用户名: 密码: 验证码:
考虑静态电压稳定约束的概率最大输电能力快速计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可用输电能力(ATC)是现代电力系统运行的重要参数,而最大输电能力(TTC)的计算则是整个ATC分析的基础和关键,也是当前研究的热点。此外,随着风力发电产业的迅速发展,越来越多兆瓦级的大型风电场直接连入输电系统,风力发电所具有的随机特性为输电能力研究提出了新的课题。本文针对静态电压稳定约束下包含大型风电场的电力系统概率最大输电能力快速计算方法进行了深入细致的研究,取得了如下一些成果:
     (1)给出了可用于概率输电能力快速计算的全注入空间电压稳定域边界切平面表达式,结合矢量量化聚类分析,采用多个切平面近似描述电压稳定域边界。在此基础上,发展了一种考虑负荷和发电机出力不确定性因素的概率TTC快速计算方法,并利用该方法进一步研究了负荷波动及其不同增长方式对概率TTC的影响。
     (2)发展了一种能够计及线路故障的概率TTC分层快速计算方法。该方法针对因线路故障引起的电压稳定域边界的改变,利用阻尼牛顿法从故障前稳定域边界点直接计算得到故障后稳定域边界点,然后用切平面描述故障后稳定域的局部。针对线路连锁故障,发展了一种考虑线路故障相关性的Monte Carlo仿真方法,并以此分析了线路故障相关性对概率输电能力的影响。
     (3)在完整的异步发电机π型等值电路基础上,建立了含异步风电机组的统一迭代连续性潮流计算模型,提出了电压稳定约束下包含风电场的TTC计算方法,并进一步研究了风速、风电穿透功率对TTC的影响。
     (4)给出了可以直接反映风电场风速变化影响的扩展全注入空间相关定义,建立了加入异步风力发电机模型的含参潮流模型,推导出了含风电功率项的扩展全注入空间电压稳定域边界切平面解析式。在此基础上,提出了综合考虑风电场风速、负荷、发电机出力和线路故障不确定性因素的概率TTC分层快速计算方法。与传统概率性方法相比较,该方法不仅可以方便地考虑风电场风速波动随机性的影响,而且具有精度高、计算速度快、可在线应用的优点。
In a competitive market environment, Available Transfer Capability (ATC) is a very important parameter for both independent system operator (ISO) and all market participants. The calculation of Total Transfer Capability (TTC) is the groundwork of ATC research. In the actual real-time operation of power system, TTC is usually updated every half or one hour, and currently only calculated using deterministic model. However, deterministic model only considers the worst case. A large number of system uncertainties, such as loads, generations and contingency randomness, are ignored in the deterministic model. Accordingly, the probabilistic model can provide more useful information, such as the expectation value and the probability distribution of TTC. However, present probabilistic methods are too slow to be used in real-time TTC evaluation.
     Meanwhile, there are more and more megawatt large-scale wind farms being connected directly into power systems while wind power generation is developing rapidly all through the world. The randomness and fluctuation of wind energy will bring new problems to the research of transfer capability.
     In this thesis, fast calculation methodology of probabilistic TTC considering static voltage stability constraints is systematically and thoroughly studied, and some conclusions are derived:
     Firstly, for the fast calculation of probabilistic TTC, a hyper-plane equation is derived to estimate part of the SVSR boundary in power injection space. The SVSR boundary under base system configuration is described by a set of hyper-planes, whose number and tangent point are determined by Vector Quantification (VQ) clustering method. Then a fast probabilistic TTC calculation method is proposed with the consideration of loads and generation uncertainties. Using the proposed method, The influence of load fluctuation and load increasing mode on probabilistic TTC is also discussed.
     Secondly, a layered probabilistic TTC calculation model is developed for line outage uncertainties. The partial boundary of the post-contingency SVSR is also described by a hyper-plane, whose tangent point is directly calculated from the pre-contingency point by damped Newton method. Then the TTC of each sampled system condition can be obtained quickly using the SVSR boundary to represent voltage stability constraints. In order to show the influence of line outage correlation on TTC, a new Monte Carlo simulation method is also proposed to simulate line cascading contingencies.
     Thirdly, based on the completeπ-type equivalent circuit of asynchronous wind turbine, a new unified iterative continuation power flow algorithm is proposed. Using this method, TTC of power system containing wind farms can be investigated under static voltage stability constraints. The influence of wind speed variation and wind power penetration on TTC is also analyzed.
