水泥路面超薄表面功能层关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用超薄沥青表面功能层技术是改善水泥混凝土路面表面功能较为理想的方法,但由于超薄沥青表面功能层厚度较薄(2.0cm~3.0cm),且与水泥混凝土路面的模量相差较大,极易发生剪切、推移破坏,因此必须采取适当的措施加强表面功能层混合料的抗剪性能并提高层间粘结性能。基于此,本文着重从提高抗剪性能的超薄表面功能层混合料设计方法及层间粘结材料研发两方面着手,以期有效解决水泥路面超薄表面功能层路面结构的关键技术问题。
     通过对水泥路面超薄表面功能层路面结构层间剪应力的分析,得出了层间接触面的最大剪应力变化情况,为功能层路面结构粘结层材料的设计提供了理论依据和基础参数。
     通过对与表面功能层混合料空隙率相关的性能指标的研究,得出了基于功能性和抗剪性能的混合料空隙率范围,并推荐了相应的性能指标标准,为混合料的设计提供了参考。
     采用正交试验设计法,推荐了超薄表面功能层混合料的矿料级配范围,在满足表面功能层对功能性要求的前提下,较好的兼顾混合料强度要求。
     对超薄表面功能层混合料抗剪强度、内摩阻角及粘聚力随级配类型、沥青品种、沥青用量、外掺剂种类、加载速率以及试验温度等因素变化规律的研究,为超薄表面功能层沥青混合料设计提供了试验依据。
     通过对全文相关研究成果进行总结,从原材料选择、配合比设计及路用性能检验三部分入手,提出了基于抗剪性能的表面功能层混合料设计方法,并推荐了相应的设计标准。
     对超薄表面功能层混合料的高温抗车辙性能、低温性能、水稳性能、抗剥落性能、抗剪性能、耐久性能随SBS掺量、补强剂掺量及级配粗细三因素变化规律的研究,得出SBS与补强剂的最佳掺量,并为级配粗细选择提供一定试验依据,目的是力求超薄表面功能层混合料在更好发挥抗剪性能同时兼顾或不过多损害其他路用性能。
     通过对层间粘结材料的研究开发,提出了一种高性能乳化沥青的制备工艺和配方。该高性能乳化沥青的研制成功,对解决水泥路面超薄表面功能层由于层间粘结力不足而造成的剪切、拥包等病害有重要的实用价值。
     采用层间直接剪切试验,对高性能乳化沥青在提高层间粘结效果方面的优越性进行了对比验证,同时重点研究了界面粘结增强剂对层间粘结性能的影响,发现它可以显著改善层间粘结性能。通过相关力学计算及试验研究,提出了水泥路面超薄表面功能层结构层间抗剪强度设计标准。
It is a relatively ideal method to use the technology of ultra-thin asphalt surface functionallayers to improve the surface function of cement concrete pavement. However, as theultra-thin asphalt surface functional layers are thinner (2.0~3.0) and have a larger differencewith the module of cement concrete pavement, it is easy to occur shear failure and cuttingslippage. As a result, appropriate measures shall be taken to strengthen the shear behavior ofthe mixture of the surface functional layers and improve the interfacial bonding performance.Based on this, this Article focuses on the improvement of the design method of the mixture ofthe ultra-thin asphalt surface functional layers and the research and development of interlayeradhesive material in order to effectively solve those key technical problems in the paymentstructure of ultra-thin surface functional layers of cement pavement.
     Information about the changes in the maximum shear stress of the surface functionallayers and the contact condition between elastic layers is acquired through analysis of theshear stress of ultra-thin surface functional layers of cement pavement, providing thetheoretical basis and basic parameters for the design of the asphalt mixture of functionallayers and adhesive materials.
     The range of the porosity of mixtures based on the functionality and shear behavior isdetermined through the research of the relevant performance indexes related to the porosity ofmixture of surface functional layers, and the relevant performance index standards arerecommended, providing a reference for the design of mixtures.
