潜在突发性泥石流遥感图像解译与信息提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
5.12汶川地震发生于川西高原东部中、高山地区,由于此处地质环境极为脆弱,造成地壳断裂、地面山体破碎。地震诱发了大规模的崩塌、滑坡、泥石流等地质灾害,分布广泛、类型复杂、破坏性巨大。震后,研究区泥石流具有暴发频率高、规模大,潜在危害严重等特点,成为灾后重建的重要障碍。在这种背景下,震后潜在泥石流的解译,对灾后重建意义重大。地震发生后,为抗震救灾,各遥感卫星公司迅速组织获取灾区遥感数据的工作,提供第一手遥感影像。多家科研院所与高校也在第一时间为灾区震灾进行了遥感调查解译与应急评估。纵观这些地质灾害的提取方法,虽然进步很大,精度也越来越高,而对于潜在突发性泥石流的信息提取并不太适合,关于潜在泥石流信息提取的文章也很少见有文献报道。
     本文以地质灾害防治与地质环境保护国家重点实验室“科技减灾,重建家园”专项科研基金项目“汶川地震区地震诱发斜坡地质灾害遥感图像解译与评价”和重点实验室自主研究基金资助项目“汶川地震区潜在泥石流隐患判识标准及预测评价方法研究”为依托,选择地震中受灾较为严重的映秀至老虎嘴作为研究区域,以高空间分辨率航空影像为数据源,利用“3S”技术在虚拟三维场景的基础上,结合已建立的解译标志及研究区地形地貌及地质环境条件,采用人机交互的方式对研究区的地质灾害(包括崩塌、滑坡、活动泥石流沟)进行解译和信息提取,并在对活动泥石流进行评价分析的基础上,判译出研究区的潜在泥石流。
     论文所取得的主要研究成果与认识如下:
     (1)制作三维可视化影像动态分析图:由震后航片及由其提取的DEM制作研究区遥感图像地质解译三维可视化影像动态分析图,它不仅可以直观形象地表现地质灾害的特征,而且还能对地质灾害进行多视角、多尺度的动态观测,为地质灾害图像解译和野外调查提供指导、同时为后期的预防与整治提供参考;
     (2)滑坡、崩塌及活动泥石流的解译:根据已建立的解译标志和已有地质、地理等相关资料,结合地质灾害发育背景,利用遥感图像和三维遥感模型并结合野外考察,对滑坡、崩塌及泥石流进行人机交互式解译与信息提取,确定地质灾害点的类型、位置、边界等。
     (3)泥石流影响因子分析及危险度区划:将活动性泥石流沟作为样本,参照前人的研究成果和泥石流的分布状况,选取6个因子,即高程、坡度、断裂、土地利用类型,崩塌滑坡的密度及年日最大降雨量来对研究区泥石流沟发育特征进行分析,得到研究区泥石流危险度区划图,将其分为三级,即泥石流高危区、泥石流中危区、泥石流低危区。
     (4)潜在泥石流的解译:在地质、地形、气象水文等地质灾害发育的环境因素基础上,根据各活动泥石流沟的危险度值,以活动泥石流沟的危险性平均值做为分析待判定沟谷的危险度标准,以三维可视化技术为辅助,对潜在泥石流进行判译,确定其是否具有发生泥石流的可能性。
     本文在震后遥感图像解译和现场调查资料基础上,利用“3S”技术对研究区以潜在泥石流危害为主的地质灾害进行遥感图像解译和信息提取,为灾后的恢复重建及规划和震后潜在泥石流的防灾减灾提供参考依据。
The 5.12 Wenchuan earthquake happened in eastern middle and high mountain areas of the West Sichuan Plateau. Because the geological environment is fragile, The Earth crust is fractured,the mountain massif is broken. A number of Collapses, landslides and mud-rock flows etc geologic disaster are caused by the earthquake. They are widely distributed, the type is complicated, often causes catastrophes. After the earthquake, the outbreaks of the debris flow in the study area have characteristics of high frequency, large scale and serious potential hazards, which become big obstacles to reconstruction. Against this background, the interpretation of potential debris flow is significant for the reconstruction after earthquake. After the earthquake happened, all satellite remote sensing companies rapidly organized to acquire remote sensing data of disaster areas for disaster relief and provided the first hand of remote sensing images. A number of scientific research institutions and universities and colleges joined in remote sensing investigation and emergency assessment. Viewing the extraction method of the geologic disasters, although making great progress and the precision is increasing ,but which are not suitable for the information extraction of the sudden potential flow that are rarely seen in articles.