     Finally, an extended full injection space, which can reflect wind speed variation in wind farms, is defined. And a new hyper-plane equation containing wind mechanical power is derived to estimate part of the SVSR boundary in the extended full injection space. Then a new probabilistic method to evaluate TTC in power system including large-scale wind farms is developed. Wind speed, loads, generation and line contingencies uncertainties are considered at the same time in this model.
     Compared with traditional probabilistic method, the proposed method can not only consider conveniently the influence of wind power randomness, but also significantly reduce the computation load while maintaining a satisfied accuracy. This method will be useful for system operator to evaluate probabilistic TTC in real-time. Based on this method, the influence of wind speed probability distribution parameters on TTC is also discussed.
引文
[1] Federal Energy Regulatory Commission. Open access same-time information system (formerly real-time information networks) and standards of conduct. Washington:Federal Energy Regulatory Commission, 1996
    [2] Available Transfer Capability Definition and Determination: a reference document prepared by TTC task force.New Jersey: North American Electric Reliability Coancil, 1996
    [3] 李国庆,王成山,余贻鑫. 大型互联电力系统区域间功率交换能力研究综述. 中国电机工程学报, 2001, 21(4): 20-25
    [4] 崔雅莉, 别朝红, 王锡凡. 输电系统可用传输能力的研究. 电力自动化设备,2003, 23(4): 70-75
    [5] GRAVENER M H, NWANKPA C. Available transfer capability and first order sensitivity. IEEE Trans. on Power Systems, 1999,14(2):512-518
    [6] Ou Yan,Singh C. Assessment of Available Transfer Capability and Margins. IEEE Transaction on Power Systems, 2002, 17(2): 463-468
    [7] M. H. Gravener, C. Nwankpa, and T.Yeoh, ATC computational issues, in Proc. 32nd Hawaii Int. Conf. Syst. Sci., Maui, HI, 1999, pp. 1–6
    [8] G. C. Ejebe, J. Tong, J. G. Waight, et al. Available transfer capability calculations. IEEE Trans. Power Syst., 1998, 13(4): 1521–1527
    [9] M. H. Gravener, C. Nwankpa, Available transfer capability and first order sensitivity. IEEE Trans. Power Syst., 1999, 14(2): 512–518
    [10] 李生虎,丁明,等. 基于安全性的互联电网间最大输电容量的研究. 电力系统及其自动化学报, 2004, 15(5): 1-4
    [11] 王良缘,吴政球,傅海燕,等. 电力市场中基于内点法的含暂态稳定约束的最大可用输电能力计算. 电力系统及其自动化学报, 2004, 16(1): 28-33
    [12] LUO X, PATTON A D, SINGH C. Real power transfer capability calculations using multi-layer feed-forward neural networks. IEEE Trans. on Power Systems, 2000, 15(2): 903–908
    [13] LUO X, PATON A D, SINGH C. Quickprop algorithm for transfer capability calculations. IEEE PES. Conference Proceedings on 1999 Power Engineering Society Winter Meeting. New York: Institute of Electrical and Electronics Engineers, 1999, 1075-1077
    [14] C L S,STAI C Y,LU C N. Improving base case solution for on-line ATC calculations. IEEE PES. Conference Proceedings on 2000 Power Engineering Society Summer Meeting. Seattle USA: Institute of Electrical and Electronics Engineers, 2000.27-31
    [15] EJEBE G C, WAIGHT J G, SANOTS-NIETO M, et al. Fast calculation of linear available transfer capability. IEEE Trans. on Power Systems, 2000,15(3):1112-1116
    [16] GRIJALVA S, SAUER PW. Reactive power considerations in ATC computation. Decision Support Systems, 2001, 30(3): 327-340
