缺失/重复突变检测技术的评价和诊断策略及一个先天性眼球震颤家系的基因突变检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多重连接探针扩增(Multiplex ligation-dependent probe amplification, MLPA)技术是近年来发展的一项灵敏度较高的相对定量分析技术,利用简单的杂交、连接及PCR扩增反应和电泳分离,于单一反应管内可同时检测多个不同区域核苷酸序列的拷贝数变化。它已成功应用于Duchenne型肌营养不良症(Duchenne muscular dystrophy, DMD)、亚端粒区域微缺失及其他基因缺失和重复导致的智力低下、各类综合征等疾病的检测中。本课题引进MLPA技术用于DMD和威廉斯综合征(Williams Beuren syndrome, WBS)的缺失/重复检测,在此基础上对其进行总结评价,从而创建了更为简便的适于中国患者基因检测的分子诊断策略,使其更易于基层单位的普遍推广应用,获得更大的临床应用价值。
     一、Duchenne肌营养不良症
     DMD是一种人类常见的致死性X连锁隐性遗传的神经肌肉系统疾病,发病率约为活产男婴的1/3500,约1/3是散发病例。由于抗肌萎缩蛋白基因突变影响dystrophin蛋白在横纹肌组织的表达,导致肢体近端骨骼肌进行性萎缩、无力和腓肠肌假性肥大。致病基因DMD位于Xp21.1-21.3,含79个外显子。该病发生的分子基础包括基因的部分缺失、部分重复及点突变等微小改变。本文首先对116例DMD患者的MLPA结果进行了分析评价,并在统计分析前期380例DMD患者的基因缺失突变谱的基础上,建立了更适合于中国人DMD基因突变检测的多重PCR新体系“5×2+6”,在普通单位尤其是基层,它可作为DMD基因检测的首选方案,而MLPA技术作为补充。两者的联合应用旨在建立更加简便、快速、高效的DMD分子诊断策略。此外,本文亦对中国地区DMD患者的基因缺失/重复突变特点进行了详细而深入的总结探讨。
     二、威廉斯综合征
     威廉斯综合征是一种少见的遗传性精神发育迟滞性疾病,在活产婴儿中发病率约为1/10,000-1/20,000。它是由于染色体7q11.23微缺失而导致的一种邻接基因缺失综合征,最常见的缺失片段大小为1.55Mb。该病多为散发,部分为常染色体显性遗传。在基因检测方面,本课题自行设计并建立了MLPA技术平台,成功对五例临床疑似WBS患者进行了基因分析,并最终确诊。其中一例为父源缺失,其余四例均为母源缺失。在结果的验证过程中发现,WBS缺失关键区域的短串联重复序列(short tandem repeat, STR)在家系分析时总能提供丰富的多态性信息。因此,本课题首次对这些STR位点在小样本中进行了多态性的初步分析,为优选DNA标记位点进行WBS的缺失检测提供了一定的理论依据。在以后的WBS检测中可首选本研究总结出的STR位点进行分析,将获得较高的阳性检出率。对于阴性者再考虑如MLPA等的其他技术进行检测。
     先天性眼球震颤(Congenital nystagmus, CN)是一种遗传性眼病,具有遗传异质性,已知的有X连锁显性遗传、X连锁隐性遗传(MIM 310700)、常染色体显性遗传(MIM 164100,MIM 608345,MIM 193003)、常染色体隐性遗传(MIM 257400)这四种遗传方式,而X连锁遗传(伴外显不全和表型变异)方式是最常见的。
     目前,共发现了3个X连锁位点,分别定位于Xp22,Xp11.3-11.4,和Xq26-Xq27。位于Xq26-27的FRMD7 (FERM domain-containing 7, MIM 300628)基因和位于Xp22的G蛋白偶联受体143(G protein-coupled receptor 143, GPR143, MIM 300500)基因是两个已发现的X连锁先天性眼球震颤(X-linked congenital nystagmus, XLCN)的致病基因,其中,GPR143基因突变亦导致眼白化病1型(ocular albinism type 1, OA1)的发生。目前,在两个XLCN的中国家系中均发现了GPR143基因突变。
     本研究样本是一个四代的XLCN中国家系。所有受累患者均表现有眼球震颤和弱视,无典型的视网膜色素减退。经等位共享分析,致病基因与Xp22.3连锁,后直接测序发现了一例新的GPR143基因序列改变:c.291_309dup。我们认为这一改变很可能是这一XLCN家系的致病突变。
Multiplex ligation-dependent probe amplification (MLPA) is a recently developed relative semi-quantitative technology. The procedure contains hybridization, ligation, PCR amplification and electrophoretic separation, by which copy number varations of up to 45 different nucleotide sequences can be detected in a single reaction simultaneously. It has been used successfully in clinical diagnosis such as Duchenne muscular dystrophy (DMD), mental retardation and kinds of syndromes caused by microdeletions or microduplications. In this study, MLPA was introducted to detect copy number variations in patients with DMD and Williams-Beuren syndrome (WBS). Based on the results and evaluation of the new method, more available and appropriate molecular diagnostic strategy for Chinese DMD/WBS patients was set up successfully, which will be popularized much easier among basic units.