     The paper is based on The Prevention of Geological Disasters and Geological Environment Protection State Key Laboratory "technology relief and rebuild homes" special research fund project "wenchuan earthquake induced slope geological hazards with reference to the remote sensing image interpretation and assessment" and the independent research fund project of State Key Laboratory "the hidden trouble of potential mudslides recognition standard and prediction appraisal method study in the Wenchuan quake areas". Select the area From Yingxiu to Laohuzui which is hit more serious in the earthquake as a study area to high spatial resolution images of the data source, high spatial resolution images as data source. Interpreting and extracting information geologic disasters (Collapses, landslides and mud-rock flows) of study area on the basis of three-dimensional virtual scene using GIS, RS and GPS techniques and human-computer interaction. Interpreting the potential debris flows in the study area on the basis of evaluating and analyzing the active flows. The main results achieved in the paper are shown as following:
     (1)Building remote sensing images geological interpretation three-dimensional visualization image dynamic analysis picture of study area using images after earthquake and DEM extracted by the images: Combining technology of three-dimensional visualization with remote sensing technology to build three-dimensional remote sensing images dynamic analysis picture of study area, which not only can directly and vividly show the characters of geologic disasters,and still can dynamically observe geological hazards in more perspective and multi-scale, Providing guidance for the two-dimensional image interpretation of geological disasters and field investigation, providing reference for later prevention and repairmen.
     (2)The interpretation of landslide, collapse and active debris flow: according to established interpreting marks and existing geological, geographical and other related information, combing with the analysis and interpretation of development geological disasters' background and disasters body information, using remote sensing images and three-dimensional model combining field survey, landslide, interpreting and extracting information of collapse, landslide and debris making use of man-machine interactive, determining the types, position and boundary of the geological disasters.
     (3) The analysis of mudslides impact factor and danger zones classification: With active debris flow gully as sample, referring to the research achievements of predecessors and mud-rock flow distribution, select six relatively stable factors, namely elevation, slope, fracture, land use type and density of landslides, collapse and the day biggest rainfall of the year to analyzed development characteristic of the debris flow gully of study area, and the research area mudslides risk zoning is gained, which is divide into three-level, namely the high-risk areas of mudslides, the middle-risk areas of mudslides and low-risk areas of mudslides.
     (4) The interpretation of potential mudslides: on the basis of geology, topography, meteorology and water resources etc geological hazards development environmental factors, With the average of active debris flow gully risk as a standard to judge the undetermined gullies. Judging the potential mudslides with three-dimensional visualization technology assistance and in a way of the man-machine interactive to determine the possibility whether landslides will happened.
     This paper based on post-earthquake remote sensing image interpretation and field investigation data, using the GIS, RS and GPS techniques to interpret mainly as potential debris flows hazards geological disasters in the study area,providing references for disaster prevention and mitigation of potential mudslides and recovery plan of post-seismic.
引文
[1]韩用顺,崔鹏等.汶川地震危害道路交通及其遥感监测评估———以都汶公路为例[J].四川大学学报(工程科学版),2009,41(3):273-283
    [2]李勇,黄润秋.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报,2009,17(1):3-18
    [3]崔鹏,韦方强,何思明等.“5·12”汶川地震诱发的山地灾害及减灾措施[J].山地学报,2008,26(3):280 - 282.
    [4]刘传正,李铁锋,等.长江三峡库区地质灾害成因与评价研究[M].北京:地质出版社,2007.
    [5]柳稼航,杨建峰,魏成阶,关泽群. 2004.震害信息遥感获取技术历史、现状和趋势.自然灾害学报,13(5):46-52.
    [6]荆凤,申旭辉,洪顺英,欧阳新艳. 2008.遥感技术在地震科学研究中的应用.国土资源遥感, (2):5-8.
    [7]王晓青,王龙,王岩,丁香,窦爱霞,张飞宇. 2008.汶川8.0级大地震应急遥感震害评估研究.震灾防御技术,3(3) :251-258.
    [8]魏成阶,刘亚岚,王世新,张立福,黄晓霞. 2008.四川汶川大地震震害遥感调查与评估.遥感学报,12(5):673-682.
    [9]陶和平,刘斌涛,刘淑珍,范建容,杨俐,兰立波. 2008.遥感在重大自然灾害监测中的应用前景——以5.12汶川地震为例.山地学报,26(3):276-279.
    [10]王治华,周英杰,徐斌,贾斌. 2008.“5.12”汶川大地震震中区映秀镇地震灾情及次生地质灾害遥感初步调查.国土资源遥感,(2):1-6.
