超声浸渍法、溶胶凝胶法制备高温煤气脱硫剂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用普通浸渍法、超声浸渍法和溶胶凝胶法三种方式制备高温煤气脱硫剂,通过ICP、SEM、XRD、氮吸附等手段对脱硫剂进行表征,并在一立式固定床上进行活性评价。得出结论如下:
     (1)采用超声浸渍法和普通浸渍法制备铁、锰、铜、锌、铈、钙六种物系脱硫剂,ICP-AES结果表明超声浸渍不仅缩短了浸渍时间,还促进了活性成分的负载。BET分析结果和粒径分布曲线表明,超声浸渍丰富了脱硫剂的孔隙结构,增加了比表面积和孔容,并具有细化颗粒的效果。SEM结果显示,超声浸渍制备得到的脱硫剂颗粒较小而且分布均匀,烧结程度较轻。XRD分析表明超声浸渍对脱硫剂的晶粒分布状态有影响。在固定床上对所有脱硫剂进行活性评价,结果表明超声波浸渍法制备得到的脱硫剂的穿透硫容有显著提高。6种物系的脱硫穿透硫容比较结果为:Mn>Fe>Cu>Ce>Ca>Zn,但超声波处理后Fe的穿透硫容提高最为明显。
     (2)采用超声浸渍法分别制备Mn/SiO2、Mn/TiO2、Mn/γ-Al2O3三种高温煤气脱硫剂,研究载体对于脱硫剂活性的影响。三种载体的比较研究表明,Mn/γ-Al2O3比表面积大,脱硫活性大,能满足IGCC中硫化氢的净化要求,是一种较好的高温煤气脱硫剂。而Mn/SiO2不能较长时间维持硫化氢在低浓度,Mn/TiO2高温稳定性差。
     (3)采用溶胶凝胶法和超声浸渍法分别制备相同负载的锰系脱硫剂,并对其进行表征和活性评价,得出结论:溶胶凝胶法制备得到的脱硫剂孔隙更为丰富,具有良好的微观结构,XRD测试结果显示其活性成分在载体上的分布更为均匀,能够更好的进行脱硫反应。溶胶凝胶法制备得到的脱硫剂活性比相同负载下的超声浸渍法制得的脱硫剂来得高。温度越大,脱硫剂活性增大,但是涨幅并不大。总体上讲,溶胶法具有较为优良的性能,各种参数比超声浸渍来得好;但是,由于其制备工艺较为复杂,费用高,目前难以在工业化推广应用。
Hot-gas desulfurization sorbents were prepared by three methods respectively, including ultrasound-assisted impregnation method, classical impregnation method and sol-gel method. The physical and chemical properties of sorbents were analyzed by means of ICP-AES, SEM, and XRD. The desulfurization activities of high temperature desulfurization sorbents were studied in a fixed-bed reactor. The results are as follows.
     (1) Six hot-gas desulfurization metal sorbents including Fe, Mn, Cu, Ce, Ca and Zn were prepared by an ultrasound-assisted impregnation method and by a classical impregnation method. ICP results showed that the use of ultrasond increased the content of active ingredient in the sorbents, improved the pore structure, and thinned the particles. SEM results revealed that the sorbents was small in granule, uniform grading and less sintering with ultrasonic treatment. XRD results showed that the use of ultrasond had an affect on the dispersion of crystal grain. The activity test results indicated that the desulfurization activity of the sorbents prepared by ultrasound impregnation was much higher than those without ultrasonic treatment, especially for the Fe sorbent. The desulfurization activity order of the six metal sorbents is Fe>Mn>Cu>Ce>Ca>Zn.
     (2) Three hot-gas desulfurization metal sorbents including Mn/SiO2, Mn/TiO2, and Mn/γ-Al2O3, were prepared by ultrasound-assisted impregnation method for the purpose of studying the effect of the carrier. The carrier study showed that, Mn/γ-Al2O3 got higher BET surface area and better performance, was fit for IGCC hot-gas desulfurization. But Mn/SiO2 cannot keep the H2S concentration at a low level in a long time, and Mn/TiO2 was bad in high temperature stability.
     (3) Mn desulfurization sorbents were prepared by an ultrasound-assisted impregnation method and a sol-gel method with the same load. The sol-gel method got higher BET surface area, better performance and activity. XRD results showed that Mn active ingredient was in uniform distribution, which is good for the desulfurization reaction. The activities of the sorbents increased with the increasing of the temperature. In short, sol-gel method gets better performance, but in high price and with difficult preparation. It is still difficult to get a widely industry application now.
引文
[1]Westmoreland, Harrodon D P. Evaluation of Candidate Solids for high temperature desulfurization of low-Btu gases [J]. Enviorn Sci Technol,1976,10(7):659.