     The aggregate grading range of mixture of surface functional layers is determined usingthe orthogonal test design method. The grading range can satisfy the functionality requirementof ultra-thin surface functional layers and meanwhile meet the requirement on the strengthperformance of mixture.
     The researches on the shear strength of mixture of ultra-thin surface functional layers,internal friction angle and the change law of cohesion along with the factors such as thegradation type, asphalt varieties, adjusting agent, loading rate and test temperature haveprovided test basis for the determination of the parameters of stress strength and the design ofmixture of ultra-thin surface functional layers.
     The method for the design of mixture of surface functional layers based on shear behavioris provided proceeding from three aspects including raw material selection, mix design andtesting of the pavement performance after summing up the relevant research results asdiscussed in the Article, with the appropriate design standards recommended.
     The researches on the law by which the high-temperature rut resistance, low temperatureperformance, water stability performance, anti-stripping performance, shear behavior anddurability of mixture of ultra-thin surface functional layers change with such three factorsincluding SBS in the asphalt, reinforcing agent and gradation have resulted in the bestcontents of SBS in the asphalt and reinforcing agent, and provided a test basis for thegradation selection, for the purpose of bringing the shear behavior of mixture of ultra-thinsurface functional layers into better play without further damaging other road performances.
     A preparation technology and formula for a type of high-performance emulsion asphalthave been provided through the research and development of interfacial bonding materials.The successful research and development of the high-performance emulsion asphalt is veryuseful in resolving the problems such as shear and shoving of ultra-thin surface functionallayers of cement pavement caused due to insufficient interfacial binding power.
     A comparison and validation of the superiority of high-performance emulsion asphalt inimproving the interlayer binding effect have been conducted with the interlaminar shear test,and the influence of interfacial agent on interlayer bond behavior has been particularly studied.It is found that interfacial agent can obviously improve the interlayer bond behavior. Thedesign standard of interlayer shear strength for ultra-thin surface functional layers of cementpavement has also been generated through the relevant mechanics calculations andexperimental research.
引文
[1]姚祖康.水泥混凝土路面设计[M].合肥:安徽科学技术出版社,1999
    [2]李华,缪昌文,金志强.水泥混凝土路面修补技术[M].第一版.北京:人民交通出版社,1995
    [3] Jeffrey S. Kuttesch. Quantifying the Relationship between Skid Resistance and WetWeather Accidents for Virginia Data [D].The Faculty of Virginia PolytechnicInstitute,2004
    [4]赵桂娟,郭平,周新锋,程德刚.水泥混凝土路面抗滑性能研究[J].山东交通学院学报,2006,14(2):33-37
    [5]刘建华,路面抗滑性能检测与评价技术研究[D].郑州:郑州大学,2002.4
    [6] Douglas James Wilson. An Analysis of the Seasonal and Short-term Variation of RoadPavement Skid Resistance[R],Department of Civil and Environmental Engineering,2006
    [7]何春木.NovaChip技术试验路工程实践[J].公路,2007(11):15-18
    [8]戴松.旧水泥混凝土路面状况评定及沥青罩面改造[J].广东省佛山市公路局2005
    [9]吕伟民.新型路面养护材料超薄沥青磨耗层的特性与应用[J].同济大学2007
    [10]陈峙峰.旧水泥混凝土路面沥青加铺层设计及其应用技术研究[D].大连:大连理工大学,2003:3-5
    [11]李淑明.旧PCC路面上AC加铺层设计方法的研究.同济大学
    [12]谈至明,姚祖康,田波.水泥混凝土路面的荷载应力分析[J],公路,2002(8):15-18
    [13]曹东伟,胡长顺.旧水泥混凝土路面沥青加铺层力学分析[J],西安公路交通大学学报,2001(1):1-5
    [14]左秋英.LASTIKA薄层沥青罩面应用技术研究[D],长沙:长沙理工大学,2007.4.
