穿墙雷达信息处理及实现技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿墙探测技术可在军事、反恐、灾后搜索等场合发挥重要作用。以穿墙雷达技术为代表的穿墙探测技术是近年来生命探测技术研究的前沿和热点。
     本文以穿墙雷达一维系统信号处理理论为基础,重点研究了穿墙雷达模型和信号处理关键技术,包括杂波抑制及目标检测算法的系统总结与改进、穿墙雷达实时处理软件的设计与实现。主要工作如下:
     1、建立了穿墙雷达基本模型,给出了信号处理基本流程,介绍了IR-UWB信号形式及色散补偿方法、杂波抑制算法及RFI干扰抑制方法。
     2、系统地分析了现有的杂波抑制算法,提出了杂波抑制算法的统一模型,并在此基础上对自适应背景相消算法的模型进行了归纳总结。
     3、提出了一种基于初步检测的杂波抑制算法。该方法在经典的指数加权算法的处理结果的基础上,对不同距离单元进行实时加权处理。实验表明,改进型算法的杂波抑制效果较经典算法好,在较近的探测距离内各种运动类型目标的探测中表现比较理想,适用性较强。本文进而将上述方法应用于目标检测,改善了穿墙雷达动目标检测效果。
     4、从雷达系统的需求特别是实时处理能力出发,设计并实现了超宽带穿墙雷达实时处理软件。软件以LabWindows/CVI 9.0为平台,实现了对雷达系统的控制,很好地完成了各类实验任务。
     以上研究和工作成果均成功应用于某超宽带穿墙雷达实验系统,经过实测数据验证,取得了很好的实际应用效果。
Through-the-wall detection technique has a variety of potential applications in military, antiterrorism and search-and-rescue work in emergencies, and through-the-wall detection technique based on radar has been a research hotspot for a few years.
     This paper mainly studies the signal processing model and technique of through-the-wall radar, such as clutter suppression algorithms, moving target detection methods, radar software design and implementation.
     Firstly, the one-dimension radar model for signal processing technique is analyzed and classical methods in dispersion compensation, clutter suppression and radio frequency interference suppression are discussed.
     Secondly, the comparison and unification of classical algorithms in clutter compensation is deeply researched. Two-pulse canceler, accumulative average background subtraction and exponential moving average background subtraction are analyzed and a simple model is proposed to unite the three classical algorithms. With the algorithm model, adaptive background subtraction methods are studied. For these methods are not effective enough, this paper brings forward a novel clutter suppression algorithm in order to reduce clutter.
     Then, this paper has compared the classical algorithms in target detection and proposed an improved method, which makes a good performance in a certain range behind the wall. All of the algorithms in clutter compensation and target detection are based on real experimental data of through-the-wall radar investigated.
     Lastly, a through-the-wall radar software is designed and implemented to meet the demand of radar system for signal processing in real time. Based on virtual instrument technology and ultra-wideband through-the-wall radar experimental system, the software makes a good practical application and the scalability feature is significant for the design and optimization of the experimental system and algorithms.
引文
[1]贺峰.宽带/超宽带雷达运动人体目标检测与特征提取关键技术研究[D].国防科学技术大学, 2011.
    [2] Borek S E. An Overview of Through the Wall Surveillance for Homeland Security[C]. Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop, 2005:42-47.
    [3] Black J D. Motion and ranging sensor system for through-the-wall surveillance system[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement, 2002:114-121.
    [4] Borek S E, Clarke B J, Costianes P J. Through-the-wall surveillance for homeland security and law enforcement[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, 2005:175-185.
    [5] Gaugue A C, Politano J. Overview of current technologies for through-the-wall surveillance[C]. Proceedings of SPIE on Technologies for Optical Countermeasures II, Femtosecond Phenomena II, and Passive Millimetre-Wave & Terahertz Imaging II, 2005:1-11.
    [6] Hunt A R, Hogg R D. Stepped-frequency CW radar for concealed weapon detection and through-the-wall surveillance[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement, 2002:99-105.
    [7] Hunt A R. Image formation through walls using a distributed radar sensor array[C]. Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, 2003:232-237.
    [8] Hunt A. Through the Wall Imaging Radar[R]. Rome, New York: AFRL Technical Report: AFRL-IF-RS-TR-2003-53, 2003.
    [9] Hunt A R. Image formation through walls using a distributed radar sensor network[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, 2005:169-174.
    [10] Hunt A. Random Array Through the Wall Imaging Sensor[R]. Rome, New York: AFRL Technical Report: AFRL-IF-RS-TR-2006-122, 2006.
    [11] http://www.akelainc.com/technologies/through-the-wall-detection-surveillance.
    [12] Nag S, Fluhler H, Barnes M. Preliminary interferometric images of moving targets obtained using a time-modulated ultra-wide band through-wall penetration radar[C]. Proceedings of the IEEE Radar Conference, 2001:64-69.
    [13] Nag S, Barnes M A, Payment T, et al. An Ultrawideband through-wall radar fordetecting the motion of people in real time[C]. Proceedings of SPIE on Radar Sensor Technology and Data Visualization, 2002:48-57.