     DMD is an X-linked recessive fatal disorder. It's the most common form of hereditary muscular dystrophy, with an incidence of about 1/3500 male births. Progressive proximal muscular dystrophy, powerless and characteristic pseudohypertrophy of the calves, caused by abnormal expression of dystrophin protein in the tissue of striped muscle is the most common clinical manifestations. The gene, DMD, was mapped to chromosome Xp21.1-21.3, which consists of 79 exons and spans more than 2.3 Mb. Exon deletions, duplications and other micro changes as point mutation are molecular defects underlying the disease. One hundred and sixteen DMD patients were detected by MLPA in the present study and the spectrum of deletion mutations in Chinese DMD patients was indicated by analysis of 380 deletion cases. A new multiplex PCR (mPCR) system'5×2+6'was established based on this analysis. In common units, especially grass-roots departments, it can be a preferred option for genetic analysis of DMD and MLPA as a supplement method. Co-application of mPCR and MLPA is to improve the molecular diagnostic strategy of Chinese DMD patients, making it more simple, rapid and efficient.
     Williams-Beuren syndrome is a rare genetic disorder (1/10,000-20,000 in live births) caused by a heterozygous deletion on chromosome 7q11.23. Common deletions in WBS patients span a genomic region of 1.55Mb. The disease is generally sporadic although rare familial cases of autosomal dominant transmission have been reported. In this study, five WBS patients were diagnosed by our homemade MLPA method. One was deletion of paternal, the rest four were deletions of maternal. When testing the MLPA results, we found that short tandem repeats (STR) within the critical deletion region of WBS were always of high informative. Then polymorphism analysis of these STRs was performed on normal controls for the first time interiorly, which provides a theoretical basis for optimizing DNA markers when detecting deletions in Chinese WBS patients. Therefore, genetic analysis can be performed firstly using STR sites picked up in this study, which will receive a much higher positive rate.
     Congenital nystagmus (CN) is an ocular hereditary disorder characterized by binocular spontaneous oscillations that is present at birth or develops within the first few months of life. So far, X-linked dominant and X-linked recessive (MIM 310700), autosomal dominant (MIM 164100, MIM 608345, MIM 193003), and autosomal recessive (MIM 257400) modes of inheritance have been reported, but X-linked inheritance with incomplete penetrance and variable expressivity is probably the most common. Three different genetic loci for X-linked congenital nystagmus (XLCN) have been mapped to chromosomes Xp11.3-11.4, Xp22 and Xq26-Xq27.
     The FERM domain-containing 7 (FRMD7, MIM 300628) gene located at Xq26-27 and the G protein-coupled receptor 143 (GPR143, MIM 300500) gene at Xp22, have been identified as disease-causing genes for XLCN, but the etiology or molecular pathogenic mechanism is largely unknown. To date, multiple mutations of FRMD7 have been reported. Another gene, GPR143, also known as the OA1 gene, causes ocular albinism type 1 (OA1). However, GPR143 gene mutations have been identified in two Chinese families with XLCN without any classical phenotype of OA1 but only with congenital nystagmus.
     In this study, we present a four generation Chinese family with XLCN. All the affected individuals suffer from nystagmus but without any typical sign of OA1. We mapped the disease-causing gene to Xp22.3 and characterised the underlying molecular defect as a novel 19-bp duplication in exon 1 of GPR143, causing a frame-shift in all affected males. Our results indicate that this novel GPR143 mutation might cause the XLCN in this Chinese family.