    [2]Oldaker E C, Poston A M, Farrior W L. Removal of Hydrogen Sulfide from Hot-low-Btu Gas with Iron Oride-Fly Ash Sorbents [J]. Morgantown Energy Technology Center,1975, ReportNo.METC/TPR-75 VOls I and II.
    [3]Schrodt J T, John Yamanis. Reaction of sulfides in fuel gases with the iron oxide in coal ash fixed-bed experiments and simulations [J]. Ind Eng Chem Process Des Dev, 1982,21:382-390.
    [4]Schrodt J H. Design and cost optimization of a hot fuel gas desulfurization process [J]. Fuel Processing Technology,1982,6:255-267.
    [5]White J D, Groves F R Jr, Harrison D P. Elemental Sulfur Production During the Regeneration of Iron Oxide High-Temperature Desulfurization Sorbent [J]. Catal Today, 1998,40(1):47-57.
    [6]Oldaker, Poston, Farrior. Sulfidation and Regeneration of Iron Oxide of High Temperature [J]. Am Chem Soc Preprints:Div of Fuel,1975,20(4):227.
    [7]Wakker J P, Gerritsen A W, Moullijn J A. High Temperature H2S and COS Removal with MnO and FeO on γ-Al2O3 Acceptors[J]. Ind Eng Chem Res,1993,31:139-149.
    [8]李彦旭.铁钙氧化物高温脱硫规律及动力学的研究[D].太原理工大学,1999.
    [9]樊惠玲.氧化铁高温煤气脱硫行为及助剂影响规律的研究[D].太原理工大学,2004.
    [10]Tzu-Hsing Ko, Hsin Chu, Jeou-Jen Tseng. Feasibility study on high-temperature sorption of hydrogen sulfide by natural soils [J]. Chemosphere,2006,64:881-891.
    [11]Tzu-Hsing Ko, Hsin Chu, Hsiao-Ping Lin, Ching-Yu Peng. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas [J]. Journal of Hazardous Materials,2006, B136:776-783.
    [12]Fenouil L,Lynn S. Study of Calcium-Based Sorbents for High-Temperature H2S Removal 3:Comparison of Calcium-Based Sorbents for Coal Gas Desulfurization [J]. Ind Eng Chem Res,1995,34:2343-2348.
    [13]Adanez J, Garcia-L abiano F, dediego L F, etal. H2S Removal in Entrained Flow Reactors by Injection of Ca-Based Sorbents at High Temperature [J]. Fuels,1998,12(4): 726-733.
    [14]Abbasian Javed. In-Situ Desulfurization of Coal Gas with CaO-Based Sorbents [J]. Nato Asi Ser Ser G,1998,42:269-282.
    [15]Garcia Labiano F, deDiego L F, Adanez J. Effectiveness of Natural, Commercial and Modified Calcium-Based Sorbents as H2S [J]. Enviorn Sci Technol,1999,33(2): 288-293.
    [16]宋占龙,章名耀.钙基脱硫剂煤气化还原脱硫的研究进展[J].锅炉技术,2006,37:61-66.
    [17]Tamhankar S.S., Bagajewicz M., Gavalas G.R., etal. Mixed-Oxide Sorbents for High-Temperature of Hydrogen sulfide [J]. Ind Eng Chemprocess Des Dev,1986,25(2): 429-437.
    [18]Eiji Sasaoka. Stability of Zinc Oxide High Temperature Desulfurization Sorbents for Reduction [J]. Energy&Fuel,1994,8:763-769.
    [19]Grindley T, Steinfeld G. Zinc Ferrite as Hydrogen Sulfide Absorbent [M].3rd Annual Contractors' eeting on Contaminant Control in Hot Coal Derived Gas Streams. 1983.
    [20]Lew S, Jothimurrgesan K, Flytzani-Stephanopoulos M. High-temperature H2S removal from fuel gases by regenerable zinc oxide-titanium dioxide sorbents [J]. Ind Eng Chem Res 1989,535-541.
    [21]Jothirmurugesan K, Adayiga A A, Gangwal S K. Removal of hydrogen sulfide from hot coal gas streams [J]. Proc Annu Int Pittsburgn Coal Conf,1996,1.596-601.
    [22]Li Zhijiang, Flytzani-Stephanopoulos M. Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization [J]. Ind Eng Chem Res,1997,36(1):181-196.
    [23]Abbasian J, Slimane R B. A Regenerable Copper-Based Sorbent for H2S Removal from Coal Gases [J]. Ind Eng Chem Res,1998,37(7):2775-2782.
    [24]Zeng Y, S Kaytakoglu, Harrison D P. Reduced cerium oxide as an efficient and durable high temperature desulfurization sorbent [J]. Chemical Engineering Science, 2000,55:4893-4900.
