砂质土隧道围岩力学参数及分级方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国正处于基础设施建设的大发展时期,各种交通土建工程如高速公路、高速铁路、城市地铁等的建设已全面展开。在隧道及地下工程中所面临的安全、环境、经济和人文等各种技术问题也越来越多,对能保证以上问题解决的各种规范和标准的要求也越来越高,许多目前应用的技术规范都面临着技术更新和完善的问题。由于我国目前所使用的有关隧道及地下工程围岩分级标准中,对土质隧道围岩分级所使用的指标大多是定性的,在使用上具有主观性,分级的准确性较差。提出明确的、能较全面反映围岩稳定性的、易于操作的土质隧道围岩分级指标,是迫切需要解决的问题。因此,本文针对土质隧道围岩分级中亟待解决的几个重点问题,对砂质土围岩分级体系进行了系统的研究,其工作具体体现在以下几个方面:
     1.通过国内外大量砂质土围岩分级指标资料的调研和统计分析,建立了比较符合工程实际的砂质土围岩分级指标体系,并给出了各指标的获取方法。
     2.以砂质土围岩自稳性为研究基础,通过室内土工试验,利用数理统计和数据曲线图的方法,研究了砂质土围岩分级指标的各种组合情况对力学指标的影响规律,得出了利用围岩分级指标值来评定力学指标值的方法。在此基础上,将分级指标值进行分段组合。
     3.提出了能综合反映砂质土围岩力学性能的砂质土围岩基本质量指标SBQ的定义。根据土工实验结果,利用数据曲线图、回归分析及聚类分析等数理统计方法,研究了SBQ值与砂质土围岩基本分级指标以及砂质土围岩力学参数之间的关系,得到了利用基本分级指标组合预测SBQ值,以及利用SBQ值来预测砂质土围岩物理力学指标值的定量表达式。
     4.提出利用砂质土围岩基本质量指标SBQ值作为评定基准,将分级指标值分段组合进行自稳性分组。以弹性力学中洞室开挖跨度与洞室周边位移的基尔西公式为理论依据,通过有限差分法数值模拟、相似模型试验等方法,获得了砂质土围岩自稳性。
     5.将所得的各组围岩自稳跨度数值与现行规范所提供的围岩分级标准对应,得到了砂质土围岩分级理论标准。将指标组合分组与理论标准对应,得到了砂质土围岩组合定性分级实用标准;根据土工试验结果,提出利用SBQ值作为稳定性分级的判别基准,得到了砂质土围岩综合定量分级实用标准。
     6.通过大量资料调研及室内土工试验,得到了砂质土各级围岩物理力学指标值。
     7.基于双车道公路隧道围岩自稳性研究成果,通过国内相关资料的调研分析及数值模拟分析,经过计算调整,确定了一套砂质土双车道公路隧道的设计参数。
     8.根据调研资料,对砂质土围岩分级方法的正确性进行了验证。
Chinese Infrastructure now is coming through a cosmically development period. Varieties of transportation projects such as express high ways, high speed railways, city underground are under construction. Technical problems related to security, environments, economy and humanity are increasing in tunnel and underground engineering. Accordingly, rules and regulations, which are made to guarantee the solution of these problems, are becoming strict. Many technical criteria in using are requiring updating and perfecting. Because of its qualitativeness and subjectiveness, the criteria of surrounding rock mass classification for the soil tunnel and underground engineering in China are far from accuracy. It is in an urgent need to advance an explicit and user- friendly index system of soil surrounding rock mass classification of tunnel which can comprehensively show the stability of surrounding rock. Thereby, aiming at the solution of major problems in rock mass classification of sandy tunnel, this thesis makes a systemic research on rock mass classification of sandy tunnel and arrives at conclusions as follows:
     1. A new and more practical index system of sandy surrounding rock classification is established by great quantities of investigation and statistical analysis of domestic and overseas information. The method of acquiring each index of system is also introduced.
     2. Effect of the index value combination of sandy surrounding rock mass classification on the index of the sandy rock's mechanics is studied and the method of assessing the value of the mechanics index by using the index of classification is educed based on the study on the stability of the sandy surrounding rock, indoor soil experiments, statistical method and data graph method. Values of subsections of classification index are grouped.
     3. The definition of the sandy surrounding rock basic quality (SBQ) generally reflecting the mechanics capability of the sandy surrounding rock is advanced. Based on the results of soil experiments, the quantitative expressions of forecasting SBQ by the basic indexes value combinations and the values of the physical mechanical indexes by SBQ is received by studying on the relation between them by using statistical method and data graph method.
     4. The values of subsections of classification index are grouped and using sandy surrounding rock basic quality (SBQ) as benchmark to group the stability of the subsections. Based on the theory of the G.Kirsch's formula about excavated span of tunnel and the displacement around the tunnel in elasticity mechanics the stability of sandy surrounding rock is produced by numerical value simulation in the method of Fast Lagrangian Analysis of Continua(FLAC) and the similitude model tests.
     5. The combinatorial qualitative applied criteria of the classification is gained by comparison between each subsection of sandy surrounding rock's basic steady excavated span and the academic standard of surrounding rock mass classification provided by the active criteria; According to the results of the indoor soil experiments, the differentiate benchmark of the stability classification by using SBQ is put forward and the integrative quantificational applied criteria of the classification is produced.