    [17] XIA F, MEIDOPOULOS A P S. A methodology for probabilistic simultaneous transfer capability analysis. IEEE Trans. on Power Systems, 1996, 11(3): 1269-1278
    [18] A. C. G. Melo, M. V. F. Pereira, and A. M. Leite da Silva, Frequency and duration calculations in composite generation and transmission reliability evaluation. IEEE Trans. Power Syst., 1992, 7(2): 469-476
    [19] A. M. Leite da Silva, L. A. F. Manso, J. C. O. Mello, and E. R. Billinton, Pseudo-chronological simulation for composite reliability analysis with time varying loads. IEEE Trans. Power Syst., 2000, 15(1): 73-80
    [20] A. Takehara, M. Nagata, K. Tanaka, Fast evaluation methods of ATC with thermal constraints and voltage stability constraints. 1st Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES. Yokohama, Japan, 6-10 Oct. 2002,Page(s):875-880
    [21] M. Eidiani, M.H.M. Shanechi, E. Vaahedi, Fast and accurate method for computing FCTTC (first contingency total transfer capability). PowerCon 2002. International Conference on Power System Technology, Kunming, China, Volume 2, 13-17 Oct. 2002 Page(s): 1213-1217
    [22] Kulyos Audomvongseree, Akihiko Yokoyama, Consideration of an Appropriate TTC by Probabilistic Approach. IEEE Transactions on Power Systems, 2004, 19(1): 375-383
    [23] Yuan Li and Vaithianathan (Mani) Venkatasubramanian, Coordination of Transmission Path Transfers. IEEE Transactions on Power Systems, 2004, 19(3): 1607-1605
    [24] 赵金利,余贻鑫. 电压稳定约束下电力大系统在线 ATC 计算和经济调度模型. 第九届全国电工数学学术年会, 中国镜泊湖, 12-17 Sep. 2003 Page(s): 57-62
    [25] Jifeng Su, Yixin Yu, Hongjie Jia, Visualization of Voltage stability Region of Bulk Power System. PowerCon 2002. 2002 International Conference on Power System Technology Proceedings, Kunming, China, Vol.3, 1665-1668
    [26] Yixin Yu, Security Region of Bulk Power System. PowerCon 2002. 2002 International Conference on Power System Technology Proceedings, Kunming, China, Vol.1, 13-17
    [27] Ian A. Hiskens, M.A. Pai, P.W. Sauer, Dynamic ATC. 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings, Singapore, 23-27 Jan. 2000, vol.3, 1629
    [28] Yue Yuan, Junji Kubokawa, Takeshi Nagata, A solution of dynamic available transfer capability by means of stability constrained optimal power flow, Power Tech Conference Proceedings, 2003 IEEE, Bologna, Italy. 23-26 June 2003. Vol. 2, 8
    [29] Yoshinori Yamada, Masaki Nagata and Kazuyuki Tanaka. An energy function based contingency screening method for ATC assessment with transient stability constraints, 1st Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES. Yokohama, Japan, 6-10 Oct. 2002, Vol. 2, 886-890
    [30] Masaki Nagata, Kazuyuki Tanaka. A hybrid approach of contingency screening for ATC assessment with stability constraints. 1st Quality and Security of Electric Power Delivery Systems, 2003. CIGRE/PES. CIGRE/IEEE PES. International Symposium. Montreal, Que., Canada, 8-10 Oct. 2003, 137-142
    [31] Ashwani Kunar, S.C.Srivastava and S.N.Singh, Available transfer capability assessment in a competitive electricity market using a bifurcation approach. Generation, Transmission and Distribution, IEE Proceedings. 2004, 151(2): 133-140
