宽带/超宽带雷达运动人体目标检测与特征提取关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体目标探测在反恐、灾后搜救等场合具有重要应用,基于雷达的人体目标探测技术是近年来人体目标探测的研究热点和前沿课题。本文的研究围绕运动人体目标雷达探测理论与技术展开,重点研究运动人体目标雷达回波模型、宽带/超宽带雷达运动人体目标特征提取、超宽带穿墙雷达的干扰与杂波抑制、实测数据处理与分析等关键理论与技术。
     首先研究了运动人体目标雷达回波建模。将人体目标运动简化为典型运动形式的复合运动,基于线性刚体结构建立和完善了原地踏步状态和行进状态人体目标模型,上述模型具有与真实人体目标运动状态吻合度高、参数调整方便、思路简单等特点,可推广应用于多种雷达信号形式。基于连续波信号得到了运动人体目标雷达回波,从理论上分析了运动人体目标的瞬时频率特征和瞬时运动特征,利用仿真工具分析了不同探测条件下雷达回波特性,为分析运动人体目标特征提取奠定了理论基础。
     其次研究了宽带/超宽带雷达运动人体目标特征提取。以摆动目标为简化模型,研究了原地踏步目标特征提取。基于频率步进连续波信号得到摆动目标宽带/超宽带雷达回波,提出了利用脉冲对消、高通滤波或自适应时频表示技术进行微动信号分离的处理方法;根据摆动目标时间-距离像和时间-频率像变化规律,提出了两种基于时间-距离像的摆动目标特征提取改进算法,提高了摆动周期的估计精度,提出了基于幅度阈值检测从目标时间-频率像直接提取摆动特征的算法,并研究了时频变换方法对特征提取性能的影响;本文研究的摆动目标特征提取方法同样适用于旋转等周期性运动目标。
     以平动和摆动构成的复杂运动目标为简化模型,研究了行进运动目标特征提取。基于频率步进连续波信号得到复杂运动目标宽带/超宽带雷达回波,根据复杂运动目标时间-距离像和时间-频率像变化规律,提出了基于距离和差值序列的复杂运动目标特征提取新方法,该方法解决了不同摆动幅度的估计问题,算法实现简单、参数提取精度高;提出了基于运动补偿的复杂运动目标特征提取新方法,该方法解决了多散射点目标趋势项的估计与处理问题,算法实时性好、参数估计精度高;本文研究的复杂运动目标特征提取方法可推广应用于由一般平动和周期性运动构成的复杂运动目标。
     最后基于实测数据研究了超宽带穿墙雷达人体目标检测与特征提取等问题。研究了超宽带冲激信号雷达回波特性,介绍了所研制的超宽带穿墙雷达的结构和基本组成。干扰与杂波抑制是人体目标检测的关键,针对耦合的时变性,提出了一种基于频域幅度时延对齐的耦合抑制新算法,在一定程度上解决了时变耦合抑制问题;针对杂波的复杂性和目标运动状态的不规律性,提出了基于自适应背景相消的杂波抑制新算法,该算法对杂波环境和目标运动类型适应性强,从理论上将脉冲对消法、背景相消法等常规杂波抑制方法统一于自适应背景相消算法,完善了穿墙雷达杂波抑制理论和方法。开展了不同探测条件下多种运动类型的人体目标穿墙探测实验,利用实测数据处理结果验证了干扰与杂波抑制算法以及运动人体目标特征提取算法的有效性和超宽带穿墙雷达对人体目标的优良探测性能。指出了系统存在的主要问题,为系统的进一步改进提供了参考。
     论文提出的运动人体目标雷达回波模型、宽带/超宽带雷达运动人体目标特征提取方法和超宽带穿墙雷达系统中关键信号处理算法将丰富人体目标雷达探测理论与特征提取技术,对穿墙雷达的研制具有较强的理论意义与应用价值。
Detection of human target is an important issue in antiterrorism and search-and-rescue situations after emergencies, and detection technique of human target based on radar has been a research hotspot for a few years. In this paper, scientific researches have been made on radar detection theory and techniques of locomotor human targets. The main attention have been paid to key theory and techniques of radar echo model and wide band (WB) or ultra-wide band (UWB) radar signature extraction of locomotor human targets, interference and clutter suppression algorithms of UWB through the wall radar (TWR), and real data processing and analysis of experimental radar system.
     Firstly, radar echo model of locomotor human target is analyzed. The movement of human target is abstracted as composite motions composed of typical movements, and the model of human marking time and the model of human walking are established and improved based on linear-rigid structure, respectively. The characteristic of models discussed in this paper are that models fit well with real human’s movement, parameters of models can be adjusted conveniently, and the process of modeling is simple. Therefore, these two models can be applied to various radar signals. The radar echoes of locomotor human targets are acquired under the condition of continuous wave (CW) signal, instantaneous Doppler signatures and instantaneous movement signatures of targets are analyzed in theory, and the characteristic of radar echoes under different detection conditions are discussed by simulations in order to establish the theoretical foundation of signature extraction of locomotor human targets.
