自由空间量子通信中偏振光子传输和操控的理论与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统密码技术是建立在数学算法复杂度基础上的,随着量子计算机的发展,传统密码在原理上都可以被破译,通信安全隐患十分突出。基于量子力学基本原理的量子密码在原理上是“无法破译”、“绝对安全”的,故而量子密码可以实现真正意义上的保密通信,是国家安全和未来信息技术发展的重要研究领域。
     由于自由空间量子密钥传输对将来利用卫星进行量子密钥分配并进而建立全球量子保密通信网具有重大意义,所以在自由空间进行量子密钥分配引起了人们的广泛关注和深入研究。本论文研究自由空间量子通信的相关理论问题,建立光子大气传输的适当的理论模型,分析光子偏振态如何受大气散射的影响,提出偏振光子纠缠浓缩的实现方案。本论文的完成将为自由空间量子通信的实施提供必要的理论支持和有价值的技术方案,这对于最终实现基于卫星的全球量子通信具有一定的理论意义和实用价值。论文主要研究成果有:
     从Maxwell方程出发比较分析了Rayleigh近似与Mie散射的散射振幅与散射截面,得到当散射粒子的尺度参数较小时,Rayleigh散射与Mie散射符合的很好,可用Rayleigh散射代替Mie散射。同时比较分析了Born近似和Mie散射的散射振幅与散射截面,计算表明相对折射率在[1.01,1.09]之间的散射粒子,其尺度参数满足特定条件时可用Born散射代替Mie散射。这样,在满足条件的散射理论计算中,可避免繁琐的无穷级数计算。
     针对自由空间量子通信,给出了前向直向散射的简化处理方案,推导了偏振光子Mie散射前向有效Mueller矩阵及各矩阵元之间的关系。
     用矢量Monte Carlo方法模拟均匀大气中偏振光子的多次散射过程,得到表征大气信道特征的Mueller矩阵模拟图,并以此分析讨论了气溶胶粒子尺度对光子偏振态的影响。当粒子尺度较小时,光子的退偏效应很明显,光子偏振度对粒子尺度的变化非常敏感;当粒子尺度较大时,光子的偏振度较大,退偏效应弱,偏振度对粒子尺度的变化不敏感。
     利用偏振光子的多次散射模型和经过改进的多层大气散射模型,研究了量子通信中光子与大气的相互作用过程,分析了单光子密钥分配过程中大气散射对偏振态的影响。结果表明,光子上行时偏振态保持的效果明显比下行时要好;光子在传输相同距离的情况下,高海拔位置比低海拔位置偏振态的变化幅度要小。
     针对偏振纠缠光子在量子通信中由于偏振态变化而引起的纠缠度下降问题,提出了一种线性光学系统的理论方案,通信双方利用该系统可以确定性地从两对部分纠缠光子中提取出一对最大纠缠光子。这套装置借助于将两光子偏振态分别隐形传送到第三个光子的路径和偏振态上,通过实现单光子偏振态和路径态的操作,来完成两光子偏振态的操控,进而克服了光子间弱耦合带来的困难。
Traditional cryptography is based on complicated mathematical algorithms. However, with the development of quantum computers, the traditional cryptography could be deciphered, so communications security constitutes a conspicuous problem. Based on basic principles of quantum mechanics, quantum cryptography is "can not decipher" and "absolute security", therefore quantum cryptography can achieve a real sense of secure communications and an important research field of national security as well as the bright future for the development of information technology.