引文
1. Emery AEH:Duchenne Muscular Dystrophy,2 edn. New York:Oxford University Press; 1987.
    2. Koenig M, Hoffman EP, Berteison CJ, et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals [J]. Cell,1987,50:509-517.
    3. Cohn RD, Campbell KP. Molecular basis of muscular dystrophies [J]. Muscle Nerve,2000, 23:1456.
    4. Rando TA. The dystrophin glycop rotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies [J]. Muscle Nerve,2001,24:1575.
    5. Hofman EP, Brown RH Jr, Kunkel LM. Dystrophin:the protein product of the Duchenne muscular dystrophy locus [J]. Cell,1987,51:919-28.
    6. Grady RM, Zhou H, Cunningham M, et al. Maturation and maintenance of the neuromuscular synapse:genetic evidence for roles of the dystrophin glycoprotein complex [J]. Neuron,2000, 25:279.
    7. Monaco AP, Bertelson CJ, Liechti-Callati S, et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus [J]. Genomics,1988,2:90.
    8. van Essen AJ, Kneppers AL, van der Hout AH, et al. The clinical and molecular genetic approach to Duchenne and Becker muscular dystrophy:an updated protocol. J Med Genet,1997,34:805-12.
    9. Fadic R, Mezzano V, Alvarez K, et al. Increase in decorin and biglycan in Duchenne Muscular Dystrophy:role of fibroblasts as cell source of these proteoglycans in the disease [J]. J Cel Mol, 2006,10:758-769.
    10. Mendell JR, Buzin CH, Feng J, et al. Diagnosis of duchenne dystrophy by enhanced detecton of small mutations [J]. Neurol,2001,57:645-650.
    11. Hodgson SV, Hart K, Abbs S, et al. Correlation of clinical and deletion data in Duchenne and Becker muscular dystrophy [J]. J Med Genet,1989,26:682-693.
    12. Chamberlain JS, Gibbs RA, Ranier JE, et al. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res,1988,16:11141-56.
    13. Beggs AH, Koenig M, Boyce FM, et al. Detection of 98% of DMD/BMD gene deletions by pelymerase chain reaction [J]. Hum Genet,1990,86:45-48.
    14. Yau SC, Bobmw M, Mathew CG, et al. Accurate diagnosis of carriers of deletions and duplications in Duchene/Becker muscular dystrophy by fluorescent dosage analysis [J]. J Med Genet,1996,33:550-558.
    15. Be rouda C, Carrie b A, Beldjord C, et al. Dystrophinopathy caused by mid-intronic substitutions activating cryptic exons in the DMD gene [J]. Neuromuscular Disorders,2004,14:10-18.
    16. Armour JA, Sismani C, Patsalis PC, Cross G (2000). Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res 28:605-609.
    17. Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucl Acid Res,2002,30:e57.
    18. Fanconi G, Girardet P, Schlesinger B, et al. (1952) Chronic hyperglycemia, combined with osteosclerosis, hyperazotemia, nanism and congenital malformations. Helv Paediatr Acta,7, 314-349.
    19. Donnai D, Kannilof-Smith A. Williams syndrome:From genotype through to the cognitive phenotype [J]. Am J Med Genet,2000,97:164-171.
    20. Yau EK, Lo IF, Lain ST. Williams Beuren syndrome in the Hang Kong Chinese population: retrospective study[J]. Hong Kong Med J.2004,10:22-27.
    21. Stromme P, Bjornstad PG, Ramstad K. Prevalence estimation of Williams syndrome [J]. J Child Nenrol,2002,7:269-271.
    22. Metcalfe K, Simeonov E, Beckett W, et al. Autosomal dominant inheritance of Williams-Beuren syndrome in a father and son with haploinsufficiency for FKBP6. Clin Dysmorphol 14:61-65, 2005.
    23. Osborne LR, Li M, Pober B, et al. A 1.5 millionbase pair inversion polymorphism in families with Williams-Beuren syndrome. Nat Genet 29:321-325,2001.
    24. Karmiloff-Smith A, Grant J, Ewing S, et al. Using case study comparisons to explore genotype-phenotype correlations in Williams-Beuren syndrome. J Med Genet,2003, 40:136-140.
    25. Botta A, Novelli G, Mari A, et al. Detection of an atypical 7q11.23 deletion in Williams syndrome patients which does not include the STX1A and FZD3 genes. J Med Genet,1999,36:478-480.
