,"Imaging and Optical Communication Through Atmospheric Turbulence",in "Laser beam propagation in the atmosphere" J.W.Strohbehn,editors.,Springer-Verlag,1978.
    [19]Eltermann,L.UV,Visible,and IR Attenuation for Altitudes to 50 km.AFCRL-68-0153,AFCRL Environmental Research Paper 285,(1968).
    [20]V.L.Mironov,Laser beam propagation in turbulence atmosphere,Nauka,Moscow,1981.
    [21]C.Y.Young,L.C.Andrews,A.Ishimaru,"Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence:an analytic solution",APPLIED OPTICS,Vol.37,7655(1998)
    [22]P.W.Nicholson,Nuclear electronics,JOHN WILEY & SONS,1974
    [23]Wang Jinjing,Nuclear electronics,Atomic Energy Press,1985
    [24]Wang Zhiying,Fundamentals of Nuclear electronics,Atomic Energy Press,1989
    [25]Qing-Lin Wu,Zheng-Fu Han,Er-Long Miao,Yun Liu,Yi-Min Dai,Guang-Can Guo,Synchronization of free-space quantum key distribution,Optics Communications 275(2007)486-490
    [1] L. E. Tarof, D. G. Knight, K. E. Fox, C. J. Miner, N. Puetz, and H. B. Kim, Appl.Phys. Lett. 57,670(1990)
    [2] L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, IEEE Photonics Technol. Lett. 5,672 (1993)
    [3] C. L. Forrest Ma, M. Jamal Deen, Larry E. Tarof, and Jeffrey C. H. Yu, IEEE Trans. Electron Devices 42, 810 (1995)
    [4] M. A. Itzler, K. K. L. Suzanne, S. McCoy, N. Codd, N. Komaba, Optical Fiber Communication Conference, 2000, Vol. 4, 126
    [5] R. G. W. Brown, K. D. Ridley, and J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching," Applied Optics 25, 4122-4126 (1986)
    [6] R. G. W. Brown, R. Jones, J. G. Rarity, and K. D. Ridley, "Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching," Applied Optics 26, 2383-2389 (1987)
    [7] D. Renker, Geiger-mode avalanche photodiodes, history, properties and problems, Nuclear Instruments and Methods in Physics Research A 567 (2006) 48 - 56
    
    [8] 刘云,博士学位论文,中国科学技术大学, 2007
    
    [9] http://www.iet.ntnu.no/groups/optics/qcr/torbjoern/
    
    [10] D. S. Bethune and W. P. Risk, IEEE J. Quant. Electron. 36, 340-347 (2000)
    
    [11] D. S. Bethune, W. P. Risk and G. W. Pabst, J. Mod. Opt. 51, 1359-1368 (2004)
    [12] A. Tomita and K. Nakamura, Opt. Lett. 27, 1827-1829 (2002)
    
    [13] H. Kosaka, A. Tomita, Y Nambu, et al, Electron. Lett.39, 1199 (2003)
    