    [11]童立强. 2008.“5·12”汶川大地震极重灾区地震堰塞湖应急遥感调查.国土资源遥感, (3):61-64.
    [12]刘斌涛,陶和平,范建容,田兵伟,张建强,严冬. 2008.高分辨率SAR数据在5.12汶川地震灾害监测与评估中的应用.山地学报,26(3):267-271.
    [13]范建容,田兵伟,程根伟,陶和平,张建强,严冬,苏凤环,刘斌涛. 2008.基于多源遥感数据的5.12汶川地震诱发堰塞体信息提取.山地学报,26(3):257-262.
    [14]胡国超.遥感技术在“5.12”地震重灾区汶川县地质灾害调查中的应用[D].成都:成都理工大学,2009.
    [15]冯东霞,余德清等.地质灾害遥感调查的应用前景[J].湖南地质,2002,21(4):314-318.
    [16] Nilsen.Tor H,Brabb.Earl E.Slope-Stability Studies in the San Francisco Bay Region, California.Reviews in Engineering Geology,v3,1977,p235-243.
    [17] Lulseged Ayalew,Hiromitsu Yamagishi. The application of GIS~based logistic regression forlandslide susceptibility mapping in the Kakuda-Yahiko Mountains,Central Japan[J]. Geomorphology.2005,65:15-31
    [18] Janet E. Nichol,Ahmed Shaker,Man-Sing Wong. 2006. Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology,2006,76:68-75.
    [19] Graeiela Mettemicht,Lorenz Hurni,Radu Gogu. Remote sensing of landslides:Ananalysis of the Potential contribution to geo-spatial systems for hazard assessment in mountainous environments [J]. Remote Sensing of Environment,2005,98:284-303.
    [20]王治华.2006.数字滑坡技术及其在天台乡滑坡调查中的应用[J].岩土工程学报,2006,28(4):516-520.
    [21]濮国梁,杨武年,刘汉超.正射遥感影像地图制作技术岷江上游滑坡研究中的应用[J].成都理工学院学报,2000,27(3):312-317.
    [22]何易平等.2000.浅析泥石流堆积物的光谱特征[J].地质灾害与环境保护,2000,11(4).
    [23]乔彦肖等.200la.冲洪积扇与泥石流扇的遥感影像特征辨析[J].理学与国土研究,2001,17(3).
    [24]邓嘉农等.陇南陕南滑坡泥石流发育程度及发展趋势研究[J].中国水土保持,2003,9:24-25.
    [25]乔彦肖,等.2004.冀西北地区泥石流发育的环境因素遥感研究[J].中国地质灾害与防治学报,2004,15(3)
    [26]王瑜玲,等.2006.基于高分辨率卫星遥感数据的稀土矿开采状况及地质灾害调查研究[J].江西有色金属,2006,20(1).
    [27]徐素宁,秦伟,李景刚“5·12”汶川地震典型地质灾害高分辨率遥感调查[J].河北遥感.2008.3:6-9.
    [28]王志旺,李端有等.RS和GIS在滑坡研究中的应用[J].长江科学院院报,2005.22(6),63-66.
    [29]谢洪,钟敦伦.岷江上游汶川县佛堂坝沟泥石流特征及危险性分区[J].中国地质灾害与防治学报,2003,14
    [30]李勇,周荣军,董顺利等.汶川地震的地表破裂与逆冲一走滑作用[J].成都理工大学学报(自然科学版),2008,35(4):404-413.
    [31]白兰香,闻学泽.龙门山断裂带茂汶一汶川段的长期强震潜势[J].四川地震,1994,(3) :51-58.
    [32]梅安新,彭望琭等,遥感导论[M].北京:高等教育出版社,2001,112
    [33]丰茂森.遥感数字图像处理[M].北京:地质出版社,1992,51-6.
    [34]王佩军,许亚明等,摄影测量学[M].武汉:武汉大学出版社,2007,133.
    [35]许彤丽等,利用MapMatrix制作鸡西市城市正射影像图[J].测绘与空间地理信息,2007,3(30):199.
    [36]杨武年,廖崇高等,数字区调新技术新方法—遥感图像地质解译三维可视化及影像动态分析[J].地质通报,2003,1(22):60-64.
    [37]王佩军,许亚明等,摄影测量学[M].武汉:武汉大学出版社,2007,133.
    [38]张力,张继贤.基于多基线影像匹配的高分辨率遥感影像DEM的自动生成[J].武汉大学学报信息科学版,2008,33(9):943-946.