     Secondly, WB/UWB radar signature extraction of locomotor human targets is analyzed. First of all, signature extraction of human marking time is discussed based on the simplified model of vibrating targets. WB/UWB radar echoes of vibrating target are obtained based on stepped frequency continuous wave (SFCW) signal, and a micro-motion signal separation method is brought forward with pulse canceller, high-pass filter (notch filter), or adaptive time-frequency representation(ATFR)algorithm. Then after the periodic laws of time-range profile and time-frequency profile of the target being analyzed, two improved micro-motion signature extraction algorithms based on time-range profile are carried out to improve the precision of the period estimation of vibrating target, a micro-motion signature extraction algorithm based on amplitude threshold detection is carried out to extract signatures directly from time-frequency profile, and the influence of time-frequency transforms onto the micro-motion signature extraction algorithm based on amplitude threshold detection is investigated. Studies indicate that micro-motion signature extraction algorithms put forward in this paper can be applied to other periodic moving targets such as rotary targets.
     Signature extraction of pedestrian is discussed based on the simplified model of a complex motion with translation and vibration. WB/UWB radar echoes of a target with complex motion are obtained based on SFCW signal first, and then after the characteristic of the target’s time-range profile being analyzed, a novel signature extraction method based on summation and difference sequence of ranges is proposed. The method can be utilized to deal with the problem of parameter estimation of the target with different vibrating amplitudes, and has specialties of easy implementation and high resolution of estimation results. A novel signature extraction method based on motion compensation is carried out after the characteristic of the target’s time-frequency profile being analyzed. The method can be utilized to deal with the problem of trend extraction and processing of multi-scatterers, and has specialties of good real time processing characteristic and high resolution of estimation results. Studies indicate that signature extraction methods discussed in this paper can be extended to analyze other targets with complex motions composed of general translation and other periodic motions.
     Lastly, human target detection and signature extraction based on real experimental data of UWB-TWR are investigated. The characteristic of UWB impulse radar echoes is discussed first, and then the structure and basic configurations of the UWB-TWR developed by NUDT are presented. Interference suppression and clutter suppression are the key factors to human target detection, and a novel coupling suppression algorithm based on the compensation of amplitude and delay within frequency domain is put forward, which can partly deal with the problem of time-variant coupling suppression. A novel clutter suppression algorithm based on adaptive background subtraction is brought forward in order to reduce clutter, and the algorithm can be applied to complex clutter environments and multiple movements of targets. In theory, the clutter suppression algorithm discussed in this paper can be regarded as common form for conventional clutter suppression algorithms such as pulse canceller, and background subtraction, and enriches the theory and methods of through the wall radar clutter suppression. TWR experiments are performed under different conditions of detection and movements. After data processing, experimental results validate interference and clutter suppression algorithms, signature extraction algorithms of locomotor human targets, and the good detection performance of the radar system. Some important issues are pointed out in order to improve the system further at last.
     Radar echo model of locomotor human targets, WB/UWB radar signature extraction of locomotor human targets, and key signal proceesing algorithms of UWB-TWR discussed in this paper can enrich the radar detection theory and signature techniques of human target, and be much valuable in theory and in application for development of TWR.
引文
[1] Baertlein B, Moses R. Personnel detection technology assessment: Final report[R]. U. S. Army Research Office, 2003.
    [2] Frazier L M. Radar surveillance through solid materials[C]. Proceedings of SPIE Photonics East Conference, Enabling Technologies for Law Enforcement and Security. Boston Massachusetts, 1996, 2938: 139-146.
    [3] Farwell M, Ross J, Luttrell R, et al. Sense through the wall system development and design considerations[J]. Journal of the Franklin Institute. 2008, 345(6): 570-591.
    [4] Ferris D D, Currie N C. A Survey of current technologies for through-the-wall surveillance (TWS)[C]. Proceedings of SPIE on Sensors, C3I, Information, and Training Technologies for Law Enforcement. Boston, Massachusetts, 1998, 3577: 62-72.
    [5] Chen K M, Huang Y, Zhang J P, et al. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier[J]. IEEE Transactions on Biomedical Engineering. 2000, 27(1): 105-114.
    [6] Borek S E. An Overview of Through the Wall Surveillance for Homeland Security[C]. Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop. 2005: 42-47.
    [7] Brant T G, Morse G B, Novak L M, et al. Tactical Radars for Ground Surveillance[J]. Lincoln Laboratory Journal. 2000, 12(2): 341-354.
    [8] Greneker E F. RADAR flashlight for through-the-wall detection of humans[C]. Proceedings of SPIE on Targets and Backgrounds: Characterization and Representation IV. Orlando, Florida, USA, 1998, 3375: 280-285.
    [9] Geisheimer J L, Marshall W S, Greneker E. A continuous-wave (CW) radar for gait analysis[C]. Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, 2001: 834-838.
    [10] Geisheimer J L, Greneker E F, Marshall W S. A High-resolution Doppler model of the human gait[C]. Proceedings of SPIE on Radar Sensor Technology and Data Visualization. 2002, 4744: 8-18.
    [11] Tan R, Bender R. Analysis of Doppler measurements of people[C]. Proceedings of SPIE on Targets and Backgrounds XII: Characterization and Representation. Orlando, USA, 2006, 6239(623908): 1-9.
    [12] Dogaru T, Nguyen L. FDTD Models of Electromagnetic Scattering by the Human Body[C]. Proceedings of IEEE on Antennas and Propagation Society International Symposium. 2006: 1995-1998.
    [13] Dogaru T, Le C. Validation of Xpatch Computer Models for Human Body Radar Signature[R]. Adelphi, MD: U.S. Army Research Laboratory, 2008.
    [14] Chen V C. Analysis of radar micro-Doppler signature with time-frequency transform[C]. Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing. 2000: 463-466.