    26. Heller R, Rauch A, Luttgen S, et al. Partial deletion of the critical 1.5 Mb interval in Williams-Beuren syndrome. J Med Genet,2003,40:e99.
    27. Committee on Genetics. American Academy of Pediatrics:Health care supervision for children with Williams Syndrome. Pediatr,2001,107:1192-204.
    28. Bellugi U, Bihrle A, Jernigan T, et al. (1990) Neuropsychological, neurological, and neuroanatomical profile of Williams syndrome. Am J Med Genet,6, Suppl.115-125.
    29. Tassabehji M. Williams-Beuren yndrome:a challenge for genotypc phenotype-correlations [J]. Hum Mol Genet,2003,2:R229-237.
    30. Bayes M, Magano LF, Rivera N, et al. (2003) Mutational mechanisms of Williams-Beuren syndrome deletions. Am J Hum Genet,73:131-151.
    31. Ferrero GB, Howald C, Micale L, et al. An atypical 7q11.23 deletion in a normal IQ Williams-Beuren syndrome patient. Eur J Hum Genet,18:33-38,2010.
    32. Merla G, Howald C, Henrichsen CN, et al. (2006) Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am J Hum Genet,79,332-341.
    33. Ewaxt AK, Morris CA, Ensing GJ, et al. A human vascular disorder, supravalvular aortic stenosis, maps to chromosome 7. Proc Natl Acad sci USA,1993,90:3226-3230.
    34.解春红杨建滨邵洁秦玉峰赵正言.威廉斯综合征25例的荧光原位杂交检测.中华医学遗传学杂志,2007,24:104-6.
    35. Perez Jurado LA, Peoples R, Kaplan P, et al. Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth. Am J Hum Genet,1996, 59:781-792.
    36. Feener CA, Boyce FM, Kunkel LM. Rapid detection of CA polymorphisms in cloned DNA: application to the 5'region of the dystrophin gene. Am J Hum Genet.1991,48:621-7.
    37.许顺斌,黄尚志,卢珊,等.Dystophin基因内5’及3’区域中CA重复序列多态性分析.中国医学遗传学杂志,1993,10:324-8.
    38. Clemens PR, Fenwick RG, Chamberlain JS, et al. Carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophy families, using dinucleotide repeat polymorphisms. Am J Hum Genet.1991,49:951-60.
    39. Xu Shuubin, Shangzhi Huang and Wilson HY Lo. A new approach to gene diagnosis of
    Duchenne/Becker muscular dystrophy, Amplified fragment length polymorphisms. Chin Med Sci J,1994,9:137-142.
    40. R G Roberts, A J Montandon, M Bobrow, et al. Detection of novel genetic markers by mismatch analysis. Nucleic Acids Res,1989,17:5961-5971.
    41.黄尚志,初海鹰,许顺斌,等.抗肌萎缩蛋白基因内MP1P位点多态性分析及应用.中华医学遗传学杂志,1994,11:197-199.
    42. Kent KS, Ivan FM, Tony MF, et al. Detecting exon deletions and duplications of the DMD gene using Multiplex Ligation-dependent Probe Amplification (MLPA). Clin Biochem,2006, 39:367-372.
    43. Yan J, Feng J, Buzin CH, et al. Three-tiered noninvasive diagnosis in 96% of patients with Duchenne muscular dystrophy (DMD). Hum Mutat,2004,23:203-4.
    44.吴有光,匡渤海,冯微.非缺失型DMD/BMD家系中基因携带者的短串联重复序列多态性连锁分析.中华医学遗传学杂志,2002,6:530-531.
    45.马生林,吴冠芸,储文明,等.两步多重PCR技术快速检测杜氏肌营养不良基因缺失.中国医学科学院学报,1993,15:74-8.
    46. Lai PS, Tay JSH, Low PS, et al. Deletion analysis of DMD/BMD children in Singapore using multiplex PCR techniques. J Trop Pediatr,1992,38:224-227.
    47.杜文津,万琪,吴保仁.脑与神经疾病杂志,2008,16:361-4.应用多重PCR检测DMD/BMD患者的基因缺失.
    48. B. Janssen. C, Hartmarm. V, et al. MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene:potential and pitfalls. Neurogenetics,2005, 6:29-35.