    [25]Zeng Y, Zhang S, Groves F R et al. High Temperature Gas Desulfurization with Elemental Sulfur Production [J]. Chem Eng Sci,1999,54:3007-3017.
    [26]Makoto Kobayashi, Maria Flytzani-StePhanoPoulos. Reduction and Sulfidation Kinetics of Cerium Oxide and Cu-Modified Cerium Oxide [J]. Ind Eng Chem Res,2002, 41:3115-3123.
    [27]张一帆,郭曙强,鲍国杭,唐建春,丁伟中.氧化铈脱硫剂的高温煤气脱硫研究[J].煤炭转化,2008,31(2):20-24.
    [28]高春珍.氧化铁高温煤气脱硫剂的制备与活性评价[D].太原理工大学,2004,
    [29]Wakker J P, Gerritsen A W, Moullijn J A. High Temperature H2S and COS Removal with MnO and FeO on γ-Al2O3 Acceptors [J]. Ind Eng Chem Res,1993,32:139-149.
    [30]Husnu Atakul, J. Peter Wakker, Albert W. Gerritsen, Pieter J. van den Berg. Removal of H2S from fuel gases at high temperatures using MnO/γ-Al2O3 [J]. Fuel,1995,74(2): 187-191.
    [31]Wridzer J. W. Bakker, Freek Kapteijn, Jacob A. Moulijn. A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production:Conceptual process application to coal gas cleaning [J]. Chemical Engineering Journal,,2003,96(1-3):223-235.
    [32]W.J.W. Bakker, M. Vriesendorp, F. Kapteijn and J.A. Moulijn. Sorbent development for high temperature desulfurization in a rotating monolith reactor [J]. Can J Chem Eng, 1996,74:713-718.
    [33]梁斌,汪涛,吴潘Mn/γ-Al2O3高温脱硫剂的制备[J].四川大学学报,2002,34(1):11-15.
    [34]B. LIANG R K, A. W. GERRITSEN, C. M. VAN DEN BLEEK. Effect of manganese content on the properties of high temperature regenerative H2S acceptor [J]. Fuel,1999, 78(3):319-325.
    [35]B. Liang, R. Korbee, A. W. Gerritsen, C. M. van den Bleek. Preparation of the Mn/γ-Al2O3 acceptor for high temperature regenerative H2S removal [J]. Can J Chem Eng,1999,77:483-488.
    [36]Tzu-Hsing Ko, Hsin Chu, Lung-Kai Chaung. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports [J]. Chemosphere,2005,58(4):467-474.
    [37]Lee Tae Jin, Kwon Tae, Chang Won Chul, et al. A study on preparation and reactivity of zinc titanate sorbents for H2S removal [J]. Korean J Chem Eng,1997,14(6):513-518.
    [38]Lee Tae Jin, Park Nokuk, Kim Jang Hee, et al. Removal of H2S from high-temperature coal-derived gases by zinc-based sorbents [J]. Hwahak Konghak,1996, 34(4):422-435.
    [39]Lew S, Sarfim A F, Flytzani-Stephanopoulos M. Sulfidation of zinc titanate and zinc oxide solids [J]. Ind Eng Chem Res,1992,31:1890-1899.
    [40]Woudstra Th, Woudstra N. Exergy analysis of hot-gas clean-up in IGCC systems [J]. Journal of the institute of energy,1995,68(9):157-166.
    [41]Yoshida N, Lwahashi T, kosaka H. Temperature Desulfurization Using Molten Salt Carbonate [J].1998 International Joint Power Conference,1998,22(1):749-755.
    [42]Tseng S C, Tamhankar S S. Wen C Y. Kinetic Sutdies on the Reactions Involved in Hot Gas Desulfurization Using a Regenerable Iron Oxide Sorbent II:Reaction of Iron Sulfide with Oxygen and Sulfur Dioxide [J]. Chem Eng Sci,1981,36:1287-1294.
    [43]戴遐明.我国超细陶瓷粉体的研究开发现状与思考[J].中国硅酸盐,2002,3:21-32.
    [44]任俊.粉体分析技术与工业应用[M].北京:北京科技大学,2001.
    [45]张高良.工业催化剂的生产[M],上海,上海科学技术出版社,1988.
    [46]王世敏,许祖勋.傅晶编著.纳米粉体制备技术[M].北京:化学工业出版社,2002.
    [47]王桂茹,王安杰,.催化剂与催化作用[M],大连大连理工大学出版,2000.
    [48]许越.催化剂设计与制备工艺[M],北京,化学工业出版社,2003.
    [49]张继光.催化剂制备过程技术[M].北京:中国石化出版社,2004.