     Because free-space quantum key transmission is of great significance to future quantum key distribution using satellites as well as to establishing a global network of quantum secure communication, free-space quantum key distribution has aroused widespread concern. This thesis studies the theory of free-space quantum communication and establishes the appropriate theoretical model of photon propagation in the atmosphere, analyzes the photon polarization vector by the atmospheric scattering effects. The completion of this thesis will provide necessary theoretical support and valuable technical program for free-space quantum communication, which will be of great importance for the eventual realization of satellite-based global quantum communication. Main conclusions of this thesis include:
     We have analyzed and compared Rayleigh scattering and Mie scattering. It is shown that Rayleigh scattering and Mie scattering are in good agreement when the scale parameter is small. But when the scale parameter is large, dependence of Mie scattering intensity on wavelength is not obvious. We have analyzed and compared of Born approximation and Mie scattering of spherical particle with refractive index near 1 and present a criterion that can be used to replace Mie scattering theory.
     A new physical model of forward scattering of transmission of a polarized light beam in the atmosphere is established. Based on the incoherent light assumption, the double and multiple forward scattering theories are derived. To the symmetrical system, the effective Mueller matrix of the forward scattering of polarized light is obtained,.It is shown that only seven matrix elements are independent, the nine matrix elements are obtained by rotating independent elements. To validate the scattering model, the effective Mueller matrix of the forward scattering of polarized light of the transmission 10km in the atmosphere are simulated with Monte Carlo method, it is showed theatrical and numerical results are in good agreement.
     On this basis the scattering model of polarized photons in the multilayered atmosphere is established. The Monte Carlo simulation of the propagation of polarized photons in the multilayered atmosphere is made based on the model.
     We propose a scheme for optical realization of deterministic entanglement concentration of polarized photons. To overcome the difficulty due to the lack of sufficiently strong interactions between photons, teleportation is employed to transfer the polarization states of two photons onto the path and polarization states of a third photon, which is made possible by the recent experimental realization of the deterministic and complete Bell state measurement. Then the required positive operator-valued measurement and further operations can be implemented deterministically by using a linear optical setup.
引文
[1]Bennett C.H, Brassard G.Quantum cryptography:Public key distribution and coin tossing. Proceeding of the IEEE International Conference on omputers, Systems and Singal Processing, IEEE, New York,1984:175-179.
    [2]Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett,1992, 68 (21):3121-3124.
    [3]Ekert A K. Quantum cryptography based on Bell's theorem. Phys Rev Lett,1991,67 (6): 661-663.
    [4]C.H.Bennett, S. J. Wiesner. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev.Lett.1992,69(20):2881-2884.
    [5]C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W. K. Wootters.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett.1993,70(13):1895-1899.
    [6]N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys.2002, 74(1):145-195.
    [7]M. Aspelmayer. Long-distance quantum communication with entangled photons using satellites, IEEE J. Sel. Top. Quantum Electron.2003,9:1541-1553.
    [8]J.G. Rarity, P.R. Tapster, P. M. Gorman, P. Knight. Ground to satellite secure key exchange using quantum cryptography, New J. Phys.2002,4,82:1-21.
    [9]W. T. Buttler, R. J. Hughes, P. G. Kwiat, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson,C. M. Simmons, Free-space quantum-key distribution, Phys. Rev. A.1998, 57(4):2379-2382
    [10]W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, C. M. Simmons. Practical free-space quantum key distribution over 1 km, Phys. Rev.Lett.1998,81(15):3283-3286
    [11]C. Wang, J. F. Zhang, P. X. Wang, F. G. Deng, Q. Ai,G. L. Long. Experimental realization of quantum cryptography communication in free space, Science in China Series G,2005, 48(2):237-240.
    [12]R. J. Hughes, W. T. Buttler, P G. Kwiat, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson. Free-space quantum key distribution in daylight. J. Mod. Opt.2000,47(2):549-562
    [13]W. T. Buttler,R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt,C. G. Peterson. Daylight quantum key distribution over 1.6 km, Phys. Rev. Lett.2000,84(24):5652-5655.
    [14]R. J. Hughes, J. E. Nordholt, D. Derkacs, C. G. Peterson. Practical free-space quantum key distribution over 10 km in daylight and at night, New J. Phys.2002,4 (43):1-14.