    [14] G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, J.Mod. Opt. 51,1381-1398(2004)
    [15] A. Yoshizawa, R. Kaji, and H. Tsuchida, Appl. Phys. Lett. 84, 3606-3608 (2004)
    [16]N.Namekata,S.Sasamori,and S.Inoue,Optics Express 14,10043-10049(2006)
    [17]Qing-Lin Wu,Yun Liu,Zheng-Fu Han,Wei Chen,Yi-Min Dai,Guo Wei,and Guang-Can Guo,Gated-mode integrated single photon detector for telecom wavelengths,Proc.SPIE 6771,67711A(2007)
    [18]周政,硕士学位论文,中国科学技术大学,2006
    [19]Michael John Chudobiak,B.Sc.(Hons.),"New Approaches For Designing High Voltage,High Current Silicon Step Recovery Diodes for Pulse Sharpening Applications",AVTECH,(1996)
    [20]Max5026 datasheet,http://www.maxim-ic.com.cn
    [21]Y.Z.Gui,X.F.Mo,Z.F.Han,et al,Acta Sinica Quantum Optica 10,131(2004)
    [1]G.Blasse,B.C.Grabmaier,Luminescent Materials,SpringerVerlag,Berlin,1994.
    [2]陈国珍.荧光分析法 第2版.北京:科学出版社.1990
    [3]许金钩,王尊本,荧光分析法,科学出版社,2006
    [4]Lakowicz J.R.Principles of Fluorenscene Spectroscopy.2nd edition,New York:Plenum Press,1999
    [5]Lakowicz J.R.Principles of Fluorenscene Spectroscopy.New York:Plenum Press,1983
    [6]房喻,王辉,荧光寿命测定的现代方法与应用,化学通报,2001年第10期,631
    [7]O'Connor,D.V.,Philips,D.,"Time correlated single photon counting"Academic Press,London,1984.
    [8]W.Becket.Advanced Time-correlated Single Photon Counting Techniques.Spinger,2005.
    [9]"Which Fluorescence Lifetime System is Best for You",Jobin Yvon Inc.,http://www.jobinyvon.com/read.asp?Docid=1536
    [10]D.R.James,A.Siemiarczuk,W.R.Ware.Review of Scienific Instrument 63(1992),1710.
    [11]“Photon Technology International 高级荧光稳念、瞬念测量系统”,http://www.instrument.com.cn/download.asp?url=%2FShow%2FLiterature%2F C27863.pdf
    [12]T.M.Nordlund,Streak Camera for Time_Domain Fluorescence,in Topics in Fluorescence Spectroscopy.Lakowicz J R(Ed.),New York:Plenum Press,1991183-260
    [13]M.A.Kahlow,W.Jarzeba,J.P.Dubruil,Rev.Sci.Instrum.,59(1988),1098-1109
    [14]D.M.Jameson and T.L.Hazlett,Biophysical and Biochemical Aspects of Fluorescence Spectroscopy,Plenum Press,New York,1991.
    [15]Kintz G J,Baer T.Single-frequency operation in solid-state laser materials with short absorption depths[J].IEEE J.Quantum Electron.,1990,26(9):1457.
    [16]Zayhowski J J,Mooradian A.Single-frequency microchip Nd lasers,Opt.Lett.,1989,14(1):24.
    [17]Taira T,Mukai A,Nozawa Y,et al.Opt Lett Single ·mode Oscillation of laser-diode pumped Nd:YV04 microchip lasers l J].Opt.Lett.,1991,16(24):1955
    [18]Conry R S,Lake T,Friel G J,et al.Self-Q-switched NdYV04 microChip lasers.Opt.Lett.,1998,23(6):457.
    [19]E Snitzer,R Woodcock.Yb3+-Er3+ glass laser.Appl.Phys.Lett.,1965,6(3):45-46.
    [20]V P Gapontsev,S M Matitsin,AA Izyneev,et al.Erbiam glass lasem and their applications[J].Opt.& laser Technol.,1982,14(8):189-196.
    [21]赵士龙,徐时清,李顺光,陈宝玉,胡丽丽,LD泵浦的镱铒共掺磷酸盐玻璃的光谱性质和激光性质,中国稀土学报,23(2005),544
    [22]谢智莹,邓再德,杨钢锋,印冰,掺铒高增益磷酸盐激光玻璃的研究进展,玻璃与搪瓷,33(2005),46
    [23]陈力,李顺光,温磊,徐永春,胡丽丽,王标,陈伟,铬镱铒共掺磷酸盐玻璃光谱和激光性质研究,激光与红外,36(2006),648
    [24]戴世勋 徐铁峰 聂秋华 沈祥 张军杰 胡丽丽,荧光俘获效应对掺铒氧化物玻璃光谱性质的影响,物理学报,55(2006),1479
    [25]伍林,欧阳兆辉,曹淑超,易德莲,秦晓蓉,孙少学,刘峡,拉曼光谱技术的应用及研究进展,光散射学报,Vol.17(2005),180
    [26]李光晓,拉曼光谱技术的新进展,光电子技术与信息,11(1998),1
    [27]张延会,吴良平,孙真荣,拉曼光谱技术应用进展,化学教学,4(2006), 32
    [28]Shoji Kaminaka,Hiroya Yamazaki,Toshiaki Ito,Eiichi Kohda and Hiro-o Hamaguchi,Near-infrared Raman spectroscopy of human lung tissues:possibility of molecular-level cancer diagnosis,JOURNAL OF RAMAN SPECTROSCOPY,32(2001)139-141
    [29]凌晓锋,李维红,宋苑苑等.胃癌组织的拉曼光谱初探,光谱学与光谱分析,2000,20(5):692-693
    [30]陆同兴,路轶群,激光光谱技术原理及应用,中国科学技术大学出版社,合肥,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700