    [15] Chen V C. Micro-Doppler effect of micro-motion dynamics: a review[C]. Proceedings of SPIE on Independent Component Analyses, Wavelets, and Neural Networks. Orlando, USA, 2003, 5102: 240-249.
    [16] Chen V C, Li F Y, Ho S, et al. Micro-doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(1): 2-21.
    [17] Chen V C. Doppler signatures of radar backscattering from objects with micro-motions[J]. IET Signal Processing. 2008, 2(3): 291-300.
    [18] Chen V C. Detection and analysis of human motion by radar[C]. Proceedings of IEEE Radar Conference. 2008
    [19] Ling H. Exploitation of Microdoppler and Multiple Scattering Phenomena for Radar Target Recognition (Annual report)[R]. Ausin, USA: Texas University at Austin, 2004.
    [20] Lin A, Ling H. Through-wall measurements of a Doppler and direction-of-arrival (DDOA) radar for tracking indoor movers[C]. Proceedings of the IEEE Antennas and Propagation Society International Symposium. Columbus, Ohio, USA, 2005, 3B: 322-325.
    [21] Lin A, Ling H. Human tracking using a two-element antenna array[C]. Proceesings of SPIE on Radar Sensor Technology IX. Bellingham, WA, 2005, 5788: 57-64.
    [22] Ling H. Exploitation of Microdoppler and Multiple Scattering Phenomena for Radar Target Recognition (Final report)[R]. Ausin, USA: Texas University at Austin, 2006.
    [23] Lin A, Ling H. Frontal imaging of human using tree-element doppler and direction of arrival radar[J]. Electronics Letters. 2006, 42(11): 660-661.
    [24] Ram S S, Ling H. Analysis of microDopplers from human gait using reassigned joint time-frequency transform[J]. Electronics Letters. 2007, 43(23): 1309-1311.
    [25] Ram S S, Li Y, Lin A, et al. Human Tracking Using Doppler Processing and Spatial Beamforming[C]. Proceeding of IEEE Radar Conference. 2007: 546-551.
    [26] Anderson M G. Design of multiple frequency continuous wave radar hardware and micro-Doppler based detection and classification algorithms[D]. Austin: The University of Texas at Austin, 2008.
    [27] Ram S S, Ling H. Microdoppler signature simulation of computer animated human and animal motions[C]. Proceedings of IEEE Antennas and Propagation Society International Symposium. 2008
    [28] Ram S S, Li Y, Lin A, et al. Doppler-based detection and tracking of humans in indoor environments[J]. Journal of the Franklin Institute. 2008, 345(6): 679-699.
    [29] Ram S S, Christianson C, Ling H. Simulation of high range-resolution profiles of humans behind walls[C]. Proceedings of IEEE Radar Conference. 2009
    [30] Ram S S, Christianson C, Kim Y, et al. Simulation and analysis of human micro-Dopplers in through-wall environments[J]. IEEE Transactions on Geoscience and Remote Sensing. 2010, 48(4): 2015-2023.
    [31] Ram S S, Ling H. Simulation of human microDopplers using computer animation data[C]. Proceedings of IEEE Radar Conference. 2008
    [32] Yang Y, Zhang W, Lu C. Classify human motions using micro-Doppler radar[C]. Proceedings of SPIE on Biometric Technology for Human Identification V. 2008, 6944(69440V): 1-8.
    [33] Ahmad F, Amin M G, Zemany P D. Performance analysis of dual-frequency CW radars for motion detection and ranging in urban sensing applications[C]. Proceeding of SPIE on Radar Sensor Technology XI. Orlando, FL, 2007, 6547(65470K): 1-8.
    [34] Setlur P, Amin M, Ahmad F. Cramer-Rao Bounds for Range and Motion Parameter Estimations using Dual Frequency Radars[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal. Honolulu, HI, 2007, III: 813-816.
    [35] Setlur P, Amin G M, Ahmad F, et al. Experiments on through-the-wall motion detection and ranging[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense VI. 2007, 6538(653809): 1-10.
    [36] Setlur P, Amin M, Ahmad F. Dual-frequency Doppler radars for indoor range estimation: Cramer-Rao bound analysis[J]. IET Signal Processing. 2010, 4(3): 256-271.
    [37] Lai C P, Ruan Q, Narayanan R M. Hilbert-Huang Transform (HHT) Processing of Through-Wall Noise Radar Data for Human Activity Characterization[C]. Proceedings of IEEE Workshop on Signal Processing Applications for Public Security and Forensics. 2007
    [38] Lai C. Through wall surveillance using ultrawideband random noise radar[D]. The Pennsylvania State University, 2007.
    [39] Lai C, Ruan Q, Narayanan R M. Hilbert-Huang Transform (HHT) Analysis of Human Activities Using Through-Wall Noise Radar[C]. Proceedings of International Symposium on Signals, Systems and Electronics. 2007: 115-118.
    [40] Lai C -, Narayanan R M, Ruan Q, et al. Hilbert-Huang transform analysis of human activities using through-wall noise and noise-like radar[J]. IET Radar, Sonar & Navigation. 2008, 2(4): 244-255.
    [41] Chen K M, Misra D, Wang H, et al. An X-Band Microwave Life-Detection System[J]. IEEE Transactions on Biomedical Engineering. 1986, BME-33(7): 697-701.
    [42] Chen K M, Chuang H R. Measurement of heart and breathing signals of human subjects through barriers with microwave life-detection systems[C]. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1988: 1279-1280.