    [15]C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. R. Tapster and J. G. Rarity. Quantum cryptography:a step towards global key distribution, Nature,2002,419:450
    [16]M. Aspelmeyer, H. R. Bohm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G.Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther and A. Zeilinger, Long distance free-space distribution of quantum entanglement, Science.2003,301,621
    [17]C.Z. Peng, T. Yang, X.H. Bao, J.Z., X. M. Jin, F.Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian and J. W. Pan. Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. Phys. Rev. Lett,2005,94(15): 150501(1-4).
    [18]K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Bohm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T.Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H.Weier, H.Weinfurter and A. Zeilinger. entanglement and single photons through an intra-city, free-space quantum channel, Opt. Express.2005,13,202
    [19]E. L. Miao, Z. F. Han, S. S. Gong, T. Zhang, D. S. Diao and G. C. Guo. Background noise of satellite-to-ground quantum key distribution. New J. Phys.2005,7,215.
    [20]Wiesner S. Conjugate coding. SIGACT News.1983,15:78-88
    [21]Goldenbergl,Vaidman L. Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 1995,75(7):1239-1243.
    [22]Mor T. No cloning of orthogonal states in composite systems. Phys. Rev. Lett.1998,80 (14): 3137-3140.
    [23]Inoue K, Waks E, Yamamoto Y. Differential phase shift quantum key distribution. Phys. Rev. Lett.2002,89 (3):0379022(1-3).
    [24]Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett.,2002,88 (5):0579022(1-4).
    [25]Long G L, Liu X S. Theoretically efficient high capacity quantum key distribution scheme. Phys. Rev.,2002, A 65:032302(1-3).
    [26]Silberhorn C, Korolkova N, Leuchs G. Quantum key distribution with bright entangled beams. Phys Rev Lett,2002,88(16):167902(1-4).
    [27]Funka C, Raymer M G. Quantum key distribution using nonclassical photon nmuber correlations in macroscopic light pulses. Phys. Rev. A.2002,65:042307(1-5).
    [28]Villoresi P, Jennewein T, Tamburini F, Aspelmeyer M, Bonato C, Ursin R, Pernechele C, Luceri V, Bianco G, Zeilinger A, Barbieri C. Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys.2008,10(3) 033038
    [29]邵劲,吴令安.用单光子偏振态的量子密码通讯实验.量子光学.1995,1:41-44
    [30]苗二龙,莫小范,桂有珍,等.相位调制自由空间量子密钥分配,物理学报.2004,53(7):2123-2126
    [31]吴伟,刘伟涛,冯少晖,等.一种稳定的自由空间量子密钥分配实验系统.量子光学学报.2004,10(3):135-138
    [32]V. Tuchin. Tissue optics-light scattering methods and instruments for medical diagnosis. SPIE Press Washington,2000.
    [33]A. Ishimaru. Wave propagation and scattering in random media. Academic, New York,1978.
    [34]P. L. Chow, W. E. Kohler. Multiple Scattering and Waves in Random Media:Proceedings of the U.S.Army Workshop Held in Blacksburg, Virginia,24-26 March 1980.
    [35]H. C. van de Hulst. Multiple light scattering. Academic Press, New York,1980.
    [36]P. Sheng. Scattering and localization of classical waves in random media. World Scientific, Singapore,1990.
    [37]A. Ishimaru. Correlation function of a wave in random distribution of stationary and moving scatterers. Radio Science.1975,10(1):45-52.
    [38]B. Davison. Neutron transport theory. Oxford University Press, London,1958.
    [39]K. M. Case, P. F. Zweifel. Linear transport theory. Addison-Wesley, Reading, Massachusetts,1969.
    [40]G.1. Bell, S. Glasstone. Nuclear reactor theory. Va Nostrand-Reinhold, Princeton, New Jersey,1970.
    [41]M. M. R. Williams. Mathematical methods in particle transport theory. Wiley, New York, 1971.