    49. Hwa HL, Chang YY, Chen CH, et al. Multiplex ligation-dependent probe amplification identification of deletions and duplications of the Duchenne muscular dystrophy gene in Taiwanese subjects. J Formos Med Assoc,2007,106:339-346.
    50. Ivan Fai-man Lo, Kent Keung-san Lai, Tony Ming-for Tong, et al. A different spectrum of DMD gene mutations in local Chinese patients with Duchenne/Becker muscular dystrophy. Chinese Medical Journal,2006,119:1079-1087.
    51. Imoto N, Arinami T, Hamano K, et al. Topographic pattern of the rearrangement of the dystrophin gene in Japanese Duchenne muscular dystrophy. Hum Genet,1993,92:533-6.
    52. Cutiongco EM, Padilla CD, Takenaka K, et al. More deletions in the 5'region than in the central region of the dystrophin gene were identified among Filipino Duchenne and Becker muscular dystrophy patients. Am J Med Genet,1995,59:266-7.
    53. Werneck LC, Scola RH, Maegawa GH, et al. Comparative analysis of PCR-deletion detection and immunohistochemistry in Brazilian Duchenne and Becker muscular dystrophy patients. Am J Med Genet,2001,103:115-20.
    54. Haider MZ, Bastaki L, Habib Y, et al. Screening 25 dystrophin gene exons for deletions in Arab children with Duchenne muscular dystrophy. Hum Hered,1998,48:61-6.
    55. White SJ, Aartsma-Rus A, Flanigan KM, et al. Duplications in the DMD gene. Hum Mutat,2006, 27;938-945.
    56. Miller JH, Coulondre C, Farabaugh PJ, et al. Correlation of nonsense sites in the lacl gene with specific codons in the nueleotide sequence. Nature,1978,274:770-5.
    57. Suminaga RY, Takeshima K, Yasuda N, et al. Nonhomologous recombination between Alu and LINE-1 repeats caused a 430-kb deletion in the dystrophin gene:a novel source of genonfic
    instability [J]. J Hum Genet,2000,45:331-6.
    58. Sironi M, Pozzoli U, Cagliani R, et al. Relevance of sequence and structure elements for deletion events in the dystrophin gene major hot-spot [J]. Hum Genet,2003,112:272-85.
    59.盛文利,陈江瑛,朱良付,等.基因内含子的重复序列与内含子不稳定性和基因缺失的关联.中山大学学报(医学科学版),2005,26:11-15.
    60. Froelich-Ammon SJ, Gale KC and Osheroff N. Site-specific cleavage of a DNA hairpin by topoisomerase Ⅱ. DNA secondary structure as a determinant of enzyme recognition/cleavage [J]. J Biol Chem,1994,269:7719-25.
    61. Nobile C, Tofolatti L, Rizzi F, et al. Analysis of 22 deletion breakpoints in dystrophin intron 49. Hum Genet,2002,110:418-421.
    62. Singh GB, Kramer JA, Krawetz SA. Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucleic Acids Res,1997,25:1419-1425.
    63. Siorni M, Pozzoli U, Comi GP, et al. A region in the dystorphin gene major hot spot harbors a cluster of deletion breakpoints and generates double-strand breaks in yeast [J]. FASEB J,2006, 20:1287-1295.
    64.钟敏,潘速跃,陆兵勋.假肥大型肌营养不良患者dystrophin缺失断裂点的分子结构特点.中华神经科杂志,2007,40:521-4.
    65. Onengut S, Kavaslar GN, Battaloglu E, et al. Deletion pattern in the dystrophin gene in Turks and a comparison with Europeans and Indians. Ann Hum Genet,2000,64:33-40.
    66. Oshima J, Magner DB, Lee JA, et al. Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum Genet,2009,126:411-23.
    67. Lee JA, Carvalho CMB, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell,2007,131:1235-1247.
    68.鲁阳,金春莲,林长坤,等.东北地区抗肌营养不良蛋白基因缺失的研究及应用.遗传学报,2004,31:449-453.
    69.王谦,曹东华,林长坤,等.中国北方59个假肥大性肌营养不良家系中抗肌萎缩蛋白基因突变分析.中华检验医学杂志,2009,32:768-71.
    70. Galvagni F, SaM FA, Danieli GA, et al. A study on duplications of the dystrophin gene:evidence of a geographical difference in the distribution of breakpoints by intron. Hum Genet,1994, 94:83-87.