    [14] Nag S, Barnes M. A moving target detection filter for an ultra-wideband radar[C]. Proceedings of the 2003 IEEE Radar Conference, 2003:147-153.
    [15] De Wit J J M, Anitori L, Van Rossum W L, et al. Radar Mapping of Buildings using Sparse Reconstruction with an Overcomplete Dictionary[C]. Proceedings of the 8th European Radar Conference, 2011:9-12.
    [16] Smith G E, Woodbridge K, Baker C J. Multistatic Micro-Doppler Signature of personnel[C]. Proceedings of IEEE Radar Conference, 2008.
    [17] Smith G E, Woodbridge K, Baker C J, et al. Multistatic micro-Doppler radar signatures of personnel targets[J]. Iet Signal Processing. 2010, 4(3): 224-233.
    [18] Burchett H. Advances in Through Wall Radar for Search, Rescue and Security Applications[C]. Proceedings of IET of The Institution of Engineering and Technology Conference on Crime and Security, 2006:511-525.
    [19] Burchett H. Advances in Short Range Radar[C]. Proceedings of IET of The Institution of Engineering and Technology Seminar on The Future of Civil Radar, 2006:41-54.
    [20] Burchett M H, Utsi P A V, Oswald G K A, et al. WO 2008/001092[P]. USA, PCT/GB2007/002416. 3 January 2008 (03.01.2008).
    [21] http://www.cambridgecunsultant.com/prism_200.html.
    [22] Van Dorp P, Groen F C A. Feature-based human motion parameter estimation with radar[J]. Iet Radar, Sonar and Navigation. 2008, 2(2): 135-145.
    [23] Van Dorp P, Groen F C A. Human walking estimation with radar[J]. Iee Proceedings On Radar, Sonar and Navigation. 2003, 150(5): 356-365.
    [24] Thayaparan T, Abrol S, Riseborough E. Micro-Doppler Radar Signatures for Intelligent Target Recognition[R]. Ottawa, Canada: Defense Research and Development Canada - Ottawa, 2004.
    [25] Thayaparan T, Abrol S, Riseborough E, et al. Analysis of radar micro-Doppler signatures from experimental helicopter and human data[J]. Iet Radar, Sonar & Navigation. 2007, 1(4): 289-299.
    [26] Thayaparan T. Separation of Target Rigid Body and Micro-Doppler Effects in ISAR/SAR Imaging[R]. Ottawa, Canada: Defense Research and Development Canada - Ottawa, 2006.
    [27] Barrie G. UWB Impulse Radar Characterization and Processing Techniques[R]. Ottawa, Canada: Defence R&D Canada - Ottawa, 2004.
    [28] Vertiy A A. Microwave Through Wall Detection Technology[R]. Gebze–Kocaeli,Turkey: International Laboratory for High Technologies(ILHT).
    [29] Vertiy A A, Voynovskyy I V, Ozbek S. Microwave through-obstacles life-signs detection system[R]. Kocaeli, Turkey: International Laboratory for High Technologies.
    [30] Beeri A, Daisy R. High-resolution through-wall imaging[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I), 2006:1-6.
    [31] http://www.camero-tech.com.
    [32] http://rascan.com.
    [33] http://www3.ntu.edu.sg/temasek-labs/radar_system.html.
    [34] Tan D K P, Lesturgie M, Hongbo S, et al. GSM based through-the-wall passive radar demonstrator for motion sensing[C]. New Trends for Environmental Monitoring Using Passive Systems, 2008:1-4.
    [35] Huang L, Lu Y L. Through-the-wall tomographic imaging using chirp signals[C]. Proc. 2011 IEEE AP-S URSI International Symposium, 2011.
    [36]李禹. UWB-TWDR的运动目标检测及定位[D].长沙:国防科学技术大学, 2003.
    [37]张翼,朱玉鹏,程永强,等.基于微多普勒特征的人体目标雷达回波信号分析[J].信号处理. 2009, 25(10): 1616-1623.
    [38]张翼.人体微动雷达特征研究[D].长沙:国防科学技术大学, 2009.
    [39]牟妙辉. UWB穿墙生命探测雷达波形设计和干扰抑制方法研究[D].国防科学技术大学, 2009.
    [40]贺峰,朱国富,牟妙辉,等.超宽带穿墙雷达对人体动目标探测的实验研究[J].现代雷达. 2010, 32(7): 29-33.
    [41] Lu B, Song Q, Zhou Z, et al. A SFCW Radar for Through Wall Imaging and Motion Detection[C]. Proceedings of the 8th European Radar Conference, 2011:325-328.
    [42]倪安胜.伤员探测中生命体识别技术研究[D].西安:第四军医大学, 2003.
    [43]罗漫江.生命探测仪的技术研究[D].西安:西安电子科技大学, 2004.
    [44]李勇.连续波雷达穿墙探测技术研究[D].南京理工大学, 2009.
    [45]郭山红,孙锦涛,谢仁宏.穿墙生命探测回波信号分析[J].南京理工大学学报(自然科学版). 2008, 32(5).
    [46]李刚. LFMCW生命探测雷达信号处理技术研究[D].西安:西北工业大学, 2007.