    [15]刘黎萍,王信棠,管红梅.预防性路面维护的效益[J].上海公路,2001(3):7-9
    [16] Insights into Pavement Presvation[R].Washington:U.S.Federal HighwayAdministration,2003.
    [17]曾胜,王嘉,许佳.基于预防性养护的水泥混凝土路面养护辅助决策研究[J].湖南交通科技,2010(3):24-27
    [18]董瑞琨,孙立军.路面维护及预防性养护效益分析[J].公路,2004(3):121-125.
    [19]戴松.旧水泥混凝土路面状况评定及沥青罩面改造[J].广东省佛山市公路局2005
    [20]吕伟民.新型路面养护材料超薄沥青磨耗层的特性与应用[J].同济大学2007;
    [21]王旭东,严卫兵.超薄沥青混凝土抗滑表层技术研究.2002年道路工程学会学术交流会论文集,北京:人民交通出版社,2002.115-119
    [22]交通部公路科学研究所.超薄层沥青混凝土面层技术研究[J].公路交通科技(应用技术版),2005,1:46-53
    [23] NormanW.Mcleod.A rational approach to the design of bituminous pavingMixture.[T]A.S.T.M,1951,8(1):219-227
    [24] V.A.Endersby, The history and theory of triaxial testing and preparation of realistic testspecimens, A. S.T.M.,Francisco,October,1949
    [25] L.W.Nijboer,Plasticity as a factor in the design of dense bituminous carpetsroad,Elsevier Publishing CO.,INC.,Amsterdam, New York, London,,Brussels,1948
    [26] V.R. Smith, Triaxial stability method for flexible pavements design,proceedings ofassociation of asphalt paving technologists, Vol.18,1949
    [27] William L. Helwitt. Continuation of study on the theoretical design of flexible pavementbased on shear strength, A.S.T.M5thconference,1965:75-78
    [28] Edward S.Barber, Shear load on pavement. A.S.T.M5thconference1965:23-30
    [29]张登良.沥青与沥青混合料[M].人民交通出版社,2003.
    [30]孙立军等.沥青路面结构行为理论[M].人民交通出版社,2005
    [31]林绣贤.柔性路面结构设计方法[M].北京:人民交通出版社,1988
    [32]中华人民共和国行业标准.城市道路设计规范(CJJ37-90).北京:中国建筑工业出版社,1991
    [33]延西利等.沥青混合料内在参数的实验研究[J].西安公路交通大学学报,1997.9(3):35一39
    [34]谭忆秋.基于沥青路面应力场分布沥青混合料抗剪特性的研究[D].上海:同济大学交通运输工程学院。2002.
    [35]交通部.公路沥青路面施工技术规范(JTG F40-2004)[S].北京:人民交通出版社,2004
    [36] Roffe J.C.and Chaignon F..Chatacterisaton Test on Bond Coats:Worldwide Study3rdInternational Conference Bituminous Impact, and Recommendations, Mixtures andPavements,Thessaloniki,2002
    [37] Stephen A. Cross and Pramed Prasad Shrestha. Guidelines for Using Prime and TackCoats[R].Federal Highway Adminstration,Publication No.FHWA-CFL-04-001,2004
    [38]杨林江.浅谈改性乳化沥青发展方向及生产技术关键[J].交通世界,2004;(1):48-49
    [39]杨巍.SBS改胜乳化沥青的应用[J].现代高速,2003;(4):11-13
    [40]陈波.改性沥青.辽宁交通科技[J],1994;17(3):45-48
    [41]山本勇编译.西欧改性沥青及改性剂的现状[J].改性沥青,1994;8(2):17
    [42]国际稀浆封层协会(ISSA).改性乳化沥青稀浆封层作业指导书,1996:143
    [43]国际稀浆封层协会(ISSA).乳化沥青性能指导,1991:105
    [44]沈金安.论聚合物改性沥青的发展方向.公路交通科技,1998;(1)4-8
    [45]虎增福.乳化沥青及稀浆封层技术[M].北京:人民交通出版社,2001
    [46]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社精细化工出版中心,2000
    [47]姜云焕,钦兰成,土立志.改性稀浆封层技术[M].北京:石油工业出版社,2001
    [48]交通部公路科学研究所. JTJ032-94公路沥青路面施工技术规范[S].北京:人民交通出版社,1994
    [49]徐剑,李储鹏,孙霖等.国外阳离了乳化沥青技术要求的对比与启示[J].中外公路,2004,24(2):67-70
    [50]高雪池.桥面排水和防水的研究.南京:东南大学硕士论文.2002
    [51] Mike Hemsley JR.The Evolution of Cold Mix-Mix Design[CD].2003:116-120
    [52]交通部阳离子乳化沥青课题协作组.阳离子乳化沥青路面(修订版)[M].北京:人民交通出版社,1997:99-101
    [53]孙家瑛,戴亚英,乔燕.跨海大桥桥面铺装防水粘结层性能研究[J].中外公路,2007,27(1):137-140.