    [42]A. Kniittel, J. M. Schmitt, J. R. Knutson. Spatial localization of absorbing bodies by interfering diffusive photon-density waves. Applied Optics.1993,32(4):381-389.
    [43]S. R. Arridge, M. Schweigher, M. hiraoka, et al. A finite element approach for modeling photon transport in tissue. Medical Physics.1993,20(2):299-309.
    [44]D.W.Mueller Jr. Three-dimensional radiative transfer in a medium exposed to spatially varying radiation:effects of polarization. Ph.D. Dissertation University of Missouri-Rollal. 2001.
    [45]D. Vv. Mueller Jr. A. L. Crosbie. Analytical expressions for the radiation emergent from a scattering medium exposed to a polarized laser beam. Journal of Quantitative Spectroscopy&Radiative Transfer.2000,67(6):395-428.
    [46]D. W. Mueller Jr. A. L. Crosbie. Three-dimensional vector radiative transfer in a semi-infinite, Rayleigh scattering medium exposed to a polarized laser beam:spatially varying reflection matrix.Journal of Quantitative Spectroscopy&Radiative Transfer,2002, 75(1):423-453.
    [47]S. Baitel, A. H. Hielscher. Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media. Applied Optics.2000,39(10):1580-1588.
    [48]M. Xu. Electric field Monte Carlo simulation of polarized light propagation in turbid media. Optics Express,2004,12(26):6530-6539.
    [49]G. W. Kattawar, G. N. Plass. Radiance and polarization of multiple scattered light from haze and clouds. Applied Optics.1968,7(8):1519-1527.
    [50]B. C. Wilson, G. Adam.A Monte Carlo model for the absorption and flux distribution of light In tissue. Medical Physics,1983,10(6):824-830
    [51]1. Lux. L. Koblinger. Monte Carlo patticles transpout methods:neutron and photon calculations. CRC Press. Boca Raton,1991.
    [52]N. V. Voshchinnikov. V. V. Karjukin. Multiple scattering of polarized radiation in circumstellar dust shells. Astronomy and Astrophysics.1994,288(3):883-869.
    [53]L. Wang, S. L. Jacques, L. Zheng. MCML-Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine,1995,46(2):131-146.
    [54]T. lwai, H. Furukawa, T. Asakura. Numerical analysis on enhanced backscattering of light based on Rayleigh-Debye scattering theory. Optical Review.1995,2(6):413-419. shells. Astronomy and Astrophysics.1994,288(3):883-869.
    [55]G. W. Kattawar and G. N. Plass, Degree and direction of polarization of multiple scattered light.1:Homogeneous cloud layers, Appl. Opt.11,1972,2851-2865
    [56]S. Bartel and A. Hielsher, Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media, Appl. Opt,2000,39,1580-1588
    [57]Millard J P, Arvesen J C. Polarization, a key to an airborne optical system for the detection of oil on water.Science,1973,180:1170-1171.
    [58]Burns W, Herz M J, Development and Field Testing of a Light Aircraft Oil Surveillances System (LAOSS) [R]. Final Report, CR-2739, NASA, Oceanic Society, San Francisco,1976.
    [59]赵冬至,丛丕福.海面溢油的可见光波段地物光谱特征研究.遥感技术与应用,2000,15(3):160-164.
    [60]赵云升,吴太夏,罗杨洁,等.水面溢油的多角度偏振与二向性反射定量关系研究.遥感学报,2006,10(3):294-298.