    [32] Xingbin Yu, Chanan Singh. Probabilistic analysis of total transfer capability considering security constraints. 8th International Conference on Probabilistic Methods Applied to Power Systems, Ames, IA, United States, 12-16 Sept. 2004, Page(s): 242-247
    [33] C. Y. Chung, Lei Wang and Frederic Howell. Generation Rescheduling Methods to Improve Power Transfer Capability Constrained by Small-Signal Stability, IEEE Transactions on Power Systems, 2004, 19(1): 524-530
    [34] Kulyos Audomvongseree and Akihiko Yokoyama, Application of ac equivalent to total transfer capability evaluation using two-step method. PowerCon 2002. International Conference on Power System Technology, 2002. Proceedings. Kunming, China, Volume 1, 13-17 Oct. 2002 Page(s): 383-387
    [35] J. A. Momoh, X. W. Ma, and K. Tomsovic, Overview and literature survey of fuzzy set theory in power systems. IEEE Trans. Power Syst. 1995, 10(3): 1676-1690
    [36] Azhar B. Khairuddin, S.Shahnawaz. Ahmed, et al. A Novel Method for ATC Computations in a Large-Scale Power System, IEEE Transactions on Power Systems, 2004, 19(2): 1676-1690
    [37] M. Shaaban, W. Li, Z. Yan, et al. ATC calculation with steady-state security constraints using benders decomposition. Generation, Transmission and Distribution, IEE Proceedings. 2003, 150(5): 611-615
    [38] Weixing Li, M. Shaaban, Zheng Yan, et al. Available transfer capability calculation with static security constraints. Power Engineering Society General Meeting 2003, IEEE. Toronto, Ont., Canada, Volume 1, 13-17 July 2003 Page(s): 306-310
    [39] W.X.Li, Z.M.Li, Y.X.Ni, et al. Available transfer capability calculation with post-contingency generation rescheduling/load curtailment. Sixth International Conference on Advances in Power System Control, Operation and Management, 2003. ASDCOM. Hong Kong, China , 11-14 Nov. 2003 Page(s):563 - 568
    [40] Z.B.Du, Y.Zhang, Z.G.Wu, A new index of available transfer capability based on generalized entropy. Sixth International Conference on Advances in Power System Control, Operation and Management, 2003. ASDCOM 2003. (Conf. Publ. No.497). Hong Kong, China, Volume 1, 11-14 Nov. 2003 Page(s): 230-235
    [41] Yun-fa Chan, Chia-Chi Chu and Sheng-Huei Lee. Optimal strategy to split firm and recallable available transfer capability in the deregulated environment. 1st Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES. Yokohama, Japan, Volume 2, 6-10 Oct. 2002 Page(s): 881 - 885
    [42] B. Mozafari, A.M. Ranjbar, Shirani.A.R., et al. A comprehensive method for available transfer capability calculation in a deregulated power system. Proceedings of the 2nd IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, 2004. (DRPT 2004). Hong Kong, China, Volume 2, 5-8 April 2004 Page(s): 680 - 685
    [43] Voltage stability of power systems: concepts, analytical tools, and industry experience, IEEE Working Group on Voltage Stability,IEEE Special Publication 90TH0358-2-PWR, 1990
    [44] Definition and Classification of Power System Stability. IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Trans. on power systems, Vol. 19, No. 2, MAY 2004
    [45] 余贻鑫. 电压稳定研究评述. 电力系统自动化,1999,23(21):1-8
    [46] 余贻鑫,王成山. 电力系统稳定性理论与方法,科学出版社,北京,1999
    [47] P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1994
    [48] G. K. Morison, B. Gao, and P. Kundur, Voltage stability analysis using static and dynamic approaches, IEEE Trans. Power Systems, vol. 8, pp.1159–1171, Aug. 1993