    [39]沈强,鄂栋臣,周春霞.利用ASTER立体像对提取Grove山地区相对DEM及精度分析[J].测绘通报,2008,1(16):22-25.
    [40]邓辉等,高精度卫星遥感技术在地质灾害调查与评价中的应用[D].成都:成都理工大学,2007.
    [41]汤国安,杨昕,ArcGIS地理信息系统空间分析实验教程[M].科学出版社,2006,328.
    [42]崔鹏,韦方强,何思明等.5·12汶川地震诱发的山地灾害及减灾措施[J].山地学报,2008,26(3):280-282.
    [43]王治华,滑坡遥感调查中的滑坡体积估算方法[C],成都:第九届全国遥感技术学术交流会论文集,1995,10,68.
    [44]李永颐,李斌山,陆成,遥感地质学[M].:重庆大学出版社,1990,23.
    [45]卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社,2002,45.
    [46]卓宝熙.南昆铁路施工阶段遥感工程地质调查的应用[J].铁道工程学报.2003,1(13):32-37.
    [47] R Fell& D Hartford. Landslide risk management[A].Landslide Risk Assessment [C]. 1997: 51-109.
    [48] Beauty C. B. Debris Flow,Alluvial fans,and a Revital lied Catastrophism [J]. Zeitschrftrur Geomorphologie.1974,21( Supp. ):39-51.
    [19]陈宁生,崔鹏,王晓颖等.地震作用下泥石流源区砾石土体强度的衰减实验[J].岩石力学与工程学报,2004,23 (16):2743 - 2747.
    [50]崔鹏,韦方强,何思明等.“5·12”汶川地震诱发的山地灾害及减灾措施[J].山地学报,2008,26 (3):280 - 282.
    [51]庄建琦,裴来政,丁明涛等.潜在泥石流的界定与判识——以金沙江流域溪洛渡库区为例[J].灾害学,2009,24(4):2.
    [52]康志成,李焯芬等.中国泥石流[M].北京:科学出版社,2004:23.
    [52]凌昊平.四川省青川县地质灾害危险性评价与防治对策研究[D].成都:成都理工大学,2008.
    [53]谭炳炎,泥石流沟的严重程度的数量化综合评判[J].水土保持通报,1986,6(1):51-57.
    [54]中国科学院·水利部成都山地灾害与环境研究所,中国泥石流[M].北京:商务印书所,2000.
    [55]王礼先,余志民.山洪及泥石流灾害预报[M].北京:中国林业出版社,2001.[56]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.
    [57]王雷.基于DEM的东川泥石流地质环境遥感研究[D].昆明理工大学.2008
    [58]谭万沛,王成华,晋玉田,等.暴雨泥石流滑坡的区域预测与预报[M].四川科学技术出版社,1994.
    [59]卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社,2002.
    [60]肖桐.基于GIS的兰州市滑坡空间模拟研究[D〕.兰州:兰州大学,2007年.
    [61]曾凡伟等.坡面泥石流发生的坡度阂值研究[J].地理科学,2005,25(2):244-247.
    [62]张科利,张竹梅.坡面侵蚀过程中细沟水流动力学参数估算探讨[J].地理科学,2000,20(4):326-330.
    [63]任非凡.G212线陇南段泥石流危险性区划研究[D].兰州:兰州大学,2006年.
    [64] Cui P,Chen X,Zhu Y,etal.The Wenchuan earthquake( May 12,2008 ),Sichuan province,China,and resulting geo-hazards[J].Nat Hazards,2009,DOI 10.1007 / s11069-009-9392-1.
    [65] Xu Zhiqin,Ji Shaocheng,Li Haibing,etal. Uplift of the Long men Shan range and the Wenchuan earthquake[J].Episodes,2008,31(3):291 -301.
    [66] Burchfiel B C,Royden L H,Hilst RDV,e t al.A geological and geophysical context for the Wenchuan earthquake of 12 May 2008,Sichuan,People's Republic of China[J].GSA Today,2008,18(7):4-11,doi:10.1130 / GSATG1118A.1131.
    [67] Li Songlin,Lai Xiaoling,Yao Zhixiang,etal.Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone trapped waves[J]. Earthquake Science,2009,22(4):417-424.
    [68]刘希林.区域泥石流危险度评价研究进展[J].中国地质灾害与防治学报,2002,13(4):1-9.
    [69]莫时雄,程峰,王杰光等.典型金属矿山泥石流潜势度的模糊层次综合评判[J].中国地质灾害与防治学报,2009,20( 2):41 -45.
    [70]甘应爱,田丰,李维静等.运筹学[M].北京:清华大学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700