    [61]C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher. Concentrating partial entanglement by local operations. Phys. Rev. A.1996,53(4):2046-2052
    [62]H. K. Lo, S. Popescu. Concentrating entanglement by local actions:Beyond mean values. Phys. Rev. A.2001,63 022301(1-16)
    [63]S. Bose, V. Vedral, P. L. Knight. Purification via entanglement swapping and conserved entanglement.Phys. Rev. A.1999,601:194-197
    [64]Z. Zhao, J. W. Pan, M. S. Zhan. Practical scheme for entanglement concentration. Phys. Rev. A.2001,64 014301(1-3)
    [65]T. Yamamoto, M. Koashi, N. Imoto. Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A.2001,64 (1):012304(1-8)
    [66]Xiang bin Wang, Heng Fan. Entanglement concentration by ordinary linear optical devices without postselection. Phys. Rev. A.2003,68(6):060302(1-4)
    [67]F. Morikoshi. Recovery of Entanglement Lost in Entanglement Manipulation. Phys. Rev. Lett. 2000,84 (14):3189-3192
    [68]F. Morikoshi, M. Koashi. Deterministic entanglement concentration. Phys. Rev.A.2001,64 (022316)1-7
    [69]Yong-Jian Gu,Wen-Dong Li, and Guang-Can Guo, Protocol and quantum circuits for realizing deterministic entanglement concentration, Phys. Rev. A,2006,73(022321):1-7.
    [70]H C Van de Hulst, Light scattering by small particles. New York:Wiley Press,1957.
    [71]John W, Absorption and Scattering of Eight by Small Particles. New York:Wiley,1983.
    [72]郭敬仁,数学物理方法.北京:人民教育出版社,1978.253-257.
    [73]金亚秋,电磁散射和热辐射的遥感理论.科学出版社.1998.
    [74]赵凯华,光学.高等教育出版社.2006.12,358-359.
    [75]邱金桓,陈洪滨.大气物理与大气探测学,北京:气象出版社,2005,8
    [76]梁顺林著,范闻捷等译,定量遥感,北京:科学出版社,2009.2,27-28
    [77]Higurashi,Nakajima.develoment of a tuo-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR, J. Atmos. Sci.1999.56:924-941
    [78]李景镇.光学手册.西安:陕西科学技术出版社,1986.852-853.
    [79]R. J. Allen, M. R. Platt. Lidar for multiple backscattering and depolarization observations. Appl. Opt,1977,16:3193-3199.
    [80]程天海,顾行发,陈良富等.卷云多角度偏振特性研究.物理学报,2008,57(8):5323-5332.
    [81]周冠华,刘志刚,柳钦火等.水色遥感中偏振信息的研究进展.遥感学报,2008,12(2):322-330.
    [82]J. He, A Karlsson, J. Swartling et al. Light scattering by multiple red blood cells. J. Opt.Soc. Am. A,2004,21:1953-1961.
    [83]廖延彪.偏振光学.北京:科学出版社,2003.240-252.
    [84]Bron M, Wolf E. Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Britain:Cambridge University Press, October 13,1999:20-31.
    [85]龙槐生.光的偏振及应用.北京:机械工业出版社,1989.17-165.
    [86]曾延安.偏振成像系统关键技术研究,博士学位论文,2007.10.
    [87]曾清平,魏克珠.雷达极化技术与工程实现.无线电工程,2000
    [88]D. W Mueller Jr, A. L. Crosbie. Analytical expressions for the radiation emergent from a scattering medium exposed to a polarized laser beam Journal of Quantitative Spectroscopy&Radiative Transfer,2000,67(6):395-428
    [89]B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu et al..Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium. Opt. Lett,1998,23: 485-487.
    [90]S. Baitel, A. H. Hielscher. Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media. Applied Optics,2000,39(10):1580-1588.
    [91]J.C. Ramella-Roman, S.A.Prahl, S.L. Jacques,.Three Monte Carlo programs of polarized light transport into scattering media:part I.Opt. Express,2005,13:4420-4438.
    [92]J.C. Ramella-Roman, S.A.Prahl, S.L. Jacques.Three Monte Carlo programs of polarized light transport into scattering media:part II. Opt. Express,2005,13:10392-10400.
    [93]A. Ishimaru. Correlation function of a wave in random distribution of stationary and moving scatterers.Radio Science,1975,10(1):45-52.