     6. The values of the physical mechanical index of all levels of the sandy surrounding rock is gained by indoor soil experiments and great quantities of data investigation.
     7. A system of structural design parameter for all levels of sandy surrounding rock of the double lane highway tunnel is established by analysis and investigation of domestic and overseas information, and the method of numerical value simulation based on the research results of the stability of the sandy surrounding rock of the double lane highway tunnel.
     8. The validity of the method of the classification of the sandy surrounding rock is validated based on the investigation information.
引文
[1]JTG D70-2004.公路隧道设计规范[S].北京:人民交通出版社,2004
    [2]GB 50218-94.工程岩体分级标准[S].北京:中国计划出版社,1995
    [3]王明年,何林生.建立公路隧道施工阶段围岩分级的思考.广东公路交通.1998,COO期:125-127
    [4]王明年,关宝树.神经网络在地下工程中的应用.地下空间.1995,15(2):94-101
    [5]JTG 026-90.公路隧道设计规范[S].北京:人民交通出版社,1990
    [6]杜时贵,周庆良.公路隧道围岩定量分类系统研究设想和建议.西安公路交通大学学报.1996,16(4):32-37
    [7]彭泽瑞,侯景岩,贺长俊.城市地铁隧道施工中砂土悬涌塌方机理分析.市政技术.2003,21(1)
    [8]杨哲峰,黄常波.北京地铁王府井站西南风道暗挖工程系统监控量测技术.探矿工程.2004,2期:57-59
    [9]秦长利.北京地下铁道监控量测中的问题及其对策.工程勘察.1999,6期:45-47
    [10]王敦诚,胡方田.车站地下方厅浅埋施工中监控量测技术.探矿工程.2003,增刊:99-101
    [11]杨世武,范鹏,焦苍.城市超浅埋平顶大跨断面软岩洞室施工数值分析.隧道建设.2004,24(4):13-16
    [12]刘招伟.城市地下工程暗挖法施工监控量测浅析.隧道建设.2004,24(1):30-33
    [13]孙洪霞.城市地下工程施工中的监控量测技术.铁道勘察.2004,1期:67-70
    [14]城市隧道和地铁车站的施工监控.隧道译丛.1994,3期:40-52
    [15]Fathalla EI-Nahhas.Construction Mo-nitoring of Urban Tunnels and Subway Stations.Tunneling and Underground Space Technology.1992,7(4):425-439
    [16]宫建岗.大跨度山岭公路隧道施工.石家庄铁道学院学报.1999,12(增刊):27-30
    [17]李兴成.长沙火星南路天际岭隧道施工监控量测.湖南交通科技. 2005,31(1):81-84
    [18]管振祥.富水土质隧道变形规律的试验研究.石家庄铁路工程职业技术学院学报.2003,2(2):45-49
    [19]李阶智.软弱围岩隧道量测与围岩变形特性分析.铁道建筑.1999,第11期:2-4
    [20]王连池,张庆飞.土质隧道大变形浅析.隧道建设.2001,21(12):5-7
    [21]周德培,朱本珍.土质隧道施工变形分析及控制措施.广东公路交通.1998,增刊,总第54期:97-101
    [22]吕勤.地铁隧道暗挖施工中土层特性对地层变形的影响分析.现代隧道技术.2005,42(2):29-32
    [23]唐颖.东楼隧道左洞出口病害成因分析.现代隧道技术.2005,42(3):23-27
    [24]阎晓禾.二郎山隧道崩坡积地段大管棚施工技术.岩土工程界.2005,8(4):60-62
    [25]非粘结性土壤地层中隧道性状的评定.隧道译丛.1994,4期:49-58
    [26]R C K Wong,P K Kaiser.Performance Assement of Tunnel in Cohesionless Soils.Journal of Geotechnical Engineering.1991,12(123):1880-1901
    [27]张亚平,柳杨春,周新华,杜嘉鸿.风积粉细砂隧道施工中的注浆加固技术.西部探矿工程.1995,7(6):62-65
    [28]张帆.富水砂层隧道围岩止水施工技术.石家庄铁道学院学报.2005,18(1):99-102
    [29]王静法,徐伟.公路浅埋土质隧道塌方原因分析.公路与汽运.2005,第3期:150-151
    [30]荆涛.公路隧道软弱围岩浅埋段综合施工技术.铁道建筑.2005,第4期:42-43
    [31]李庚许,袁德友,汤世明.黄土、砂砾、涌水地层浅埋隧道施工技术.铁道标准设计.2005,第9期:88-91
    [32]王东,蒋国勤.牛头山隧道进口山体塌方的超前预测和处理.西部探矿工程.2005,第4期
    [33]王新明.浅埋公路隧道洞口段施工技术.铁道标准设计.2005,第8期:68-69
    [34]张永刚.浅谈万家寨引黄工程南7#洞土石过渡段的施工方法.山西水利科技.1996,第3期:41-44
    [35]叶跃林.三车道公路隧道洞口段含水粘土状围岩施工.现代隧道技术.2005,42(3):76-80
    [36]李丰果.铁路曲线隧道燕尾段穿越堆积体修建技术探讨.西部探矿工程.2005,第10期:117-119
    [37]顾义磊,李晓红,赵瑜,任松.通渝隧道涌突泥成因分析.岩土力学.2005,26(6):920-923
    [38]林贻森,李德发,邹华。.新黄龙隧道塌方处理技术.铁道标准设计.2005,第8期:81-82
    [39]张广洋,游泳.徐家梁子隧道进出口施工方法.现代隧道技术.2005,42(3):70-75
    [40]GB50021-2001.岩土工程勘察规范[S].北京:中国建筑工业出版社,2002.