    [54]马涛,黄晓明,居浩.桥面防水材料性能研究[J].公路交通科技,2007,24(1):43-46.
    [55]胡长顺,王秉纲,李杰武.复合式路面沥青面层稳定性研究[J].西安公路交通大学学报,1998;18(4)
    [56]胡长顺,王秉纲.复合式路面设计原理与施工技术[M].北京:人民交通出版社,1999
    [57]曹东伟.旧水泥混凝土路面沥青加铺层结构研究[D].西安:长安大学.1998
    [58]于宝明.反射裂缝研究与旧水泥混凝土道面上沥青混凝土加铺层的设计[D].上海:同济大学,1991
    [59]林文岩,陈强,谢泽华等.薄层沥青一水泥混凝土复合式路面结构设计研究[J].中外公路,2009;(4):80-85
    [60]黄爱明.旧水泥路面加铺沥青面层技术的相关力学问题分析[D],西安:长安大学,2007
    [61]王向恒.沥青路面层间剪切破坏和层间功能层研究[D],西安:长安大学,2009
    [62]李娜.高模量沥青混合料研究[D].西安:长安大学,2007
    [63] Kandhal P, Lockett L.Construction and, Performace of Ulrathin Asphalt FrictionCourse[R].National Center for Asphalt Technology Report No.97-5,1997;
    [64] APRG.Ultra-thin Asphalt Surfacings. APRG Technical Notes3and8.ARRB TransportResearch.Australia.1994;
    [65]曹志远.沥青混凝土薄罩面层技术研究与应用[D],长沙:长沙理工大学,2006
    [66]于宝明.反射裂缝研究与旧水泥混凝土道面上沥青混凝土加铺层的设计[D].上海:同济大学,1991
    [67] Lostu S. S. Y. Retardation of Reflective Cracking in Asphalt Concrete Overlays by Useof Geogrid Interlays. M. S. Disseration (D].Tongji University.1995
    [68]壳牌沥青.壳牌NovaChi p超薄磨耗层系统[R/OL].2008.
    [69]沈金安.沥青与沥青混合料[M].北京:人民交通出版社,2003.
    [70]牛晓霞,叶燕呼,胡志涛.广清高速公路北段沥青路面预防性养护方案设计[R].广东华路交通科技有限公司,2008.
    [71]王辉,张起森.沥青路而抗滑表层的设计与对比分析[J].公路交通科技,2004,(5).
    [72]奕国华.抗滑表层改性沥青混凝上配合比设计及施工[J].公路,2005,(10).
    [73]赵战利.沥青路而抗滑表层研究[D].西安:长安大学,2002.