    [49] B. Gao, G. K. Morison, and P. Kundur, Toward the development of a systematic approach for voltage stability assessment of large-scale power systems, IEEE Trans. on Power Systems, Aug. 1996,vol. 11, pp. 1314-1324
    [50] T. Van Cutsem, Y. Jacquemart, J.-N. Marquet, and P. Pruvot, Extensions and applications of a mid-term voltage stability analysis method, in Bulk Power System PhenomenaII—Voltage Stability and Security, Davos, Switzerland, 1994,pp. 251–270
    [51] T. Van Cutsem and C. D. Vournas, Voltage stability analysis in transient and mid-term time scales, IEEE Trans. Power Syst., 1996, vol. 11, pp. 146-154
    [52] 余贻鑫,董存. 美加“8.14 大停电”过程中的电压崩溃. 电力设备,2004,5(3): 4-7
    [53] Greene S,Dobson I, Alvarado F L. Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters. IEEE Trans. on Power Systems,1997,12(1):262-272
    [54] 刘永强,严正,倪以信. 基于辅助变量的潮流方程二次转折分岔点的直接算法. 中国电机工程学报,2003,23(5):9-13
    [55] 贾宏杰. 电力系统小扰动稳定域的研究. 天津大学博士学位论文,2000
    [56] I. Dobson, Observations on the geometry of saddle node bifurcation and voltage collapse in electric power systems, IEEE Trans. on Circuits and Systems I, Vol. 39, pp. 240-243, 1992
    [57] R. Seydel, From Equibrium to Chaos: Practical Bifurcation and Stability Analysis, New Work: Elsevier, 1988
    [58] Heydt G T, Katz B M. A stochastic model in simultaneous interchange capacity calculations. IEEE Trans on Power Apparatus and Systems, 1975, 94(2): 350-359
    [59] PJM Transmission Reliability Task Force. Bulk power area reliability evaluation considering probabilistic transfer capability. IEEE Trans on Power Apparatus and Systems, 1982, 101(9): 3551-3562
    [60] Lauby M G, Douda J H, Polesky R W, et al. The procedure used in the probabilistic transfer capability analysis of the MAPP region bulk transmission system. IEEE Trans on Power Apparatus and Systems, 1985, 1104(11): 3013-3019
    [61] EPRI Report. Simultaneous transfer capability project: direction for software development. Final Report to RP3140-1, January 1991
    [62] Sandrin P, Dubost L, Feltin L. Evaluation of transfer capability between interconnected utilities. Proceedings of the 11th Power System Computation Conference. Avigncn France, August 30-September 3, 1993, 1:981-985
    [63] Feng Xia, Sakis A P, Meliopoulos. A methodology for probabilistic simultaneous transfer capability analysis. IEEE Trans on Power Systems, 1996, 11(3):1269-1278
    [64] Sakis A P, Meliopoulos, Feng Xin. Simultaneous transfer capability analysis: a probabilistic approach. Proceedings of the 11th Power System Conference, avignon, France, August 1993, 1:569-576
    [65] J.C.O. Mello, A.C.G. Mello, S. Granville. Simultaneous Transfer Capability Assessment By Combining Interior Point Methods And Monte Carlo Simulation. IEEE Transactions on Power Systems, 1997, 12(2): 736-742
    [66] XIAO Y, SONG Y H, Available Transfer Capability (ATC) evaluation by stochastic programming. IEEE Power Engineering Review, 2000,20(9): 50-52
    [67] TSAI C Y, LU C N. Bootstrap application in ATC estimation. IEEE Power Engineering Review, 2001,21(2): 40-42
    [68] 叶昌林. 风力发电的前景探讨. 东方电气评论,1997(9):181-185
    [69] 施鹏飞. 从世界发展展望我国风力发电前景,中国电力,2003,36(9):54-62
    [70] 张希亮. 风能开发利用. 北京:化学工业出版社,2005.5-6
    [71] 李亚西,武鑫,赵斌,等. 世界风力发电现状及发展趋势. 太阳能,2004(1): 6-7