    [43] Otero M. Application of a continuous wave radar for human gait recognition[C]. Proceedings of SPIE on Signal Processing, Sensor Fusion, and Target Recognition XIV. 2005, 5809: 538-548.
    [44] Kealey P G, Jahangir M. Advances in Doppler recognition for ground moving target indication[C]. Proceedings of SPIE on Automatic Target Recognition XVI. 2006, 6234(62340W): 1-11.
    [45] Black J D. Motion and ranging sensor system for through-the-wall surveillance system[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement. 2002, 4708: 114-121.
    [46] Borek S E, Clarke B J, Costianes P J. Through-the-wall surveillance for homeland security and law enforcement[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV. Bellingham, WA, 2005, 5778: 175-185.
    [47] Gaugue A C, Politano J. Overview of current technologies for through-the-wall surveillance[C]. Proceedings of SPIE on Technologies for Optical Countermeasures II, Femtosecond Phenomena II, and Passive Millimetre-Wave & Terahertz Imaging II. 2005, 5989(59891H): 1-11.
    [48] Hunt A R, Hogg R D. Stepped-frequency CW radar for concealed weapon detection and through-the-wall surveillance[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement. 2002, 4708: 99-105.
    [49] Hunt A R. Image formation through walls using a distributed radar sensor array[C]. Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop. 2003: 232-237.
    [50] Hunt A. Through the Wall Imaging Radar[R]. Rome, New York: AFRL Technical Report: AFRL-IF-RS-TR-2003-53, 2003.
    [51] Hunt A R. Image formation through walls using a distributed radar sensor network[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV. 2005, 5778: 169-174.
    [52] Hunt A. Random Array Through the Wall Imaging Sensor[R]. Rome, New York: AFRL Technical Report: AFRL-IF-RS-TR-2006-122, 2006.
    [53] Nag S, Fluhler H, Barnes M. Preliminary interferometric images of moving targets obtained using a time-modulated ultra-wide band through-wall penetration radar[C]. Proceedings of the IEEE Radar Conference. 2001: 64-69.
    [54] Nag S, Barnes M A, Payment T, et al. An Ultrawideband through-wall radar for detecting the motion of people in real time[C]. Proceedings of SPIE on Radar Sensor Technology and Data Visualization. 2002, 4744: 48-57.
    [55] Nag S, Barnes M. A moving target detection filter for an ultra-wideband radar[C]. Proceedings of the 2003 IEEE Radar Conference. 2003: 147- 153.
    [56] Smith G E, Woodbridge K, Baker C J. Multistatic Micro-Doppler Signature of personnel[C]. Proceedings of IEEE Radar Conference. 2008
    [57] Smith G E, Woodbridge K, Baker C J, et al. Multistatic micro-Doppler radar signatures of personnel targets[J]. IET Signal Processing. 2010, 4(3): 224-233.
    [58] Burchett H. Advances in Through Wall Radar for Search, Rescue and Security Applications[C]. Proceedings of IET Conference on Crime and Security. 2006: 511-525.
    [59] Burchett M H, Utsi P A V, Oswald G K A, et al. WO 2008/001092[P]. USA, PCT/GB2007/002416. 3 January 2008 (03.01.2008).
    [60] http://www.cambridgeconsultants.com.
    [61] Van Dorp P, Groen F C A. Human walking estimation with radar[J]. IEE Proceedings on Radar, Sonar and Navigation. 2003, 150(5): 356-365.
    [62] Van Dorp P, Groen F C A. Feature-based human motion parameter estimation with radar[J]. IET Radar, Sonar and Navigation. 2008, 2(2): 135-145.
    [63] Thayaparan T, Abrol S, Riseborough E. Micro-Doppler Radar Signatures for Intelligent Target Recognition[R]. Ottawa, Canada: Defense Research and Development Canada - Ottawa, 2004.
    [64] Thayaparan T. Separation of Target Rigid Body and Micro-Doppler Effects in ISAR/SAR Imaging[R]. Ottawa, Canada: Defense Research and Development Canada - Ottawa, 2006.
    [65] Thayaparan T, Abrol S, Riseborough E, et al. Analysis of radar micro-Doppler signatures from experimental helicopter and human data[J]. IET Radar, Sonar & Navigation. 2007, 1(4): 289-299.
    [66] Vertiy A A. Microwave Through Wall Detection Technology[R]. Gebze–Kocaeli,Turkey: International Laboratory for High Technologies(ILHT).
    [67] Vertiy A A, Voynovskyy I V, Ozbek S. Microwave through-obstacles life-signs detection system[R]. Kocaeli, Turkey: International Laboratory for High Technologies.
    [68] Beeri A, Daisy R. High-resolution through-wall imaging[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I). 2006, 6201(62010J): 1-6.
    [69] http://www.camero-tech.com.
    [70]李禹. UWB-TWDR的运动目标检测及定位[D].长沙:国防科学技术大学, 2003.
    [71]张翼,朱玉鹏,程永强,等.基于微多普勒特征的人体目标雷达回波信号分析[J].信号处理. 2009, 25(10): 1616-1623.
    [72]张翼.人体微动雷达特征研究[D].长沙:国防科学技术大学, 2009.
    [73]牟妙辉. UWB穿墙生命探测雷达波形设计和干扰抑制方法研究[D].长沙:国防科学技术大学, 2009.
    [74]贺峰,朱国富,牟妙辉,等.超宽带穿墙雷达对人体动目标探测的实验研究[J].现代雷达. 2010, 32(7): 29-33.
