步进频连续波雷达穿墙成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿墙雷达能够穿透墙壁等障碍物,对隐蔽目标进行探测,因而在灾后救援、反恐维稳等方面具有广泛的应用前景。实现墙后目标的高精度成像是提升穿墙雷达探测性能的关键,然而电磁波在建筑物内传播不可避免存在衰减、多径、色散和折射等现象,致使传统的成像方法难以取得理想的效果。本文以某步进频连续波穿墙雷达人体目标成像探测实测数据处理为应用背景,重点研究抑制墙体杂波高精度成像和人体目标检测技术,主要工作如下:
     1、建立了步进频穿墙雷达回波信号的了简化模型,分析了墙体折射对目标回波时延的影响,在此基础上对传统的BP成像算法进行了改进,使其适用于墙后区域目标成像。
     2、利用人体目标慢速运动特征,提出先在回波域差分处理抑制墙体杂波,再利用BP算法进行运动目标成像。该方法应用于实测数据,实现了对慢速运动人体目标的有效成像。
     3、在高频假设下利用反射系数与透射系数对墙体的电磁特性进行了进一步建模,并根据透射系数构造了补偿因子,以此校正目标位置,实现目标的重聚焦。在墙体参数未知的情况下,提出了一种基于图像熵估计墙体参数、实现墙后目标位置校正和高精度聚焦的方法。仿真和实测数据处理结果证明了该方法的有效性。
     4、采用霍夫变换识别并削弱墙体残余,使得目标质量进一步提高。根据目标与背景在图像中的幅值分布,采用自适应检测的方法实现目标检测,并采用形态滤波来改善检测中的虚警、漏报现象。
     本文研究的的成像技术和相关处理方法均成功应用于某穿墙雷达的实测数据处理。
Through-the-wall (TTW) radar is widely applied in both civilian and military field for its capacity to penetrate building barricades and detect interior targets. Interior target imaging with high accuracy is the effective way to enhance TWR’s detection ability. However, traditional radar imaging approaches can not achieve ideal effect due to the attenuation, multipath, dispersion and refraction of electromagnetic wave when it travels inside of the building. In this paper, a human behind the wall is detected by the stepped-fequency-continuous-wave (SFCW) radar. Based on the field data, the research is concentrated on wall clutter suppression and accurate target imaging. The major work is as follows:
     1. The influence of wall refraction on target echo’s time delay is discussed according to the simplified echo model. Based on the conclusion, the traditional BP algorithm is modified for TTW imaging.
     2. A wall clutter suppression algorithm based on time-domain difference is proposed by using the characteristic of slow-moving target. Experimental results show that this algorithm is able to image the human target moving behind the wall.
     3. High frequency electromagnetic characteristics of the wall are further modeled, and the compensation coefficient is constructed for target refocusing. In order to refocus target imaging when wall parameters are unknown, a refocusing method based on image entropy measurement is proposed. Experiment and simulation results demonstrate that, this method can realize target refocusing and wall parameter estimation simultaneously.
     4. In order to improve the image quality, Hough transformation is adopted to recognize and undermine wall remnants. Stastical results show that, pixel values of the target and the background clutter follow different propability distributions. Based on this conclusion, an adaptive target detection method is applied. Finally, the morphaligical filtering is adoppted to surpress the false alarms and miss detections.
     The technologies of TTW imaging proposed in this paper are all successfully applied to the field data processing.
引文
[1] Dehmollaian. M, K. Sarabandi, Refocusing Through Building Walls Using Synthetic Aperture Radar [J], IEEE Transactions on Geoscience and Remote Sensing, Vol.46, June 2008
    [2] Marija M. Nikolic, Arye Nehorai, and Antonije R, Djordjevic. Estimating moving targets behind reinforced walls using radar [J], IEEE Transactions on antennas and propagation, Vol. 57, November 2009
    [3] Christian Debes, Jesper Riedler, Abdelhak M. Zoubir, Moeness G. Amin, Adaptive target detection with application to through-the-wall radar imaging [J], IEEE Transactions on Signal Processing, Vol. 58, November 2010
    [4] Michal Aftanas, Through wall imaging with UWB radar system [D], Technical University of Kosice
    [5]崔国龙,孔令讲,杨建宇.步进变频穿墙成像雷达中反投影算法研究[J].电子科技大学学报,2008,37(6):864-867
    [6] Song, L. P., C. Yu, and Q. H. Liu. Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses [J]. IEEE Transactions on Geoscience Remote Sensing, Vol.43, July, 2005
    [7] C. Debes, M. G. Amin, and A. M. Zoubir. Target detection in single and multiple-view through-the-wall radar imaging [J]. IEEE Transactions on Geoscience Remote Sensing, vol. 47, May, 2009
    [8] Zheng. W, Z. Zhao, and Z.-P. Nie. Application of TRM in the UWB through wall radar [J], Progress in Electromagnetics Research, Vol. 87, April, 2008.