    [72] 龙泽强,肖劲松. 风力发电研究和开发的现状与展望. 世界科技研究与发展,2003(4): 26-30
    [73] 雷亚洲,与风电并网相关的研究课题,电力系统自动化,2003,27(8):84-89
    [74] 迟永宁,王伟胜,刘燕华,等. 大型风电场对电力系统暂态稳定性的影响,电力系统自动化. 2006,30(15): 10-14
    [75] 尹明,李庚银,周明,等. 双馈感应风力发电机组动态模型的分析与比较. 电力系统自动化,2006,30(13): 22-27
    [76] 陈海焱,陈金富,段献忠. 含风电场电力系统经济调度的模糊建模及优化算法. 电力系统自动化,2006,30(2): 22-26
    [77] 刘其辉,贺益康,张建华. 交流励磁变速恒频风力发电机并网控制策略. 电力系统自动化,2006,30(3): 51-55
    [78] 申洪,王伟胜,戴慧珠. 变速恒频风力发电机组的无功功率极限. 电网技术,2003,27(11): 60-63
    [79] 吴俊玲,周双喜,等. 并网风力发电场的最大注入功率分析. 电网技术,2004,28(20): 28-32
    [80] Feijoo A E, Cidras J, Modeling of Wind Farms in the Load Flow Analysis, IEEE Trans on Power Systems, 2000, 15(1): 110-115
    [81] C.R.Fuerte-Esquivel, J.H.Tovar-Hernandez, G.Gutierrez-Alcaraz, F. Cisneros -Torres, Discussion of “Modeling of Wind Farms in the Load Flow Analysis , IEEE Trans on Power Systems, 2001, 16(4): 951
    [82] 吴义纯,丁明,张力军. 含风电场的电力系统潮流计算,中国电机工程学报,2005,25(4): 36-39
    [83] 陈金富,陈海焱,段献忠. 含大型风电场的电力系统多时段动态优化潮流. 中国电机工程学报,2006,26(3):31-35
    [84] 陈树勇,申洪,张洋等. 基于遗传算法的风电场无功补偿及控制方法的研究. 中国电机工程学报,2005,25(8):1-6
    [85] 王海超,鲁宗相,周双喜. 风电场发电容量可信度研究. 中国电机工程学报,2005,25(10):103-106
    [86] 郑国强,鲍海,陈树勇. 基于近似线性规划的风电场穿透功率极限优化的改进算法. 中国电机工程学报,2004,24(10):68-71
    [87] 雷亚洲,王伟胜,印永华,戴慧珠. 含风电场电力系统的有功优化潮流. 电网技术,2002,26(6):18-21
    [88] 申洪,梁军,戴慧珠. 基于电力系统暂态稳定分析的风电场穿透功率极限计算. 电网技术,2002,26(8):8-11
    [89] Andreas Petersson, Stefan Lundberg, Torbjom Thiringer. A DFIG Wind-Turbine Ride-Through System Influence on the Energy Production, Nordic Wind Power Conference, 1-2 MARCH, 2004, Chahners University of Technology
    [90] A. Perdana, O. Carlson, J. Persson, Dynamic Response of Grid-Connected Wind Turbine with Doubly Fed Induction Generator during Disturbances, Nordic Workshop on Power and Industrial Electronics, Trondheim-2004
    [91] Jouko Niiranen, Voltage Dip Rid Through of a doubly-fed generator equipped with an active crowbar, Nordic Wind Power Conference, 1-2 MARCH, 2004, Chalmers University of Technology
    [92] Math H. J. Bollen, Gabriel Olguin and Marcia Martins, Voltage Dips at the Terminals of Wind Power Installations, Nordic Wind Power Conference, 1-2 MARCH, 2004, Chalmers University of Technology
    [93] T. Sun, Z. Chen and G. Blaabjerg, Voltage Recovery of Grid-Connected Wind Turbines with DFIG After a Short-Circuit Fault, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004: 1991-1997
    [94] 丁明,吴义纯,张立军. 风电场风速概率分布参数计算方法的研究. 中国电机工程学报,2005,25(10):109-110
    [95] 吴义纯,丁明. 基于蒙特卡罗仿真的风力发电系统可靠性评价. 电力自动化设备,2004,24(12):70-73
    [96] 吴学光,陈树勇,戴慧珠,等. 最小误差逼近法在风电场风能资源特性分析中的应用. 电网技术,1998,22(7):69-74
    [97] 崔雅莉. 输电系统可用输电能力的模型与算法. 西安交通大学硕士学位论文,2003
    [98] 殷浩军. 安徽电网调度运行的概率充分性分析. 合肥工业大学硕士学位论文,2003
    [99] 谢莹华. 配电系统可靠性评估. 天津大学博士学位论文,2006
    [100] 余贻鑫.安全域的方法学及实用性结果. 天津大学学报,2003,36(5): 525-528
    [101] 曾沅,樊纪超,余贻鑫等. 电力大系统实用动态安全域. 电力系统自动化, 2001, 25(16): 6-10
    [102] 曾沅. 电力系统实用动态安全域的研究. 天津大学博士学位论文,2003
    [103] 曾小俊. 电力大系统静态响应安全域及其在线实现. 天津大学硕士学位论文,2002
    [104] 宿吉峰. 电力大系统保证静态电压稳定的安全运行区域及其可视化. 天津大学硕士学位论文,2002
    [105] 樊纪超. 交直流并联输电系统动态安全域及其临界割集表示. 天津大学博士学位论文,2005
    [106] 许晓菲. 电力系统电压稳定域可视化研究. 天津大学硕士学位论文,2003
    [107] 李慧玲. 电力系统割集功率空间静态电压稳定域. 天津大学硕士学位论文,2004
    [108] 韩琪. 电力系统注入功率空间的静态电压稳定域. 天津大学硕士学位论文,2004
    [109] Liu C C, Wu F F. Steady-state voltage stability regions of power systems. System and Contr. Lett., 1985, 16