    [75]倪安胜.伤员探测中生命体识别技术研究[D].西安:第四军医大学, 2003.
    [76]罗漫江.生命探测仪的技术研究[D].西安:西安电子科技大学, 2004.
    [77]李刚. LFMCW生命探测雷达信号处理技术研究[D].西安:西北工业大学, 2007.
    [78]王宏.超宽带穿墙雷达成像及多普勒特性研究[D].成都:电子科技大学, 2009.
    [79] Boulic R, Thalmann M N, Thalmann D. A global human walking model with real-time kinematic personification[J]. Visual Computer. 1990, 6(6): 344-358.
    [80] Website of the Motion Research Laboratory, Carnegie Mellon University: http://mocap.cs.cmu.edu.
    [81] Ghaleb A, Vignaud L, Nicolas J M. Micro-Doppler analysis of wheels and pedestrians in ISAR imaging[J]. IET Signal Processing. 2008, 2(3): 301-311.
    [82] Chen V C, Li F, Ho S S, et al. Analysis of micro-Doppler signatures[J]. IEE Proceedings on Radar, Sonar and Navigation. 2003, 150(4): 271-276.
    [83]庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报. 2007, 35(3): 520-525.
    [84] Li J, Ling H. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[J]. IEE Proc.-Radar Sonar Navig. 2003, 150(4): 284-291.
    [85] Raj R G, Chen V C, Lipps R. Analysis of radar human gait signatures[J]. IET Signal Processing. 2010, 4(3): 234-244.
    [86] Kim Y, Ling H. Human activity classification based on micro-Doppler signatures using an artificial neural network[C]. Proceedings of IEEE Antennas and Propagation Society International Symposium. 2008
    [87] Kim Y, Ling H. Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine[J]. IEEE Transactions on Geoscience and Remote Sensing. 2009, 47(5): 1328-1337.
    [88] Lyonnet B, Ioana C, Amin M G. Human gait classification using MicroDoppler time-frequency signal representations[C]. Proceedings of IEEE International Radar Conference. Washington, D.C. USA, 2010: 915-919.
    [89] Lai C, Narayanan R M. Through-wall imaging and characterization of human activity using ultrawideband (UWB) random noise radar[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV. Bellingham, WA, 2005, 5778: 186-195.
    [90]贺峰,黄晓涛,刘承兰,等.行进人体目标雷达瞬时多普勒特征分析[J].信号处理. 2010, 26(9): 1281-1288.
    [91] He F, Huang X, Liu C, et al. Modeling and Simulation Study on Radar Doppler Signatures of Pedestrian[C]. 2010 IEEE International Radar Conference Proceedings. Washington, D.C., USA, 2010: 1322-1326.
    [92]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社, 2005: 229-281.
    [93] Chen V C, Ling H. Time-Frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston: Artech House, 2002.
    [94]李金梁,王雪松,刘阳,等.雷达目标旋转部件的微Doppler效应[J].电子与信息学报. 2009, 31(3): 583-587.
    [95]王璐,刘宏伟.基于时频图的微动目标运动参数提取和特征识别的方法[J].电子与信息学报. 2010, 32(8): 1812-1817.
    [96]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 1998.
    [97] Mahafza B R, Elsherbeni A Z. MATLAB Simulations for Radar Systems Design[M]. Boca Raton: Chapman & Hall/CRC, 2004.
    [98] Immoreev I Y. Ultrawideband Radars: Features and Capabilities[J]. Journal of Communications Technology and Electronics. 2009, 54(1): 5-31.
    [99] Setlur P, Amin M, Ahmad F. Analysis of micro-Doppler signals using linear FM basis decomposition[C]. Proceedings of the SPIE Symposium on Defense and Security, Radar Sensor Technology X. Orlando, FL, USA, 2006, 6210(62100M): 1-11.
    [100]马梁,王涛,冯德军,等.旋转目标距离像长度特性及微运动特征提取[J].电子学报. 2008, 36(12): 2273-2279.
    [101]吴晓芳,刘阳,王雪松,等.基于频率步进雷达时间-距离像的宽带微动特征提取[J].电子学报. 2009, 37(7): 1416-1421.
    [102]罗迎,张群,柏又青,等.线性调频步进信号雷达微多普勒效应分析及目标特征提取[J].电子学报. 2009, 37(12): 2741-2746.
    [103]张翼,邱兆坤,朱玉鹏,等.基于微多普勒特征的人体步态参数估计[J].信号处理. 2010, 26(6): 917-922.
    [104]贺思三.微动目标高分辨雷达信号建模及特征提取[D].长沙:国防科学技术大学, 2010.
    [105]马梁,王雪松,李永祯,等.基于窄带测距信息的空间目标微动特征检测与估计[J].电子与信息学报. 2010, 32(10): 2348-2352.
    [106]李康乐.雷达目标微动特征提取与估计技术研究[D].长沙:国防科学技术大学, 2010.
    [107]贺峰,朱国富,黄晓涛,等.基于SFCW雷达时间-距离像的摆动目标微动特征提取[J].信号处理. 2011, 27(2): 161-167.
    [108] Stove A G, Sykes S R. A Doppler-based automatic target classifier for a battlefield surveillance radar[C]. IEEE International Conference on Radar.Edinburgh, UK, 2002: 419-423.
    [109]李斌,姚康泽,王岩,等.基于微动分析和Chirplet分解的ISAR成像[J].信号处理. 2009, 25(2): 264-269.