    [94]A. Ishimaru, S. T. Hong. Multiple scattering effects on coherent bandwidth and pulse distoirtion of a wave propagation in a random distribution of particles. Radio Science,1975 10(6):637-644.
    [95]A. Kniittel, J. M. Schmitt, J. R. Knutson. Spatial localization of absorbing bodies by interfering diffusive photon-density waves. Applied Optics,1993,32(4):381-389.
    [96]M. Xu. Electric field Monte Carlo simulation of polarized light propagation in turbid media. Optics Express,2004,12(26):6530-6539.
    [97]G. W. Kattawar, G. N. Plass. Radiance and polarization of multiple scattered light from haze and clouds. Applied Optics,1968,7(8):1519-1527.
    [98]B. C. Wilson, G. Adam. A Monte Carlo model for the absorption and flux distribution of light In tissue. Medical Physics,1983,10(6):824-830
    [99]T. Lwai, H. Furukawa, T. Asakura. Numerical analysis on enhanced backscattering of light based on Rayleigh-Debye scattering theory. Optical Review.1995,2(6):413-419. shells. Astronomy and Astrophysics.1994,288(3):883-869.
    [100]John Sawicki, Nikolas Kastor, and Min Xu, Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers, OPTICS EXPRESS,2008,16(8):5728-5738
    [101]De Haan JF, Bosma PB, Hovenier JW. The adding method for multiple scattering computations of polarized light. Astron Astrophys.1987,183:371-391
    [102]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用,北京:科学出版社,1980.
    [103]方再根.计算机模拟和蒙特卡罗方法论.北京:北京工业学院出版社,1988
    [104]R. Graffet al. Condensed Monte Carlo Simulation for the Description of Light Transport [J]. Appl. Opt.1993,32(4):426-434.
    [105]Ashpelmayer M.et al. Long-distance quantum communication with entangagled photons using satellites. IEEE J. Sel. Top. Quantum Electron,2003,9:1541-1549.
    [106]阎毅,裴昌幸,师瑞娟等,自由空间量子通信系统研究,西安电子科技大学学报,2007,34(5):708-711
    [107]王永生等编著,大气物理学,北京:气象出版社,1987,12,403
    [108]Breugnot S, Clemenceau P. Modeling and performances of a polarization active imager at λ=806 nm. Opt Eng,2000,39(10):2681-2688.
    [109]Lu S Y, Chipman R A. Interpretation of Mueller matrices based on polar decomposition [J]. J Opt Soc Am,1996,13(5):1106-1113.
    [110]Hillery M, Buzek V. and Berthiaume A. Quantum secret sharing. Phy. Rev. A,1999,59: 1829-1834.
    [111]Beige A, Englert BG, Kurtsiefe C et al. Secure communication with a publicly known key. Acta Phys. Pol. A,2002,101(6):357-361.
    [112]Einstein A, Podolsky B and Rosen N.Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.,1935,47:777-780
    [113]曾谨言,裴寿镛,龙桂鲁.量子力学新进展(第二辑).北京:北京大学出版社,2001.
    [114]Milburn G. J., Quantum optical Fredkin gate. Phys. Rev. Lett.1989(62):2124-2427.
    [115]Chau H. F., Wilczek F., Simple Realization of the Fredkin Gate using a Series Of Two-Body Operators Phys. Rev. Lett.1995,75:748-750.
    [116]Gerry C. C., Campos R. A., Generation of maximally entangled photonic states with a quantum-optical Fredkin gate. Phys. Rev. A.2001,64 (6):063814(1-4)
    [117]Schuck C., Huber G., Kurtsiefer C., Weinfurter H, Complete Deterministic Linear Optics Bell State Analysis, Phys. Rev. Lett.2006,96(19):190501(1-4).
    [118]Ahnert S.E., Payne M.C., All possible bipartite positive-operator-value measurements of two-photon polarization states. Phys. Rev. A.2006,73(2):022333(1-5)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700