    [110] K.T Vu, C.C Liu. Shrinking Stability Regions and Voltage Collapse in Power Systems. IEEE Transactions on Circuits and Systems, 1992, 39(4): 271-289
    [111] H.-D. Chiang, I Dobson. On voltage collapse in electric power systems. Power Industry Computer Application Conference, 1989. PICA '89, Conference Papers, pp. 342–349
    [112] 贾宏杰,余贻鑫. 发电机和并联补偿对电压小扰动稳定性的影响. 电力系统自动化, 1999, 23(21): 12-16
    [113] 李鹏. 从平衡点到振荡——基于域、分岔及阻尼理论的电力系统稳定分析. 天津大学博士论文,2004
    [114] Scott Greene, Ian Dobson, Fernando L. Alvarado. Sensitivity of the Loading Margin to Voltage Collapse with Respect to Arbitrary Parameters. IEEE Trans on Power System, 1997, 12(1): 262-272
    [115] F. D. Galiana, K. Lee. On the Steady Stability of Power Systems. Proceedings of Power Industry Computer Applications Conference, Toronto, Canada, 1977, pp.201-210
    [116] 余贻鑫,宿吉锋,贾宏杰等. 电力大系统电压稳定可行域可视化初探. 电力系统自动化, 2001, 25 (22): 1-5
    [117] 王成山,许晓菲,余贻鑫等. 电力系统电压稳定域的局部可视化描述及其应用. 中国电机工程学报, 2004, 24(3): 1-5
    [118] Su Jifeng, Yixin Yu, Hongjie Jia, et al. Visualization of Voltage Stability Region of Bulk Power System. Power System Technology, 2002. Proceedings. PowerCon 2002. International Conference on, 2002, 3(13-17): 1665-1668
    [119] 王成山,许晓菲,余贻鑫等. 基于割集功率空间上的静态电压稳定域局部可视化方法. 电机工程学报, 2004 24(9): 13-18
    [120] 余贻鑫,贾宏杰,严雪飞. 可准确追踪鞍结分岔的改进局部电压稳定指标LI. 电网技术, 1999, 23(5): 19-23
    [121] 陈予恕,线性动力学中的现代分析方法,科学出版社,北京,1992
    [122] 江伟,基于静态电压稳定的大型互联电力系统输电能力研究,天津大学硕士论文,2000.6
    [123] 王成山,江伟,江晓东. 一种新的电力系统鞍型分岔点计算方法. 中国电机工程学报,1999,19(8): 20-24
    [124] VSTB 软件包技术手册,天津大学自动化学院,1998
    [125] 王成山,李国庆,江伟,余贻鑫. 电力系统区域间最大功率交换量的计算. 第十四届全国高校电力系统及其自动化学术年会论文集,1998.10
    [126] 周双喜,冯治鸿,杨宁. 大型电力系统 P-V 曲线的求解. 电网技术,1996,20(8):4-6
    [127] 祝达康,程号忠. 求取电力系统 PV 曲线的改进连续潮流法 . 电网技术,1999,23(4):36-40
    [128] J. MacQUeen, Some methods for classification and analysis of multivariate observations , Proc. 5th Berkeley Symp. Math, statist. Prob., 1967, I: 281 –297
    [129] S. Guha, R. Rastogi, and K. Shim. Rock, A robust clustering algorithm for categorical attributes, Proc. 1999 Int Conf Data Engineering (ICDE’99),1999.3: 512-521
    [130] G Karpis, E. H. Han, and V Kumar: A hierarchical clustering algorithm using dynamic modeling , COMPUTER, 1999.32: 68-75
    [131] Bezdek J C. Pattern Recognition with Fuzzy Objective Algorithms. Plenum Press,New York,1981. 309-321
    [132] A Hinneburg and D. A Keim, An efficient approach to clustering in large multimedia databases with noise, Proc 1998 Int Conf Knowledge Discovery and Data Mining(KDD'98), 1998.8: 58-65
    [133] G. Sheikholeslami, S. Chatterjee, and A. Zhang, WaveCluster: A multi-resolution clustering approach for very large spatial databases, Proc 1998 Int. Conf Very Large Data Base, 1998.8: 428-439
    [134] 李国庆,赵钰婷,王利猛.计及统一潮流控制器的可用输电能力的计算.中国电机工程学报,2004,24(9):44-49
    [135] Ejebe G C, Tong J, Waight J G,et al.Available transfer capability calculations.IEEE Trans.on Power Systems,1998,13(4):1521-1527
    [136] 崔雅莉,别朝红,王锡凡. 输电系统可用输电能力的概率模型及计算. 电力系统自动化,2003,27(14): 36-40
    [137] 余贻鑫,冯飞.电力系统有功静态安全域.中国科学,1990,6:664-672
    [138] 余贻鑫,陈礼义.电力系统的安全性与稳定性.北京:科学出版社,1988
    [139] Bezdek J C. Pattern Recognition with Fuzzy Objective Algorithms[M]. Plenum Press,New York,1981.309-321