    [9] Zheng, W., Z. Zhao, Z.-P. Nie and Q. H. Liu. Evaluation of TRM in the complex through wall environment [J], Progress in Electromagnetics Research, Vol. 90, July, 2009
    [10] W. Zhang, A. Hoorfar, Through-the-Wall Target Localization With Time Reversal Music Method [J], Progress In Electromagnetics Research, Vol. 106, 2010
    [11] Yeo-Sun Yoon, Moeness G. Amin. Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging [J], IEEE Transaction on Geoscience and Remote Sensing. Vol. 47, September 2009
    [12] M. G. Amin, H. Estephan. An adaptive background estimation technique for enhancing target detection in through-the-wall-radar imaging applications [C]. Proc of SPIE. 2009
    [13] M. Dehmollaian, K. Sarabandi. Analytical, numerical, and experimental methods for through-the-wall radar imaging [C]. IEEE Int. Conf. Acoust,Speech, Signal Process, April, 2008
    [14] F. Ahmad and M. G. Amin, High-resolution imaging using capon beamformers for urban sensing applications [J], IEEE Acoustics, Speech and Signal Processing, April. 2007
    [15] G. Wang, M. Amin. Imaging through unknown walls using different standoff distances [J]. IEEE Transaction on Signal Processing, Vol. 54, July, 2006
    [16] G Wang, M. Q Amin, Y Zhang. New approach for target location in the presence of wall ambiguities [J], IEEE Transaction on Geoscience and Remote Sensing, Vol. 47, September, 2004
    [17] Lianlin Li, Wenji Zhang, and Fang Li. A Novel Autofocusing Approach for Real-Time Through-Wall Imaging Under Unknown Wall Characteristics [J]. Transactions on Geoscience and Remote Sensing, Vol. 48, January, 2010
    [18] Ahmad. F, Amin. M. G, Kassam. S. A. Synthetic aperture beamformer for imaging through a dielectric wall [J]. IEEE Trans AES, Vol. 41(1), July 2005
    [19]李数为,高梅国等.步进频穿墙雷达成像算法[J].现代雷达,2007,29(12): 8-11
    [20]陆必应,宋千,王建,周智敏.步进频率连续波前视探地雷达的研究[J].现代雷达,2010,32(11): 5-8
    [21]黄琼,陈洁,孟升卫,方广有.一种快速超宽带雷达成像方法[J].电子与信息学报,2010,31(8):2001-2005
    [22]崔国龙,超宽带穿墙雷达合成孔径成像算法研究与实现[D].电子科技大学,2008
    [23] F.Ahmad, Y. Zhang, M.G. Amin. Three dimensional wideband beamforming for imaging through a single wall [J]. IEEE GRS letters. Vol.5 no.2 April 2008:176-179
    [24]贾勇,穿墙雷达成像技术研究[D].电子科技大学,2010
    [25] Chen K M,Huang Y, Zhang J. A micro life-detection system for searching human subjects under earthquake rubble or behind barrier [J]. IEEE trans. Biomed eng. Jan, 2000,47(1): 105-114
    [26] S. Nilsson, J. Janis, M. Gustafsson, & etc. Through-the-wall high-resolution imaging of a human and experimental characterization of the transmission of wall materials [J]. Proc. Of SPIE, vol. 7117,71170L: 1-16,2008
    [27] L.Lightstone,D.Faubert,G.Rempel.Multiple Phase Center DPCA for Airborne Radar [C]. Proceedings of the 1991 IEEE National Radar Conference,1991: 36-40
    [28] N.Maaref, P. Millot, C. Pichot, and O. Picon.A Study of UWB FM-CW Radar for the Detection of Human Beings in Motion Inside a Building [J]. IEEEtransaction on GRS, vol.47, no.5, may 2009:1297-1300.
    [29] R Klemm.Introduction to Space-time Adaptive Processing [J]. Electronics & Communication Engineering Journal, 1999: 5-12
    [30] Melvin M L. A STAP overview. IEEE Aerospace and Electronic System Magazine [J], 2004, 19(1: 19-35
    [31] Yegulalp A F. 2004. Wideband, Long-CPI GMTI. In 12th Annual ASAP Workshop [R]. Lincoln Laboratory, Lexington, Massachusetts.