    [110]罗迎,张群,封同安,等.强杂波下含旋转部件的目标成像及微多普勒提取[J].系统工程与电子技术. 2009, 31(2): 261-264.
    [111]李康乐,刘永祥,姜卫东,等.基于逆Radon变换的微动目标重构研究[J].雷达科学与技术. 2010, 8(1): 74-79, 86.
    [112]黄小红,贺夏,辛玉林,等.基于时频特征的低分辨雷达微动多目标分辨方法[J].电子与信息学报. 2010, 32(10): 2342-2347.
    [113] Marple L. Sharpening Techniques for Sensor Feature Enhancement[R]. http://www.vissta.ncsu.edu/workshop/presentations/Marple/Marple_afosr05.ppt, 2005.
    [114] Otaguro W, Lovett A, Shen C, et al. Microdoppler: NonCooperative Target Classification/Identification[R]. Maryland, USA: Naval Air Warfare Center Aircraft Division, 2000.
    [115] Zhang Z. A micro-Doppler sonar for acoustic surveillance in sensor networks[D]. Baltimore, Maryland: The Johns Hopkins University, 2008.
    [116] Ahmad F, Amin M G, Setlur P. Through-the-wall target localization using dual-frequency CW radars[C]. Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense V. 2006, 6201(62010H): 1-12.
    [117] Fontana R J. Recent system applications of short-pulse ultra-wideband (UWB) technology[J]. IEEE Transactions on Microwave Theory and Techniques. 2004, 52(9): 2087-2104.
    [118] Wehner D R. High Resolution Radar[M]. 2nd. Boston: Artech House, 1995.
    [119] Atkinson K E.数值分析引论[M].上海:上海科学技术出版社, 1986: 133-137.
    [120] David K, Ward C. Numerical analysis: mathematics of scientific computing[M]. (英文版)Third Edition.北京:机械工业出版社, 2003: 320-321.
    [121]龙腾,李眈,吴琼之.频率步进雷达参数设计与目标抽取算法[J].系统工程与电子技术. 2001, 23(6): 26-31.
    [122]陈建军,王飞行,陈远征,等.频率步进雷达高分辨距离像解模糊方法研究[J].国防科技大学学报. 2009, 31(4): 93-97.
    [123] Taylor J D. Ultra-wideband Radar Technology[M]. Boca Raton, Florida: CRC Press LLC, 2001.
    [124]任丽香,龙腾,远海鹏. HPRF脉冲多普勒频率步进雷达信号处理与参数设计[J].电子学报. 2007, 35(9): 1630-1636.
    [125]吴晓芳,王雪松,邢世其,等.径向运动对频率步进雷达目标距离像影响的新理解[J].信号处理. 2009, 25(8): 1279-1284.
    [126] Cohen L.时-频分析:理论与应用[M].西安:西安交通大学出版社, 1998.
    [127] Boashash B. Time Frequency Signal Analysis and Processing: A Comprehensive Reference[M]. Brisbane, Australia: 2003.
    [128] Qian S, Chen D. Signal representation using adaptive normalized gaussian functions[J]. Signal Processing. 1994, 36: 1-11.
    [129] Qian S, Chen D, Yin Q. Adaptive chirplet based signal approximation[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 1998, 3: 1781-1784.
    [130] Oppenheim A V, Schafer R W, Buck J R.离散时间信号处理[M].第2版.西安:西安交通大学出版社, 2005: 352-435.
    [131] http://www.mathworks.com.
    [132] Gabor D. Theory of communication[J]. J IEE(London). 1946, 93(III): 429-457.
    [133] Daubichies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory. 1990, 36(5): 961-1005.
    [134] Mann S, Haykin S. The Chirplet Transform: Physical Considerations[J]. IEEE Transactions on Signal Processing. 1995, 43(11): 2745-2761.
    [135] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing. 1993, 41(12): 3397-3415.
    [136] Bultan A. A Four-Parameter Atomic Decomposition of Chirplets[J]. IEEE Transactions on Signal Processing. 1999, 47(3): 731-745.
    [137] Yin Q, Qian S, Feng A. A Fast Refinement for Adaptive Gaussian Chirplet Decomposition[J]. IEEE Transactions on Signal Processing. 2002, 50(6): 1298-1306.
    [138] Greenberg J M, Wang Z, Li J. New approaches for chirplet approximation[J]. IEEE Transactions on Signal Processing. 2007, 55(2): 734-741.
    [139]王勇,姜义成.一种自适应Chirplet分解的快速算法[J].电子学报. 2007, 35(4): 701-704.
    [140]贺思三,赵会宁,周剑雄,等.基于包络拟合的Chirplet分解算法[J].信号处理. 2010, 26(3): 381-387.
    [141] He S, Zhou J X, Zhao H Z, et al. Analysis and extraction of stepped frequency radar signature for micro-motion structure[J]. IET Radar, Sonar and Navigation. 2009, 3(5): 484-492.
    [142]冯德军.弹道中段目标雷达识别与评估研究[D].长沙:国防科学技术大学, 2006.
    [143]陈隽,徐幼麟.经验模分解在信号趋势项提取中的应用[J].振动、测试与诊断. 2005, 25(2): 101-104.
    [144] Rodgers J L, Nicewander W A. Thirteen ways to look at the correlation coefficient[J]. The American Statistician. 1988, 42(1): 59-66.
    [145] Bendat J S, G P A. Random data: analysis and measurement procedures[M]. Third. John Wiley & Sons, INC, 2000.