    71. F. Gualandia, P. Rimessia, C. Trabanellia, et al. Intronic breakpoint definition and transcription analysis in DMD/BMD patients with deletion/duplication at the 5'mutation hot spot of the dystrophin gene. Gene,2006,370:26-33.
    72. Blonden LA, den Dunnen JT, van Paassen HM, et al. High resolution deletion breakpoint mapping in the DMD gene by whole cosmid hybridization. Nucleic Acids Res,1989,17:5611-21.
    73.盛文利,柴建华,刘焯霖.DMD基因内含子中的多种、多个重复顺序与外显子缺失关系的探讨.中华神经科杂志,1997,30:214-217.
    74. Pozzoli U, Sironi M, Cagliani R, et al. Comparative analysis of the human dystrophin and utrophin gene structures. Genetics.2002,160:793-8.
    75. Robert D. Nicholls. Introductory Speech for James R. Lupski. Am J Hum Genet,2003, 72:244-245.
    76. Pawel Stankiewicz, James R. Lupski. Genome architecture, rearrangements and genomic disorders. Trends in Genetics,2002,18:74-82.
    77. Andrew J. Sharp, Ze Cheng, Evan E. Eichler. Structural Variation of the Human Genome. Annu
    Rev Genomics Hum Genet,2006,7:407-42.
    78. Christine J. Shaw, James R. Lupski. Implications of human genome architecture for rearrangement-based disorders:the genomic basis of disease. Human Molecular Genetics,2004, 13, Review Issue 1:R57.
    79. James R. Lupski. Genomic Disorders:Recombination-Based Disease Resulting from Genome Architecture. Am J Hum Genet,2003,72:246-252.
    80. Bailey JA, Liu G and Eichler EE. (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet,73:823-834.
    81. Antonell A, de Luis O, Domingo-Roura X et al. (2005) Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23. Genome Res,15:1179-1188.
    82. Baumer A, Dutly F, Balmer D, et al. High level of unequal meiotic crossovers at the origin of the 22q11.2 and 7q11.23 deletions. Hum Mol Genet,7:887-894,1998.
    83. Moira Blyth, Sarah Beal, Shuwen Huang, et al. A Novel 2.43 Mb Deletion of 7q11.22-q11.23. Am J Med Genet Part A,146A:3206-3210 (2008).
    84. Turner DJ, Miretti M, Rajan D, et al. (2008) Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet,40:90-95.
    85. Beunders G, van de Kamp JM, Veenhoven RH, et al. A triplication of the Williams-Beuren Syndrome region in a patient with mental retardation, a severe expressive language delay, behavioural problems and dysmorphisms. J Med Genet 2010,47:271-275.
    86. Inoue K and Lupski JR. (2002) Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet,3:199-242.
    87. Scherer SW, Gripp KW, Lucena J, et al. (2005) Observation of a parental inversion variant in a rare Williams-Beuren syndrome family with two affected children. Hum Genet,117:383-388.
    88. Tam E, Young EJ, Morris CA, et al. (2008) The common inversion of the Williams-Beuren syndrome region at 7q 11.23 does not cause clinical symptoms. Am J Med Genet Part A, 146:1797-1806.
    89. Lower MC, Moms CA, Ewart A, el al. Strong correlation of elastin deletions, detected by FISH with Williams syndrome:Evalution of 235 patients. Am J Hum Genet,1995,54:49-53.
    90. Elizabeth Nickerson, Frank Greenberg, Mark T Keating, et al. Deletions of the Elastin Gene at 7q11.23 Occur in-90% of Patients with Williams Syndrome. Am J Hum Genet,1995, 56:1156-1161.
    91. N Simon Thomas, Miranda Durkie, Gemma Potts, et al. Parental and chromosomal origins of microdeletion and duplication syndromes involving 7q11.23,15q11-q13 and 22q11. Eur J Hum Genet,2006,14:831-837.
    92. Wu Y-Q, Sutton VR, Nickerson E, et al. Delineation of the common critical region in Williams syndrome and clinical correlation of growth, heart defects, ethnicity, and parental origin. Am J Med Genet,1998,78:82-89.