    [41]用于隧道工程的地质材料分类.隧道译丛.1972,第4期:32-41
    [42]土和岩石分类、岩石荷载及站立时间.隧道译丛.1972,第4期:41-46
    [43]隧道支撑上的荷载.隧道译丛.1972,第4期,:47-77
    [44]贺长俊,周晓敏.“复一八线”“大—热”区间含水粉细砂地层水平冻结的隧道施工技术.地铁与轻轨.1999,第4期:5-10
    [45]胡方田.粉砂地层暗挖隧道穿越人行天桥施工技术.铁道勘察.2006,第2期:54-55
    [46]钟德文,姚建国,张继明.浅埋暗挖隧道下穿高梁桥施工方案分析.市政技术.2007,25(4):297-299
    [47]郭永军.砂卵石富水地层浅埋暗挖隧道施工技术.科技情报开发与经济.2006,16(3):293-294
    [48]郭玉海.盾构穿越铁路的沉降综合控制技术.市政技术.2003,21(4):204-208
    [49]宋克志,汪波,孔恒,袁大军,王梦恕.无水砂砾石地层土压盾构施工泡沫技术研究.岩石力学与工程学报.2005,24(13):2327-2332
    [50]黄俊,杨小丽.暗挖区间隧道穿越软弱地层施工技术.铁道建筑.2003,第10期:58-59
    [51]李国华.地铁隧道穿越跨河桥及富水砂层段施工技术.上海铁道科技,2003,第3期:38-39
    [52]张帆.富水砂层隧道围岩止水施工技术.石家庄铁道学院学报.2005,18(1):99-102
    [53]凌茂钦.浅谈深圳地铁施工技术.中国铁路.2005,第3期:58-60
    [54]吴应明.深圳地铁区间浅埋暗挖隧道施工与沉降控制.铁道建筑技术.2005,第2期:.26-30
    [55]刘力,石山.饱和含水砂层注浆施工技术在超浅埋暗挖隧道中的应用.铁道标准设计.2000,20(5):36-38
    [56]石雷.超浅埋暗挖大跨度隧道过饱和富水砂层开挖与支护.铁道建设.2006,第4期:36-43
    [57]史文杰.饱和粉质砂土内浅埋暗挖法施工降水技术.隧道建设.2005,25(2):34-35
    [58]黄芳林,白丽.饱和水砂质粉土地层中浅埋隧道暗挖施工技术.地基处理.2007,18(2):31-34
    [59]尤显明,晏立忠.隧道穿越既有铁路轨道加固施工技术.河南科技.2006,第6期:67-68
    [60]李泽农,陈越粤.承压水砂性土层隧道构筑技术与运动规律非线性动力学方法研究.岩土锚固工程.2006年,第2期:9-14
    [61]丁光莹,章仁财,罗良友.大连路隧道江底联络通道冻结施工技术.地下工程与隧道,2003,第3期:30-34
    [62]肖中平,何川等.城市富水砂卵石地层浅埋暗挖电力隧道的设计技术.铁道建筑.2007,第4期:46-48
    [63]蒋超.地铁矿山法区间下穿人行地道的设计.铁道勘测与设计.2007,第3期:11-13
    [64]秦晓东,朱筱菁.广州地铁区间隧道用加密加长小导管的方法通过饱和砂层.铁道建筑,1997,第6期:8-11
    [65]蒙晓莲,陈勇书,施仲衡.软弱混合岩粉砂质粘性土层中暗挖隧道施工技术.铁道科学与工程学报.2006,3(4):68-73
    [66]蔡凌燕.水平旋喷搅拌技术在广州地铁二号线工程中的应用.广东水利水电,2002,第3期:52-55
    [67]李宏安,王定峰.冻结法在南京地铁隧道流砂地层中的应用.探矿工程.2005,第3期:60-62
    [68]杨金虎,陈家清,何刚,陈庆.复杂环境条件下砂质粘土隧洞施工监控量测研究.岩石力学与工程学报.2005,24(24):4588-4593
    [69]陈先智,宋海涛,刘建平.高压喷射注浆法在电缆隧道竖井施工中的应用.隧道建设.2002,22(3):22-23,26
    [70]姜庆滨.既有地下结构用于地铁工程的可行性研究(Ⅰ).世界地震工程,2005,2l(2):99-104
    [71]刘大久.巴格玛迪环保隧道工程施工技术.建井技术.2002,23(4):7-9
    [72]钱伟平,马志富.宝兰二线新松树湾隧道杂色砂粘土整治对策探讨.科技交流.2002,32(3):13-17
    [73]刘庆伟,王旭光.采取综合措施使隧道通过砂夹卵石不稳定地层.铁道建筑.2002年3期:36-37
    [74]陈豪雄,朱永全.风积粉细砂地层注浆加固的试验研究和应用.铁道标准设计.1993,2期:18-24
    [75]于家宝.不同辅助方法在风积砂隧道施工中的应用.铁道标准设计,2005,5期:89-91
    [76]罗建军.通过风积砂围岩地段隧道施工技术.西部探矿工程.,2004,第5期(总第96期):97-98
    [77]刘绍石,大跨度风积砂隧道施工技术,国防交通工程与技术,2004,2(2):39-41
    [78]顾洪江.大连疏港高速公路大跨度砂质粘土隧道施工监控量测研究.北方交通.2006,第12期:64-67
    [79]杨世武,付仲润.第四纪地层沉井法施工注浆堵水施工技术.隧道建设.2004,24(3):43-46
    [80]刘宏.电缆隧道斜穿砂砾层施工技术.中外建筑.2006,第4期:136-137
    [81]李冬杰,纪海荣,朱学洲.粉砂地层浅埋隧道施工技术.西部探矿工程.2001,第3期(总第70期):103-104
    [82]毕竣夫.高压旋喷桩对海底隧道砾砂层地质条件的改善作用.铁道勘测与设计.2006(5):27-29
    [83]李庚许,袁德友,汤世明.黄土、砂砾、涌水地层浅埋隧道施工技术.铁道标准设计,2005(9):88-91
    [84]陈俊凯.酒泉砂砾石隧道施工难题解.建筑.2004(7):76-76