    [146]曲从善,许化龙,谭营,等.基于新型经验模分解的激光陀螺漂移趋势项提取[J].宇航学报. 2009, 30(2): 597-603.
    [147]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社, 2004.
    [148]朱学锋,韩宁.基于小波变换的非平稳信号趋势项剔除方法[J].飞行器测控学报. 2006, 25(5): 81-85.
    [149]申建红,李春祥,李锦华.基于小波变换和EMD提取非平稳风速中的时变均值[J].振动与冲击. 2008, 27(12): 126-130.
    [150] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proc. R. Soc. Lond. A. 1998, 454: 903-995.
    [151]邓拥军,王伟,钱成春,等. EMD方法及Hilbert变换中边界问题的处理[J].科学通报. 2001, 46(3): 257-263.
    [152] Baranoski E J. Through-wall imaging: Historical perspective and future
    [153] Frazier L M. MDR for law enforcement[J]. IEEE Potentials. 1997, 16: 23-26.
    [154] Amin M, Zemany P, Setlur P, et al. Moving Target Localization for Indoor Imaging using Dual Frequency CW Radars[C]. Proceedings of Fourth IEEE Workshop on Sensor Array and Multichannel Processing. Waltham, MA, 2006: 367-371.
    [155] Maaref N, Millot P, Pichot C, et al. FMCW ultra-wideband radar for through-the- wall detection of human beings[C]. Proceedings of International Radar Conference on Surveillance for a Safer World. 2009
    [156] Barrie G. UWB Impulse Radar Characterization and Processing Techniques[R]. Ottawa, Canada: Defence R&D Canada - Ottawa, 2004.
    [157] Richards, Fullerton J L, Meigs L W, et al. System and method for person or object position location utilizing impulse radio[P]. United States, 11/907,508. January 6, 2009.
    [158] Barnes M A, Nag S, Payment T. Covert situational awareness with handheld ultrawideband short-pulse radar[C]. Proceedings of SPIE on Radar Sensor Technology VI. 2001, 4374: 66-77.
    [159] Attiya A M, Bayram A, Safaai-jazi A, et al. UWB applications for through-wall detection[J]. IEEE. 2004: 3079-3082.
    [160] Song L P, Yu C, Liu Q H. Through-wall imaging (TWI) by radar 2-D tomographic results and Analyses[J]. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(12): 2793-2798.
    [161] Ahmad F, Yimin Z, Amin M G. Three-Dimensional Wideband Beamforming for Imaging Through a Single Wall[J]. IEEE Geoscience and Remote Sensing Letters. 2008, 5(2): 176-179.
    [162] Barrie G. Through-Wall Synthetic Aperture Radar(TWSAR) 3D Imaging Algorithm Design[R]. Ottawa, Canada: Defence R&D Canada -Ottawa, 2004.
    [163] Ahmad F, Amin M G, Kassam S A. Synthetic aperture beamformer for imaging through a dielectric wall[J]. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(1): 271-283.
    [164] Ahmad F, Amin M G. Noncoherent approach to through-the-wall radar localization[J]. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(4): 1405-1419.
    [165] Amin M G. Radar, signal, and image processing techniques for through the wall imaging[C]. Proceedings of SPIE on Digital Wireless Communications VII and Space Communication Technologies. Bellingham, WA, 2005, 5819: 33-45.
    [166] Aryanfar F, Sarabandi K. Through wall imaging at microwave frequencies using space-time focusing[C]. Proceedings of IEEE Antennas and Propagation Society International Symposium. 2004, 3: 3063-3066.
    [167] Dilsavor R, Ailes W, Rush P, et al. Experiments on wideband through-the-wall radar imaging[C]. Proceedings of SPIE on Algorithms for Synthetic Aperture Radar Imagery XII. Bellingham, WA, 2005, 5808: 196-209.
    [168] Hantscher S, Praher B, Reisenzahn A, et al. 2D Imaging Algorithm for the Evaluation of UWB B-Scans[C]. Proceedings of Conference on Ultrawideband and Ultrashort Impulse Signals. Sevastopol, Ukraine, 2006: 139-141.
    [169] Ahmad F, Amin M G, Mandapati G. Autofocusing of Through-the-Wall Radar Imagery Under Unknown Wall Characteristics[J]. IEEE Transactions on Image Processing. 2007, 16(7): 1785-1795.
    [170] Innocenti R. Sparse array of RF sensors for sensing through the wall[C].Proceedings of SPIE on Radar Sensor Technology XI. 2007, 6547(65470B): 1-11.
    [171] Yang Y Q, Fathy A E. Near-Real-Time Data Acquisition and Beamforming for UWB See-Through-Wall System[C]. Proceedings of IEEE workshop on Signal Processing Applications for Public Security and Forensics. Washington, DC, USA, 2007
    [172] Ahmad F, Amin M G. Through-the-Wall Radar Imaging Experiments[C]. Proceedings of IEEE Workshop on Signal Processing Applications for Public Security and Forensics. 2007
    [173] Liu X X, Leung H. Through the Wall Imaging using Chaotic Modulated Ultra Wideband Synthetic Aperture Radar[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2007, III: 1257-1260.
    [174] Muqaibel A, Safaai-jazi A. Characterization of wall dispersive and attenuative effects on UWB radar signals[J]. Journal of the Franklin Institute. 2008, 345(6): 640-658.
    [175]陈洁.超宽带雷达信号处理及成像方法研究[D].北京:中国科学院研究生院, 2007.