    93. Michael S. Wang, Albert Schinzel, Dieter Kotzot, et al. Molecular and Clinical Correlation Study of Williams-Beuren Syndrome:No Evidence of Molecular Factors in the Deletion Region or Imprinting Affecting Clinical Outcome. Am J Med Genet,1999,86:34-43.
    94. Del Campo M, Antonell A, Magano LF,et al. Hemizygosity at the NCF1 gene in patients with Williams-Beuren syndrome decreases their risk of hypertension. Am J Hum Genet,2006,78: 533-42.
    1. Stayte M, Reeves B, Wortham C, et al. Ocular and vision defects in preschool children. Br J Ophthalraol,1993,77:228-232.
    2. Konuk O, Bilgihan K, Hasanrcisoglu B, et al. Laser in situ keratomileusis in an eye with congenital nystagmus. Am J Ophthalmol,2001,131:263-265.
    3. Sallmann GB, Bray PJ, Rogers S, et al. Scanning the ocular albinism 1 (OA1) gene for polymorphisms in congenital nystagmus by DHPLC. Ophthalmic Genet,2006,27:43-9.
    4. Charles SJ, Green JS, Grant JW, et al. Clinical features of affected males with X linked ocular albinism. Br J Ophthalmol,1993,77:222-227.
    5. Faugere V, Tuffery-Giraud S, Hamel C, et al. Identification of three novel OA1 gene mutations identified in three families misdiagnosed with congenital nystagmus and carrier status determination by real-time quantitative PCR assay. BMC Genetics,2003,7:1-7.
    6. Abadi RV,Bjerre A. Motor and sentory chamctedstics ofinfantile nystagmus. Br J Ophthalmol, 2002,86:1152-1160.
    7. Abadi RV. Mechanisms underlying nystagmus. J R Soc Med,2002,95:231-234.
    8. Klein C, Vieregge P, Heide W, et al. Exclusion of chromosome regions 6p12 and 15q11, but not chromosome region 7p11, in a German family with autosomal dominant congenital nystagmus. Genomics,1998,54:176-7.
    9. Kerrison JB, Arnould VJ, Barmada MM, eet al. A gene for autosomal dominant congenital nystagmus localizes to 6p12. Genomics,1996,33:523-6.
    10. Ragge NK, Hartley C, Dearlove AM, et al. Familial vestibulocerebellar disorder maps to chromosome 13q31-q33:a new nystagmus locus. J Med Genet,2003,40:37-41.
    11. Cabot A, Rozet JM, Gerber S, et al. A gene for X-linked idiopathic congenital nystagmus (NYS1) maps to chromosome Xp11.4-p11.3. Am J Hum Genet,1999,64:1141-6.
    12. Liu JY, Ren X, Yang X, et al. Identification of a novel GPR143 mutation in a large Chinese family with congenital nystagmus as the most prominent and consistent manifestation. J Hum Genet,2007,52:565-70.
    13. Kerrison JB, Vagefi MR, Barmada MM, et al. Congenital motor nystagmus linked to Xq26-q27. Am J Hum Genet,1999,64:600-7.
    14. Tarpey P, Thomas S, Sarvananthan N, et al. Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus. Nat Genet,2006,38:1242-4.
    15. Pingtong Zhou, Zhiqiang Wang, Jing Zhang, et al. Identification of a novel GPR143 deletion in a Chinese family with X-linked congenital nystagmus. Mol Vis,2008,30:1015-9.
    16. Preising M, Op de Laak JP, Lorenz B. Deletion in the OA1 gene in a family with congenital X linked nystagmus. Br J Ophthalmol,2001,85:1098-103.
    17. Oetting WS. New insights into ocular albinism type 1 (OA1):Mutations and polymorphisms of the OA1 gene. Hum Mutat,2002,19:85-92.
    18. Bassi MT, Schiaffino MV, Renieri A, et al. Cloning of the gene for ocular albinism type 1 from the distal short arm of the X chromosome. Nat Genet,1995,10:13-9.
    19. Bin Shen and Seth J. Orlow. The Ocular Albinism Type 1 Gene Product is an N-Glycoprotein but Glycosylation is not Required for its Subcellular Distribution. Pigment Cell Res,2001, 14:485-90.
    20. Cortese K, Giordano F, Surace EM, et al. The ocular albinism type 1 (OA1) gene controls melanosome maturation and size. Invest Ophthalmol Vis Sci,2005,46:4358-64.