    [85]万建华.老爷岭隧道砂砾段上下导坑超前新奥法施工.铁道建设.1992(2):49-52
    [86]李树良,刘兰利.流砂地层双套管地表注浆技术.铁道建筑技术.1997(4):19-20
    [87]颜杜民.迈式注浆钻进锚杆在老鸦峡隧道砂卵岩层中的应用.地质与勘探.2003,39(1):93-94
    [88]付仲润,韩忠存.某长江穿越隧道竖井淹井处理技术.隧道建设.2006,26(2):57-60
    [89]马时冬,周小文,包承纲.南水北调中线穿黄隧道砂基动力特性研究.岩土 工程学报.2003,25(2):144-148
    [90]吕金林,关少威,周太升,刘英军.强风化破碎坡积松散碎石砂土岭隧道进洞施工技术.北方交通.2007(2):66-69
    [91]张军玲.神盘隧道穿越砂层施工技术.山西建筑.2005,31(11):231-232
    [92]陈焕新.隧道斜井穿越含水砾石层的施工技术.山西建筑.2004,30(22):203-205
    [93]秦天,周健,孔戈.武汉长江隧道工程场地粉细砂基于GDS的液化研究.岩土工程界.2006,10(5):33-36
    [94]小泉光正,马积薪译.在覆盖层浅的砂土地层中开挖三车道隧道.隧道译丛.1992(1):42-51
    [95]兰丽敏.在软弱砾质砂岩中开挖三车道扁平大断面隧道.世界隧道.2001,22(1):27-33
    [96]新井克已,卿光全.在土砂地层中大断面双孔隧道的施工:阪神高速公路北神户线井吹隧道.隧道译丛.1992(4):21-29
    [97]叶向阳,罗文贤.台湾高铁隧道施工现况.岩石力学与工程学报.2004,23(增2):4692-4703
    [98]张吉佐,侯秉承,李民政,李怡德,张博翔.台湾地区岩体分类系统之建立.岩石力学与工程学报,2004,23(增2):4679-4684.
    [99]沈中其,关宝树.铁路隧道围岩分级方法.成都:西南交通大学出版社,2000
    [100]朱小林.由原位测试估算砂土岩土参数的方法.同济大学学报.1995,23(3):333-337
    [101]黄涛.一种用标贯击数直接确定粉土、砂土压缩模量的方法.勘察科学技术.1997,第5期:11-13
    [102]张喜发.岩土工程勘察与评价.长春:吉林科学技术出版社,1995:165-167
    [103]唐贤强,谢瑛,谢树彬.地基工程原位测试技术.北京:中国铁道出版杜,1993:97-100
    [104]张喜发,刘超臣,栾作田,张文殊.工程地质原位测试.北京:地质出版社.1989:25
    [105]艾军,张锦生,龚丽.大兴安岭地区风化砂砾土物理力学性质的研究.森林采运科学,1993,9(1):62-65
    [106]王晓峰.齐齐哈尔城区风成砂土的物理力学指标的统计与分析.黑龙江地质.1994,5(3):48-53
    [107]杜学玲,苏明,张喜发.沙漠砂抗剪强度特征及其与静力触探指标间的关系. 水文地质工程地质.2000,第5期:12-14
    [108]陈洪凯,翁其能,袁建议,王蓉.重庆库区典型松散土体的岩土力学参数敏感性试验分析.重庆大学学报(自然科学版).2000,23(增刊):203-206
    [109]陈继,张喜发,程永辉.沙漠砂变形模量研究.岩土工程技术.2002,第3期:152-155
    [110]杨小荟,王玉宝,崔东,贾磊.古尔班通古特沙漠砂的物理力学性质.中国沙漠.2005,25(4):563-569
    [111]王淑云,鲁晓兵,时忠民.颗粒级配和结构对粉砂力学性质的影响.岩土力学.2005,26(7):1029-1032
    [112]杜学玲,杨俊彪,张喜发.沙漠砂抗剪强度指标与原位测试指标关系研究.岩土力学.2005,26(5):837-840
    [113]万志杰.用物性指标评价砂砾石的力学指标.西藏科技.2005,12期(总第152期):55-56
    [114]郭庆国.粗粒土的工程特性及应用.郑州:黄河水利出版社,1998:16-21
    [115]胡广韬,杨文远.工程地质学.北京:地质出版社.1984
    [116]张倬元.工程地质勘察.北京:地质出版社.1981
    [117]《工程地质手册》编写组.工程地质手册.北京:中国建筑工业出版社.1982
    [118]陈希哲.土力学地基基础.北京:清华大学出版社.1998
    [119]TB10003-2005.铁路隧道设计规范[S].北京:中国铁道出版社,2005
    [120]谭忠盛,高波,关宝树.隧道围岩抗剪强度指标C,tanφ的概率特征.岩土工程学报.1999,21(6):760-762
    [121]伍佑伦,许梦国.根据工程岩体分级选择岩体力学参数的探讨.武汉科技大学学报(自然科学版).2002,25(1):22-24
    [122]N Mohammand.The Relation between in Situ and Laboratory Rock Properties Used in Numerical Modeling.Int.J.Rockmech.Min.Sci.1997,34(2):289-297
    [123]Terzaghi K.Rock defests and loads on tunnel supports.Rock tunneling with steel supports.1946:15-90
    [124]Lauffer H.C-ebirgsklassifizierungfur den stollenbau.Geologie and bauwesen.1958,24:46-51