    [140] Thomas J. Overbye. A power flow measures for unsolvable cases, IEEE. Trans. on Power System, 1994, 9(3): 1359-1365
    [141] S. Iwamoto, Y. Tamura. A load flow calculation method for ill-conditioned power systems. IEEE. Trans. on Power Apparatus and Systems, 1981, 100(4): 1736-1743
    [142] Z. Feng, W. Xu. Fast computation of post-contingency system margins for voltage stability assessments of large-scale power systems. IEE Proc. on Generator, Transmission and Distribution, 147(2): 76-80
    [143] 余贻鑫,李鹏,贾宏杰. 基于混合法的潮流可行域边界计算. 电力系统自动化,2004,28(13): 18-25
    [144] Luciano V. Barboza, Roberto Salgado. Unsolvable power flow analysis - an approach based on interior point non-linear optimization methods, Power Tech Proceedings of IEEE Porto Conference, Porto, Portugal, 10th-13th September, 2001
    [145] John F H,Jeff E D.White paper on review of recent reliability issues and system events[EB/OL].Consortium for Electric Reliability Technology Solutions Grid of the Future, 1999, http://www.ecre.energy.gov
    [146] 程林,郭永基. 可靠性评估中多重故障算法的研究. 清华大学学报,2001,4l(3):69-72
    [147] U S - Canada Power System Outage task Force.Final report on the August 14,2003,blackout in the United States and Canada:Causes and recommendations [EB/OL].http://www.nerc.com/, 2004-08-19
    [148] Carreras B A, Newman D E, Dobson I, et al. Evidence for self-organized criticality in a time series of electric power system blackouts. IEEE Trans. On Circuits and Systems I: Fundamental Theory and Applications, 2004, 51(9): 1733-1740
    [149] Dobson I, Carreras B A, Lynch V E, et al. Complex systems analysis of series of blackouts: cascading failure, criticality, and self-organization. IREP conference: Bulk power system dynamics and control VI, Cortina dAmpezzo, Italy, August 2004
    [150] Lu Z X, Meng Z W, Zhou S X. Cascading failure analysis of bulk power system using small-world network model. International Conference on Probabilistic Methods Applied to Power Systems, 2004: 635-640
    [151] 孙可,韩祯祥,曹一家.复杂电网连锁故障模型评述.电网技术,2005,29(13):l-9
    [152] 曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象.电网技术,2005,29(15):1-5
    [153] 丁 明,韩平平. 基于复杂系统理论的电网连锁故障研究. 合肥工业大学学报(自然科学版),2005,28(9):1047-1052
    [154] 余晓丹,贾宏杰,陈建华. 电力系统连锁故障预测初探. 电网技术,30(13):20-25
    [155] 李生虎,丁明,王敏,等.考虑故障不确定性和保护动作性能的电网连锁故障模式搜索.电网技术,2004,28(13):27-31
    [156] 邓慧琼,艾欣,张东英,等.基于不确定多属性决策理论的电网连锁故障模式搜索.电网技术,2005,29(13):50-5
    [157] Tony Burton, David Sharp, Nick Jenkins, et al, Wind Energy Handbook, John Wiley & Sons, 2001
    [158] Feijoo A E, Cidras J, Dornelas J L G. Wind Speed Simulation in Wind Farms for Steady-state Security Assessment of Electrical Power Systems. IEEE Trans on Energy Conversion, 1999, 14(4):1582-1588
    [159] 陈树勇,戴慧珠,白晓民,等. 尾流效应对风电场输出功率的影响. 中国电力,1998,31(11): 28-31
    [160] 陈树勇,戴慧珠,白晓民,等. 风电场的发电可靠性模型及其应用. 中国电机工程学报,2000,3(3): 26-29
    [161] Y H Wan.Wind Power Plant Monitoring Project Annual Report. National Renewable Energy Laboratory,2001
    [162] 张义斌,王伟胜. 风电场输出功率的概率分布及其应用. 电力设备,2004,5(8): 38-40
    [163] Jangamshetti Suresh H, Rau V. Optimum siting of wind turbine generators.IEEE Trans on Energy Conversion,2001,16(1): 8-1
    [164] Jangamshetti S H, Rau V G.Site matching of wind turbine generators: a case study. IEEE Trans on Energy Conversion,1999,14-(4):1537-1543

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700