    [47]王宏.超宽带穿墙雷达成像及多普勒特性研究[D].成都:电子科技大学, 2009.
    [48]陈永峰.穿墙雷达人体回波检测与跟踪算法研究[D].成都:电子科技大学, 2011.
    [49]李述为,高梅国,傅雄军.步进频穿墙雷达成像算法[J].现代雷达. 2007, 29(12).
    [50]李述为,高梅国,傅雄军.生命探测雷达回波信号处理与仿真[J].兵工学报. 2008, 29(6).
    [51]陈洁,方广有,李芳.超宽带穿墙雷达非相干成像方法[J].中国科学院研究院学报. 2007, 24(6).
    [52]陈洁.超宽带雷达信号处理及成像方法研究[D].北京:中国科学院研究生院, 2007.
    [53]孟升卫,黄琼,吴世有,等.超宽带穿墙雷达动目标跟踪成像算法研究[J].仪器仪表学报. 2010, 31(3).
    [54]黄冬梅.基于IR-UWB穿墙成像系统的性能研究[D].哈尔滨:哈尔滨工业大学, 2011.
    [55] Farwell M, Ross J, Luttrell R, et al. Sense through the wall system development and design considerations[J]. Journal of the Franklin Institute. 2008, 345(6): 570-591.
    [56] Baranoski E J. Through-wall imaging: Historical perspective and future directions[J]. Journal of the Franklin Institute. 2008, 345(6): 556-569.
    [57] Song L P, Yu C, Liu Q H. Through-wall imaging (TWI) by radar 2-D tomographic results and Analyses[J]. Ieee Transactions On Geoscience and Remote Sensing. 2005, 43(12): 2793-2798.
    [58] Ahmad F, Yimin Z, Amin M G. Three-Dimensional Wideband Beamforming for Imaging Through a Single Wall[J]. Ieee Geoscience and Remote Sensing Letters. 2008, 5(2): 176-179.
    [59] Setlur P, Amin M, Ahmad F. Dual-frequency Doppler radars for indoor range estimation: Cramer-Rao bound analysis[J]. Iet Signal Processing. 2010, 4(3): 256-271.
    [60] He F, Zhu G, Huang X, et al. Preliminary Results of Ultra-Wideband Through-the wall Life-detecting Radar[C]. Proceedings of IEEE International Radar Conference, 2010:1327-1330.
    [61]牟妙辉,朱国富,贺峰,等.一种用于墙后静止人体微动特征检测的杂波抑制方法[J].电子技术. 2010(2): 19-21.
    [62] Yoon Y, Amin M G. Spatial Filtering for Wall-Clutter Mitigation in Through-the-Wall Radar Imaging[J]. Ieee Transactions On Geoscience and Remote Sensing. 2009, 47(9): 3192-3208.
    [63] Mahafza Bassem R.,Elsherbeni Atef Z.雷达系统设计MATLAB仿真[M].北京:电子工业出版社, 2009: 211-215页.
    [64] Richards Mark A.雷达信号处理基础[M].北京:电子工业出版社, 2008: 167页.
    [65]张旻,程家兴,樊甫华,等.利用Hilbert变换提取信号瞬时特征参数的问题研究[J].电讯技术. 2003, 43(4).
    [66]李鹏飞.超宽带穿墙雷达人体动目标检测技术[D].国防科学技术大学, 2011.
    [67]赵彧.穿墙探测雷达的多目标定位与成像[D].国防科学技术大学, 2006.
    [68]粟毅,黄春琳,雷文太.探地雷达理论与应用[M].北京:科学出版社, 2006: 131页.
    [69]王建.车载前视超宽带SAR浅埋目标成像技术研究[D].长沙:国防科学技术大学, 2008.
    [70] Skolnik Merrill I.雷达手册(第二版)[M].北京:电子工业出版社, 2003: 188页.
    [71]林昌禄.天线工程手册[M].北京:电子工业出版社, 2002: 770页.
    [72] Zetik R, Crabbe S, Krajnak J, et al. Detection and localization of persons behind obstacles using M-sequence through-the-wall radar[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense V, 2006:1-12.
    [73] Urdzík D, Kocur D. CFAR Detectors for through Wall Tracking of Moving Targets by M-sequence UWB Radar[C]. Radioelektronika 20th International Conference, 2010:1-4.
    [74] He F, Zhu G, Huang X, et al. Detection of human targets with ultra-wide band through-the-wall radar[C]. Proceedings of International Conference on Microwave and Millimeter Wave Technology, 2010:1750-1753.
    [75]郑亮亮,金光.基于HP VEE的虚拟测控系统的开发与应用[J].微计算机信息. 2010, 26(1).
    [76] National Instruments Corporation. LabWindows/CVI Help[S]. 2008.
    [77] Agilent Technologies. Programmer’s Reference Manual: Agilent Acqiris Instruments[S]. 2009.
    [78] Agilent Technologies. Programmer’s Guide Agilent Acqiris Instruments[S]. 2009.
    [79]乔立岩.虚拟仪器软件开发环境——LabWindows/CVI 6.0编程指南[M].北京:机械工业出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700