    [125]#12
    [126]络以道,王钊,范景相.一种非饱和土抗剪强度的预测方法.大坝观测与土工 测试.2001,25(6):41
    [127]赵慧丽,张弥,李兆平.含水量对北京地区非饱和土抗剪强度影响的试验研究.石家庄铁道学院学报.2001,14(4):30-33
    [128]余宏明,胡艳欣,唐辉明.红色泥岩风化含砾粘土的抗剪强度参数与物理性质相关性研究.地质科技情报.2002,21(4):93-95
    [129]罗小龙.含水率对粘性土体力学强度的影响.岩土工程界.2002,5(7):52-53.
    [130]刘连喜,廖建生.利用土的物理指标确定土的抗剪强度.城市勘测.2003,3期:13-14.
    [131]刘雷激,朱平一,张军.泥石流源地土抗剪强度指数φ,C值同含水量Q的关系.山地研究.1998,16(2):99-102
    [132]唐良琴,聂德新,任光明.软弱夹层粘粒含量与抗剪强度参数的关系分析.中国地质灾害与防治学报.2003,14(2):56-60
    [133]项伟.软弱夹层粘粒含量与抗剪强度参数之间的经验公式.水文地质工程地质.1989,5期:45-46.
    [134]唐良琴,聂德新,任光明.软弱结构面粒度成分与抗剪强度参数的关系探讨.工程地质学报.2003,11(2):143-147
    [135]毛守仁.三峡花岗岩风化砂的工程性质.葛州坝水电.1997,2期:35-40
    [136]李会中,潘玉珍,王复兴.三峡库区奉节县新城区滑坡带土抗剪参数试验研究.湖北地矿.2002,16(4):28-32
    [137]时卫民,郑宏录,刘文平,郑颖人.三峡库区碎石土抗剪强度指标的试验研究.重庆建筑.2005,2期:30-35.
    [138]邓子胜.砂土振动固结抗剪强度变化规律的试验研究.工程力学.2000,17(4):94-98
    [139]顾成权,孙艳.土体内聚力随含水量、粘粒含量及干密度变化关系探讨.水文地质工程地质.2005,32(1):34-36
    [140]汤连生,张鹏程,王洋,杜赢中.土体内外摩擦及摩擦强度试验研究.岩石力学与工程学报.2004,23(6):974-979
    [141]方海焕.压实低塑性土的抗剪强度.西北水资源与水工程.1995,6(1):73-77,82
    [142]闫芙蓉,潘国营,何停印,张党立.粘粒含量在岩土工程勘察中的应用研究.焦作工学院学报(自然科学版).2004,23(5):349-352
    [143]刘丰收,P.Lubking.非饱和砂土的表观粘聚力研究.水利水电科技进展. 2001,21(1):6-8
    [144]衡朝阳,裘以惠.颗粒级配对含蒙脱石砂土抗液化性能的影响.中国矿业大学学报.2002,31(2):138-141
    [145]王铁行,王晓峰.密度对砂土基质吸力的影响研究.岩土力学.2003,24(6):979-982
    [146]龚平玲,邓飞.砂土的抗剪强度与干密度的曲线拟合.矿产与地质.2005,19(2):207-208
    [147]朱小林,杨桂林.土体工程.上海:同济大学出版社.1996:215-216
    [148]JTJ 064-98.公路工程地质勘察规范[S].北京:人民交通出版社.1999
    [149]GB50021-2001.岩土工程勘察规范[S].北京:中国建筑工业出版社.2002
    [150]JTJ 051-93.公路土工试验规程[S].北京:人民交通出版社,1993
    [151]卢肇钧.粘性土抗剪强度研究的现状与展望.土木工程学报.1999,32(4):3-9
    [152]林杰斌,陈湘,刘明德.SPSS11统计分析实务设计宝典.北京:中国铁道出版社.2002:115-118
    [153]陈愈炯.总强度指标的测定和应用.土木工程学报.2000,33(4):32-34
    [154]马庆国.管理统计-数据获取、统计原理、SPSS工具与应用研究.北京:科学教育出版社.2002:242-243,280-281
    [155]赖琼华.岩土变形模量取值研究.岩石力学与工程学报.2001,20(增):1750-1754
    [156]郑俊杰,区剑华,刑泰高.参变量变分原理求解土的变形模量与压缩模量间的关系.固体力学学报.2004,25(1):53-57
    [157]梁发云.基于多孔介质理论的地基土变形模量估算方法.岩土力学.2004,25(7):1147-1150
    [158]李顺群,朱怀庆.含水量变化时非饱和土的变形研究.武汉理工大学学报.2005,27(2):24-27
    [159]李志辉,罗平.SPSS for Windows统计分析教程.第2版.北京:电子工业出版社.2004:248-257,213-216,352-355
    [160]洪毓康.土质与土力学.北京:人民交通出版社,2001:93
    [161]刘成宇.土力学.北京:中国铁道出版社.2002:137
    [162]杨世莹.Excel数据统计与分析范例应用.北京:中国青年出版社,2004:378-397
    [163]Paul McFedries著.马树奇,金燕译.巧学巧用Excel 2003公式与函数.北 京:电子工业出版社,2005:311
    [164]梁晓丹,刘刚,赵坚。地下工程压力拱拱体的确定与成拱分析,河海大学学报(自然科学版).2005,33(3):314-317
    [165]KOVARIK.Erroneous concepts behind the New Austrian Tunnelling Method[J].Tunnels & Tunnelling,1994,11:38-41.