    [32] Huey-Ru Chuang, Y-F. Chen and Kun-mu Chen. Automatic Clutte r- Canccler for Microwave Life-Detection Systems [J]. IEEE Transaction on Instrumentation and Measurement, August 1991, Vol .(4 0) : pp .747-750
    [33] A. Hunt. Use of a Frequency-Hopping Radar for Imaging and Motion Detection Through Walls [J]. IEEE trans GRS, vol. 47, no.5:1402-1408, May, 2009
    [34] Kun-Mu Chen, Yong Huang, JianPing Zhang, Adam Norman. Microw ave Life-Detection System for Searching Human Subjects Under Earthquake Rubbleor Behind Barrier [J]. IEEE Transactions on Biomedical Engineering,2000,Vo 1.27(1), pp .105-114
    [35] A. Hunt. Image formation through walls using a distributed radar sensor array [J]. proc. SPIE, vol. 5778, 169-174, May,2005
    [36] A.G. Yarovoy, X. Zhuge, T.G.Savelyev, L.P. Ligthart. Comparison of UWB Technologies for Human Being Detection with Radar [C]. Proc. the 37th European Microwave Conference, Oct. 2007:1574-1577
    [37] Skolnik M.I , Radar Handbook (Second Edition) [M], New York , McGraw-Hill, 1990
    [38] David D Ferris, Jr. Nicholas, C. Currie. A survey of current technologies for through the wall surveillance (TWS) [J]. Proc. SPIE, Nov.1998,vol.3577:62-72
    [39] A. C. Gaugue, J. L. Politano. Overview of current technologies for through the wall surveillance [J]. Proc. Of SPIE, vol. 5989,2005: 1-11
    [40] D. Edward, J. Baranoski. Trough wall imaging: historical perspective and future direction [M]. Proc. ICASSP 2008: 5173-5176
    [41] Wang Bu-Hong, Wang Yong-Liang. Array calibration of angularly dependent gain and phase uncertainties with instrumental sensors [J], IEEE 2003
    [42] M. Bimpas, N. Paraskevopoulos, K. Nikellis. Development of a three band radar system for detecting trapped alive humans under building ruins [J] Progress in electromagnetics research, 2004, PIER 49: 161-188
    [43] A. Vertiy, I.V. Voynovskyy, Sunullah Ozbek. Microwave through obstacles life-signs detection system [J]. The remiote sensing Laboratory Annual, 2005.12.20
    [44] Yazhou Wang, Yunqiang Yang and Aly E. Fathy, Ultra wideband Vivaldi arraysfor see through the wall imaging radar application [C]. IEEE 2009 AP-S, 978-4244-3647-7/09.
    [45] V.R.Komanduri, Ahmad Hoorfar, and N. Engheta, Low-profile array design considerations for through the wall microwave imaging application [C]. IEEE 2005 7803-8883-6
    [46] J.D.S.L angley,P .S .H all,a nd P Newham, Novelu ltrawide-bandwidth Vivaldi antenna and low c ross polairsation [J]. Electron. Let., vol.29, no .23,1993, pp.2004-2005
    [47] F. Ahmad, M. G. Amin. Through the wall polarimetric imaging [C]. Proc. Of SPIE, vol. 6970,69700N: 1-11,2008
    [48] M. Dehmollaian, M. Thiel, and K. Sarabandi. Through-the-wall imaging using differential SAR [J]. IEEE trans. GRS, vol. 47, no.5, May 2009:1289-1296
    [49] S.Jeong. Dual Detection of a Watermark Embedded in the DCT Domain [R]. EE368A Project Report, 2001
    [50] B.S. Reddy, B.N. Chatter. An FFT-based Technique for Translation, Rotation and Scale-invariant Image Registration [J]. IEEE Trans on Image Processing, 1996,5(8): 1266-1271
    [51] GC. Sharp, S.W. Lee, D.K. Wee. ICP Registration Using Invariant Features [C]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002,24(l): 90-102.
    [52] A.G. Yarovoy, L.P.Ligthart, J. Matuzas, B. Levitas. UWB Radar for Human Being Detection [J]. IEEE A&E system magazine, Nov. 2006:22-26
    [53] Richard E.Carnade. Dual Baseline and Frequency Along-Track Interferometry [J].IEEE 1992.1585~1588
    [54] Stephen J.Frasier.Dual-Beam Interferometry for Ocean Surface Current Vector Mapping [J]. IEEE Trans. on G.R.S, 2001, 39(2): 401-414
    [55] Jakeman E. A model for non-rayleigh sea echo [J]. IEEE Trans on Antennas Propagat,1976,24(6):806-814
    [56] Frery AC, Muller HJ, Yanasse CF, A model for extremely heterogeneous clutter [J]. IEEE Trans on GRS,1997,35(3):648-659
    [57] Goodman NR. Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction) [J]. Annals of Mathematical Statistics,1963,34(1):152-177
    [58] Lee JS, Miller AR, Hoppel KW. Stastistics of phase difference product magnitude of multi-look processed Gaussian signals [J]. Waves in Tandom media,1994,4:307-319
    [59] A.Muqaibei, A.Safaai-Jazi, A.Bayram, A.M.Attiya, and S.M.Riad. Ultra-wide band through-the-wall propagation [J]. IEEE Proc. Microw. Antennas Propag., Vol.152, No.6, December2005
    [60]苏彩虹,朱学峰,刘笛.用于墙地砖缺陷监测的自动精确图像配准方法[J].华南理工大学学报自然科学版,2004 ,32(4):33-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700