    [50]金杏妹.工业应用催化剂[M],上海,华东理工大学出版社,2004.
    [51]T. SJ. Desulfurization-Ⅱ Use of Gasifier Ash in a Fluidized-Bed Process. Final RePort. DePartment of Chemieal Engineering, University of Kentueky; 1981.
    [52]任建新.物理清洗[M].北京,化学工业出版社,2000.
    [53]张光明等.超声波水处理技术[M].北京,中国建筑工业出版社,2006.
    [54]Simona B AG. Preparation of highly dispersed CuO catalysts on oxide supports for de-NOx reactions[J]. Ulrasonics Sonochemistry.2000; 10(2):61-64.
    [55]Gyorgy Szollo BT. Ultrasonic irradiation as activity and selectivity improving factor in the hydrogenation of cinnamaldehyde over Pt/SiO2 catalysts[J]. Applied Catalysis A. 1998;172(2):225-232.
    [56]Srivastava D N PN. Preparation of porous cobalt and nickel oxides from corresponding alkoxides using a sonochemical technique and it s application as a catalyst in the oxidation of hydrocarbons[J]. Ultrasonics Sonochemisry.2003; 10(1):1-9.
    [57]Dantsin G SKS. Adsorption and reactions of butylspecies over Mo2C catalyst[J]. J Am Chem Soc.1997;4(4):317-320.
    [58]Bianchi C L GE, Toscano L. Preparation of Pd/C catalysts via ultrasound:a study of the metal distribution[J]. Ultrasonics Sonochemistry.1997;4(4):317-320.
    [59]Pillai U R ESD, Varma R S. Alternative routes for catalyst p reparation:use of ultrasound and mi-crowave irradiation for the p reparation of vanadium phos-phorus oxide catalyst and their activity for hydrocarbon oxidation[J]. Applied Catalysis a General Volume.2003;252(1):1-8.
    [60]Zhyznevskiy V M TRD, GumenetskiyV V. Physico-chemical and catalytic properties of Fe2BiMo2Ox catalyst ultrasound treated and promoted with Al2O3 in the oxi-dative dehydrogenation of ethylbenzene to styrene[J]. Applied Catalysis a General Volume. 2002;238(1):19-28.
    [61]刘越男 吕,韩萍芳等.超声浸渍法制备Fe3O4/γ-Al2O3催化剂及其表征、活性研究[J].化工学报.2007;58(11):2805-2809.
    [62]李忠赵祯霞,徐科峰等.超声辐射制备Fe3+/γ-Al2O3催化剂催化降解含酚废水[J].华南理工大学学报(自然科学版).2006;34(3):30-34.
    [63]任书霞,杨丹.溶胶-凝胶法在纳米粉体制备中的应用[J].中国粉体技术,2006,(1):48-50
    [64]Buelna Genoveva, Lin Y S. Preparation of spherical alumina and copper oxide coated alumina sorbents by improved sol-gel granulation process[J]. Microporous and Mesoporous Materials,2001,42:67-76
    [65]Buelna Genoveva, Lin Y S, Liu L X, and Litster J D. Structural and Mechanical Properties of Nanostructured Granular Alumina Catalysts[J]. Ind. Eng. Chem. Res.,2003, 42 (3):442-447
    [66]Buelna Genoveva, Lin Y S. Characteristics and desulfurization-regeneration properties of sol-gel-derived copper oxide on alumina sorbents[J]. Separation and Purification Technology,2004,39 (3):167-179.
    [67]王晶,邱竹贤,谢朋等.有机醇盐sol-gel法纳米Al203粉体制备及特征[J].有色 金属,2001,22(2):90-93.
    [68]赵清森,孙路石,石金明等.溶胶凝胶法制备CuO/γ2AlO3催化剂及其脱硝活性的研究[J].动力工程,2008,28(4):620-624
    [69]Bianchi C L, Martini F, Ragaini V. New ultrasonically prepared Co-based catalysts for fischer-tropsch synthesis [J]. Ultrasonics Sonochemistry,2001,8(3):131-135.
    [70]Barrera J, Montoya J A, Vigiegra M, et al. Isomerization of n-hexane over mono-and bimetallic Pd-Pt catalysts supported on ZrO2-Al2O3-WOx prepared by sol-gel [J]. Applied Catalysis A General,2005,290(1):97-109.
    [71]Fang C S, Chen Y W. Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution[J]. Mater. Chem. Phys.2003,78:739-745.
    [72]Sonawance R S, Hegde S G, Dongare M K. Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating[J]. Mater. Chem. Phys.2002,77:744-750.
    [73]Slimance R B, Hepworth M T. Desulfurization of hot gases with manganese based regenerable sorbents.3. Fixedbed testing[J]. Energy Fuels,1995,9:372-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700