    [166]BRADY B H G,BROWN E.T.Rock mechanics for underground mining[M].London:George Allen & Unwin,1985:212-213
    [167]蔡美峰.岩石力学与工程.北京:科学出版社.2002:330-333
    [168]TERZAGHI K.Theoretical soil mechanics.New York:John Wiley & Sons,1947:66-76
    [169]Abbott,P.A.Arching for Vertically Buried Prismatic Structures,Journal of the Soil Mechanics and Foundations Division,ASCE,Vol.93.No.SM5,1967:233-255
    [170]Balla.A.Rock Pressure Determined from Shearing Resistance,Proc.Int.Conf.Soil Mechanics,Budapest,1963:461
    [171]Beck.B.F.Sinkholes:Their GeOlolgy,Engineering and Environmental Impact,Proceedings of the First Multidisciplinary Conference on Sinkholes,Florida Sinkhole Research Institute,University of Central Florida,Orlando,1984
    [172]Bello.A.A.Simplified Method for Stability Analysis of Underground Openings,Proceedings,First International Symposium on Storage in Excavated Rock Caverns,Rockstore 77,Stockholm,Sweden,Vol.2,1978:289-294
    [173]Benson,R.C.and L.J LaFountain.Evaluation of Subsidence or Collapse Potentials Due to Subsurface Cavities,Proceedings of the First Multidisciplinary Conference on Sinkholes,Florida Sinkhole Research Institute,University of Central Florida,Orlando,Florida,1984:201-216
    [174]Bierbaumer,A.Die Dimensionerung des Tunnelmauerwerks,Engelmann,Leipzig.1913
    [175]Bjerrum,L.,C.J.Frimann Clausen,and J.M.Duncan.Earth Pressure on Flexible Structure--A State-of-the-Art Report,Proceedings,Fifth European Conference on Soil Mechanics and Foundation Engineering,Madrid,Spain,1972:169-196
    [176] Burghignoli, A. Soil Interaction in Buried Structures, Proceedings, Tenth International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, Vol.2, 1981:69-74
    [177] Butterfield, R. A Theoretical Study of the Pressures Developed in a Silo Containing single Sized Particles in a Regular Packing, International Journal of Rock Mechanics and Mining Sciences, Pergamon Press. Vol,6, 1969:227-247
    [178] Chelapati, C.V. Arching in Soil Due to the Deflection of a Rigid Horizontal Strip, Proceedings of the Symposium on Soil-Structure Interaction, University of Arizona, Tucson, Arizona, 1964:356-377
    [179] Connors. P. Examination of Boundary Effects in Interfacial Testing, M.S. Thesis. UMASS. Lowell, 1980
    [180] Cundall, P. A. and Strack, O. D. L. A Discrete Numerical Model for Granular Assemblies, Geotechnique, No. 29, 1979:47-65
    [181]Davis, R. E, Bacher. California' s Culvert Research Program - Description, Current Status, and Observed Peripheral Pressures, Highway Research Record, No. 249, 1968:14-23
    [182] De Josselin de Jong, G. Verruijt. A. Etude Photo-Elastique d'un Emoukenebt de Disques. Cah, Gr. Franc. Rheol. Vol. 2,No.73, 1969:73-86
    [183] DiRocco. K. J. Photoelastic Measurement Techniques Utilizing Digital Image Processing for Modeling Granular Materials, M. Sc. Thesis. University of Massachusetts-Lowell. 1992
    [184] Douglas, I. Calcium and Magnesium in Karst Waters, Helictite, Vol.3, 1965:23-36
    [185] Einstein. H.H., C.W.Schwartz, W. Steiner, M.M.Baligh, R.E.Levitt. Improved Design for Tunnel Supports: Analysis Method and Ground Structure Behavior: A Review—Vol, II, MIT, DOT-05-60136. 1980
    [186] Evans, C. H. An Examination of Arching in Granular Soils, M.S. Thesis, MIT.1983
    [187]Feld. J. Early History and Bibliography of Soil Mechanics. Proceedings, Second International Conference on Soil Mechanics and Foundation Engineering. Rotterdam, Vol.1. 1948:1-7
    [188] Finn. W. D. L. Boundary Value Problems of Soil Mechanics, Journal of the Soil Mechanics and Foundation Division. ASCE. Vol.89,No. SM5. 1982:39-72
    [189] Gerzler, Z. M. Gellert, and R. Eitan, Analysis of Arching Pressures in Ideal Elastic Soil. Journal of the Soil Mechanics and Foundations Division, ASCE.Vol. 96, No, SM4,1967:1357-1372