    [176]崔国龙.超宽带穿墙雷达合成孔径成像算法研究与实现[D].成都:电子科技大学, 2008.
    [177]陈慧华.超宽带冲击信号在穿墙雷达的应用[D].南京:南京理工大学, 2010.
    [178]贾勇.穿墙雷达成像技术研究[D].成都:电子科技大学, 2010.
    [179] He F, Zhu G, Huang X, et al. Preliminary Results of Ultra-Wideband Through-the wall Life-detecting Radar[C]. Proceedings of IEEE International Radar Conference. Washington, D.C. USA, 2010: 1327-1330.
    [180] He F, Zhu G, Huang X, et al. Detection of human targets with ultra-wide band through-the-wall radar[C]. Proceedings of International Conference on Microwave and Millimeter Wave Technology. Chengdu, China, 2010: 1750-1753.
    [181]梁步阁. UWB雷达目标探测理论与实验研究[D].长沙:国防科学技术大学, 2007.
    [182]葛利嘉,曾凡鑫,刘郁林,等.超宽带无线通信[M].北京:国防工业出版社, 2005.
    [183]王建,周智敏,宋千.阿基米德螺旋天线的群延迟和UWB-SAR系统延迟的补偿研究[J].国防科技大学学报. 2008, 30(1): 57-62.
    [184] Lacko P R, Clark W W, Sherbondy K. Studies of ground penetrating radar antennas[C]. Proceedings of 2nd International Workshop on Advanced GPR. Delft, Netherlands, 2003: 24-29.
    [185]李文杰,魏修成,刘洋,等. SVD滤波法在直达波和折射波衰减处理中的应用[J].石油勘探与开发. 2004, 31(5): 71-73.
    [186]高守传,黄春琳,粟毅.基于RLS横向滤波自适应抵消法的直达波抑制[J].信号处理. 2004, 20(6): 566-571.
    [187]李昂,蒋延生,张安学,等.自适应对消在去除探地雷达信号直达波的应用[J].电波科学学报. 2004, 19(2): 223-227.
    [188] Zetik R, Crabbe S, Krajnak J, et al. Detection and localization of persons behind obstacles using M-sequence through-the-wall radar[C]. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense V. 2006, 6201(62010I): 1-12.
    [189]牟妙辉,朱国富,贺峰,等.一种用于墙后静止人体微动特征检测的杂波抑制方法[J].电子技术. 2010(2): 19-21.
    [190]刘培国,刘继斌,李高升,等.混沌信号在超宽带穿墙成像雷达中的应用[J].国防科技大学学报. 2007, 29(03): 85-88.
    [191] Narayanan R M. Through-wall radar imaging using UWB noise waveforms[J]. Journal of the Franklin Institute. 2008, 345(6): 659-678.
    [192] Rovnakova J, Svecova M, Kocur D, et al. Signal processing for through wall moving target tracking by M-sequence UWB radar[C]. Proceedings of the 18th International Conference on Radioelektronika. 2008
    [193] Aftanas M, Zaikov E, Drutarovsky M, et al. Throughwall imaging of the objects scanned by M-sequence UWB radar system[C]. Proceedings of the 18th International Conference on Radioelektronika. 2008
    [194]韩晶晶.伪码调相连续波体制的TWS探测器研究[D].南京理工大学, 2007.
    [195] Venkatasubramanian V. A novel chaos based UWB radar and its application to through-the-wall sensing[D]. Calgary, Alberta, Canada: University of Calgary, 2005.
    [196] Narayanan R M. Through-wall radar imaging using UWB noise waveforms[J]. Journal of the Franklin Institute. 2008, 345(6): 659-678.
    [197] Venkatasubramanian V, Leung H. A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging[J]. IEEE Signal Processing Letters. 2005, 12(7): 528-531.
    [198]晋良念,欧阳缮.超宽带穿墙探测雷达TH-UWB脉冲串信号分析[J].电路与系统学报. 2009, 14(5): 26-30.
    [199]姚天任,孙洪.现代数字信号处理[M].武汉:华中科技大学出版社, 1999, 45-120.
    [200]黄晓涛. UWB-SAR抑制RFI方法研究[D].长沙:国防科学技术大学, 1999.
    [201] Braunstein M, Ralston J, Sparrow D. Signal processing approaches to radio frequency interference (RFI) suppression[J]. Proceedings of SPIE on Algorithms for Synthetic Aperture Radar Imagery. 1994, 2230: 190-208.
    [202] Miller T, Potter L, Mccorkle J. RFI suppression for ultra wideband radar[J]. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(4): 1142-1156.
    [203] Abend K, Mccorkle J W. Radio and TV interference extraction for ultrawideband radar[J]. Proceedings of SPIE on Algorithms for Synthetic Aperture Radar Imagery II. 1995, 2487: 119-129.
    [204] Buckreuss S, Horn R. E-SAR P-band SAR subsystem design and RF-interference suppression[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium. 1998: 466-468.
    [205]李禹,粟毅,黄春琳,等.冲激雷达接收中的随机射频干扰抑制方法[J].电子与信息学报. 2004, 26(5): 733-738.
    [206]王建.车载前视超宽带SAR浅埋目标成像技术研究[D].长沙:国防科学技术大学, 2008.
    [207]周智敏,黄晓涛,常文革,等. UWB-SAR抑制RFI算法性能评估与测试[J].国防科技大学学报. 2002, 24(2): 49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700