    [74]严家彶.道路建筑材料[M].北京:人民交通出版社,1996
    [75]于静涛.沥青铺装与桥面板层间粘结改善技术研究[D].西安:长安大学,2006
    [76]沙庆林.多碎石沥青混凝土SAC系列的设计与施工[M].人民交通出社.2005,7
    [77]沙庆林.SAC和其他粗集料断级配的矿料级配设计方法[J].公路,2005(1):143-150
    [78]方开泰著.均匀设计与均匀设计表[M].北京:科学出版社,1994
    [79]陈群.高等级公路沥青路面表面层沥青混合料矿料级配的研究[D].长沙:长沙理工大学,2003
    [80]卢永贵.沥青马蹄脂碎石混合料研究[D].西安:长安大学,2001
    [81]沥青路面结构行为理论[M].孙立军等,人民交通出版社
    [82]张慧鲜.基于抗剪强度的沥青混合料高温性能影响因素分析及改善措施研究[D].西安:长安大学,2010
    [83]袁峻,孙立军.沥青混合料抗剪强度影响因素评价指标研究.重庆建筑大学学报[J],2008.12,30(6)
    [84]鲁正兰,孙立军.沥青混合料抗剪强度对车辙性能的影响分析[J].上海公路,2006,3
    [85] AASHTO暂行标准.PPS-93.Standard Practice for the Laboratory Ebalution of ModifiedAsphalt Systems.1995
    [86]傅栋梁,钱振东.不同级配类型沥青混合料抗剪性能研究[J].重庆建筑大学学报.2007,100(30)
    [87]陡坡路段SMA沥青混合料研究[D].许银行,长安大学,2006
    [88]王耀波、徐伟.崖门大桥桥面粘结防水层的设计施工试验研究[J].桥梁建设.2003.1
    [89]关昌余、王哲人、郭大智.路面结构层间结合状态的研究[J].中国公路学报.1989.1
    [90]朱锋、谭为民、宋德俊,等.分析桥面铺装早期破坏的成因及处理方法[J].辽宁交通科技.2004.10
    [91]韩洪泽、梁块.桥面铺装层的病害与防治[J].山西交通科技.2004.1
    [92]许涛、黄晓明.混凝土桥沥青铺装层力学计算分析[J].合肥工业大学学报(自然科学版).2004.6
    [93]庞兴亮.改性乳化沥青生产与应用研究[D].天津:河北工业大学.2001
    [94] Wilson P. M.D.,Journal of Colloid and Interface Science, vol60,3,473-479,1977ChanK. S.,Shah D. O.,
    [95] Journal of Dispersion Science and Technology, vo155,1,1980
    [96] Susan Furlong, Alan James, Edward Kalinowski, Martin, et al. Water enclosed within thedroplets of bitumen emulsions and its relation to viscosity changes during storage [J].Colloids and Surfaces,1999,152:147-153.
    [97] A.M. Al-Sabagh. The relevance HLB of surfactants on the stability of Asphaltemulsion[月.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,204(1):73-83.
    [98] C.I. Elsner, E. Cavalcanti, et al. Evaluation of the anticorrosive performance of paintsystems on Coatings,2003,48(1):50-62.treatment effect on the steel [J]. Progress inOrganic
    [99]宋哲玉,徐培华,陶家朴.木质素胺类沥青乳化剂分子结构式研究[J].西安公路交通大学学报,1996,16(1):4-7.
    [100]关多芬,田在龙,曹亚峰,等.阳离子沥青乳化剂一木质素季钱盐的研制[J].大连轻工业学院学报,1995,14(1):29-34.
    [101]宋晓燕,杜月宗,赵可.乳化沥青及其影响因素探讨[C].天津市市政(公路)工程研究院院庆五十五周年论文选集(1950-2005)下册.2005:680-682.
    [102]刘德荣.表面活性剂的合成与应用四[M].四川:四川科学技术出版社,1987.
    [103]凌国峰,张民健,何鸿浩.乳化沥青在道路工程中的应用及优势[J].城市道桥及防洪,2004,(9):135-137.
    [104]陈文强.乳化沥青稀浆封层在公路预防性养护中的应用[J].山西建筑,2007,33(21):315-316.
    [105]夏朝彬,马波.国内外乳化沥青的发展及应用概况[J].石油与天然气化工,2000,29(2):88-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700