    [190] Getzler. Z. A. Komornik, A. Mazurik, Model Study on Arching Above Buried Structures, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94. No. SM5,1981:1123-1141
    [191] Handy, R. L The Arch in Soil Arching, Journal of Geotechnical Engineering. ASCE. Vol.3, No. 3. 1985:302-318
    [192] Harris. G. W. A Sandbox Model Used to Examine the Stress Distribution Around a Simulated Longwall Coal-Face, International Journal of Rock Mechanics, Mining Sciences and Geomechanical Abstracts. Pergamon Press. Vol. 11. 1974:325-335
    [193] Highway Research Board, Structure Analysis and Design of Pipe Culverts, National Cooperative Highway, Research Report 116. 1971
    [194]Lglesia, G, .H.H Einstein, and R.V. Whitman, Stochastic and Centrifuge Modeling of Jointed Rock Vol.11. Centrifuge Modeling of Jointed Rock, US Air Force Office of Scientific Research. 1990
    [195] Jakobson. B. On Pressure in Silos, Proceedings, Conference on Earth Pressure Problems, Brussels, Vol.1. 1958:49-54
    [196]Janssen. H. A. Versuche uber Getrcidedruck in Silozellen, Zeitschrift Verein Deutscher Ingenieure, Bd XXXIX, 1895:1045-1049
    [197] Koutsabeloulis,N.C and D.V Griffiths, Numerical Modeling of the Trapdoor Problem, Geotechnique. Vol.39.No. 1. 1989:77-89
    [198] Krynine.D. P. Discussion of Stability and Stiffness of Cellular Cofferdams by Karl Terzaghi, Transactions, ASCE, Vol.110, 1945:1175-1178
    [199] Ladanyi.B. and B.Hoyaux. A Study of the Trap-Door Problem in a Granular Mass, Canadian Geotechnical Journal, Vol.6.No.1. 1969:1-15
    [200] Luscher, U. and K, Hoeg, The Beneficial Action of the Surrounding Soil on the Load-Carrying Capacity of Buried Tubes, Proceeding of the Symposium on Soil-Structure Interaction, University of Arizona, Tucson, Arizona, 1970:393-402
    [201] Macda. K. K. Miura. and S. Toki, Mechanical Properties of Elliptic Microstructure Formed in Granular Materials, Soils and Foundations, Vol. 35.No.2, 1995:1-13
    [202] McNulty, J. W. An Experimental Study of Arching in Sand. Ph.D. Thesis in Civil Engineering. University of Illinois. 1965
    [203] Mischel.G. A. Validation of an Ellipse-Based Discrete Element Model with Application to Granular Material Pressures in Storage Silos. Ms Thesis. University pf Massachusetts-Lowell, 1997:28-29
    [204]Paikowsky, S. G. and F. Xi. Kinematics of 2-D Particulate Media Utilizing Image Analysis. 10th ASCE Engineering Mechanics Specialty Conference, University of Colorado at Boulder. Boulder. Colorado. 1995
    [205] Paikowsky, S.G. and F. Xi. Photoelastic Quantitative Study of the Behavior of Discrete Materials with Application to the Problem of Interfacial Friction. Research Report. Geotechnical Engineering Research Laboratory. University of Massachusetts-Lowell. 1997
    [206]Paikowsky. S.G and F. Xi. Particle Motion Tracking Utilizing a High-Resolution Digital CCD Camera. ASTM Geotechnical Testing Journal, GTJODJ, Vol. 23, No. 1, 2000:123-134
    [207] Paikowsky. S.G. ,J. Ting, F.Xi, and G. Mischel. Numerical and Experimental Comparison of Shear Along Granular Material Solid Interface. ASME. Mechanics & Material Conference. Johns Hopkins University, Maryland. 1996
    [208] Paikowsky. S.G., K. J. DiRocco. and F.Xi. Interparticle Contact Contact Force Analysis and Measurements Using Photoelastic Techniques. 2nd International Conference on Discrete Element Methods. MIT. IESL. (MIT) Publication, 1993:449-461
    [209] Peck.R. B. Lateral Pressures Against Tunnels. Seminar on Lateral Soil Pressures Generated by Pipes, Piles, Tunnels, and Caissons, Dayton Section ASCE. 1975:14
    [210] Proctor. R.V. and T. L White. Earth Tunneling with Steel Supports. Commercial Shearing. Inc. 1977
    [211]Sakaguchi.H. and E. Ozaki. Analysis of the Formation of Arches Plugging the Flow of Granular Materials. Proceedings of the 2nd International Conference on Discrete Element Method, MIT. Cambridge. Massachusetts. 1992:153-163
    [212] Selig. E. T. Stresses and Deflections Around Large Corrugated-Metal. Buried Structures. Seminar on Lateral Soil Pressures Generated by Pipes. Tunnels and Caissons, Dayton Section. ASCE, 36 p. 1975
    [213]Spangler. M.G. and R. L. Handy. Loads on Underground Conduits. Soil Engineering. 3rd Edition. Harper Collins. New York. 1973:658-686
    [214] Spangler. M.G. and R. L. Handy. Loads on Underground Conduits. Soil Engineering. 4th Edition. Harper Collins. New York. 1982:727-763
    [215]Stone.K. J. L. Modeling of Rupture Development in Soils. Ph. D Dissertation. Wolfson College. Cambridge University. 1988
    [216]Szechy.K. The Art of Tunneling. 21st Edition. Akademiai Kiado. Budapest. 1966
    [217]Szechy.K. The Art of Tunneling. 2nd Edition. Akademiai Kiado. Budapest. 1973:211-243
    [218] Terzaghi.K. Stress Distribution in Dry and in Saturated Sand Above a Yielding Trap-Door. Proceedings, First International Conference on Soil Mechanics and Foundation Engineering. Cambridge, Massachusetts. 1936:307-311
    [219] Terzaghi.K. Theoretical Soil Mechanics, John Wiley and Sons. New York. 1943:66-76
    [220] Terzaghi.K. and R.B.Peck. Soil Mechanics in Engineering Practice. 2nd Edition. John Wiley and Sons. New York. 1968:267-268
    [221] Tien. H. A Literature Study of the Arching Effect. SM Thesis. Massachusetts Institute of Technology, 1996 :40-184
    [222]Trollope, D. H. The Systematic Arching Theory Applied to the Stability Analysis of Embankments. Proceedings, Fourth International Conference on Soil Mechanics and Foundation Engineering, Vol.2, 1957:382-388
    [223]Truesdale, W. B. and E. Vey. An Investigation of Panel-Arching Effects in Noncohesive Soil. Proceedings of the Symposium on Soil-Structure Interaction, University of Arizona. Tucson. Arizona. 1964:349-355
    [224] Vardoulakis, L.B.Graf, and G.Gudehus. Trap-Door Problem with Dry Sand: A Statical Approach Based Upon Model Test Kinematics. International Journal for Numerical and Analytical Methods in Geomechanics.John Wiley and Sons.LTD.Vol.5.1981:57-78
    [225]Whitman.R.V.,Z.Getzler,and K.Hoeg.Static Tests Upon Thin Domes Buried in Sand.MIT Research Project Report No.R62-41,December.1962
    [226]Whitman.R.V.,Z.Getzler,and K.Hoeg.Tests Upon Thin Domes Buried in Sand.Journal of the Boston Society of Civil Engineers.January.1963:1-22
    [227]Yoshida.T.F.Tatsuoka.M.S.A.Siddiquee.Y.Kamegai.and C.S.Park.Shear Banding in Sands Observed in Place Strain.Proceedings for the Third International Workshop on Localisation and Bifurcation for Soils and Rocks,Aussois,France,1993:6-9
    [228]HUANG Z.Stabilizing of rock cavern roofs by rockbolts.Norway:Norwegian Univ of Science and Technology.2001
    [229]HSIEN-JEN STEPHEN TIEN The arching mechanism on the micro level utilizing Photoelasticity Modeling[D],America:Engineering in civil and environmental engineering university of Massachusetts Lowell,2001
    [230]小野谅况,真井耕象.乾燥砂层に於けゐ垂直土压.土木学会,,昭和13年,24(5):11-21
    [231]周小文,濮家骝,包承纲.隧洞拱冠砂土位移与破坏的离心模型试验研究.岩土力学.1999,20(2):32-36
    [232]周小文,濮家骝,包承钢.砂土中隧洞开挖稳定机理及松动土压力研究.长江科学院院报,1999,16(4):9-14
    [233]刘波,韩彦辉.FLAC原理、实例与应用指南.北京:人民交通出版社,2005:3-4
    [234]李志业,曾艳华.地下结构设计原理与方法.成都:西南交通大学出版社,2003:68-71
    [235]关宝树.隧道力学概论.成都:西南交通大学出版社,1993:48-49
    [236]李国强,黄宏伟,吴迅,刘沈如.工程结构荷载与可靠度设计原理.北京:中国建筑工业出版社.2005:230
    [237]何广讷.振冲碎石桩复合地基.北京:人民交通出版社.2001:120
    [238]YS5202-2004.岩土工程勘察技术规范[S].北京:中国计划出版社.2005:102
    [239]林宗元.岩土工程试验监测手册.北京:中国建筑工业出版社.2005:85
    [240]赖琼华.岩土变形模量取值研究.岩石力学与工程学报.2001,20(增):32-33
    [241]朱小林,杨桂林.土体工程.上海:同济大学出版社.1995:52
    [242]于敬克.砾石土科颗粒组成对抗剪强度的影响.水电站设计.1991,7(4):53-58
    [243]于敬克.密度及颗粒组成对土石料抗剪强度影响的概析.水电工程研究.1989(2):43-46
    [244]何迎红,屈智炯.冰渍土力学性质与微观结构的研究.成都科技大学学报,1990(5):23-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700