    21. Schiaffino MV, Tacchetti C. The ocular albinism type 1 (OA1) protein and the evidence for an intracellular signal transduction system involved in melanosome biogenesis. Pigment Cell Res, 2005,18:227-33.
    22. Schiaffino MV, d'Addio M, Alloni A, et al. Ocular albinism:evidence for a defect in an intracellular signal transduction system. Nat Genet,1999,23:108-112.
    23. Innamorati G, Piccirillo R, Bagnato P, et al. The melanosomal/lysosomal protein OA1 has properties of a G protein-coupled receptor. Pigment Cell Res,2006,19:125-35.
    24. Schnur RE, Gao M, Wick PA, et al. OA1 mutations and deletions in X linked ocular albinism. Am J Hum Genet 1998; 62:800-9.
    25. d'Addio M, Pizzigoni A, Bassi MT, et al. Defective intracellular transport and processing of OA1 is a major cause of ocular albinism type 1. Hum Mol Genet,2000,9:3011-8.
    26. Bassi MT, Bergen AA, Bitoun P,et al.Diverse prevalence of large deletions within the OA1 gene in ocular albinism type 1 patients from Europe and North America. Hum Genet,2001,108:51-4.
    27. Maquat LE. Nonsense-mediated mRNA decay:splicing,translation and mRNP dynamics. Nat Rev Mol Cell Biol,2004,5:89-99.
    28. Mayeur H, Roche O, Vetu C, et al. Eight previously unidentified mutations found in the OA1 ocular albinism gene. BMC Med Genet,2006,28:41-8.
    29. Sankaranarayanan K, Wassom JS. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders. Mutat Res,2005,578:333-370.
    30. Schiaffino MV, Bassi MT, Galli L, et al. Analysis of the OA1 gene reveals mutations in only one-third of patients with X-linked ocular albinism. Hum Mol Genet,1995,4:2319-25.
    31. Iannaccone A, Gallaher KT, Buchholz J, et al. Identification of two novel mutations in families with X-linked ocular albinism. Mol Vis,2007,13:1856-61.
    32.房绍华,国人眼白化病1型基因型与表型特征研究.广州,中山大学.2008.
    33. O'Donnell FE Jr, Green WR, Fleischman JA, et al. X-linked ocular albinism in Blacks. Ocular albinism cum pigmento. Arch Ophthalmol,1978,96:1189-92.
    1. Robert D. Nicholls. Introductory Speech for James R. Lupski. Am J Hum Genet,2003, 72:244-245.
    2. Christine J. Shaw, James R. Lupski. Implications of human genome architecture for rearrangement-based disorders:the genomic basis of disease. Human Molecular Genetics,2004, 13, Review Issue 1:R57.
    3. James R. Lupski. Genomic Disorders:Recombination-Based Disease Resulting from Genome Architecture. Am J Hum Genet,2003,72:246-252.
    4. Pawel Stankiewicz, James R. Lupski. Genome architecture, rearrangements and genomic disorders. Trends in Genetics,2002,18(2):74-82.
    5. Andrew J. Sharp, Ze Cheng, Evan E. Eichler. Structural Variation of the Human Genome. Annu. Rev. Genomics Hum. Genet,2006.7:407-42.
    6. Jeffrey A Bailey, Robert Baertsch, W James Kent,et al. Hotspots of mammalian chromosomal evolution. Genome Biology 2004,5(4):R23.
    7. Andrew J. Sharp, Devin P. Locke, Sean D. McGrath, et al. Segmental Duplications and Copy-Number Variation in the Human Genome. Am J Hum Genet,2005,77:78-88.
    8. Weimin Bi, Sung-Sup Park, Christine J. Shaw, et al. Reciprocal Crossovers and a Positional Preference for Strand Exchange in Recombination Events Resulting in Deletion or Duplication of Chromosome 17p11.2. Am J Hum Genet,2003,73:1302-1315.
    9. James R. Lupski, Pawel Stankiewicz. Genomic Disorders:Molecular Mechanisms for rearrangements and Conveyed Phenotypes. PLoS Genet,2005, 1(6):e49.
    10. Briana K. Dennehey, Diane G. Gutches,1 Edwin H. McConkey, et al. Inversion, duplication, and changes in gene context are associated with human chromosome 18 evolution.Genomics,2004, 83:493-501.
    11. Devin P Locke, Nicoletta Archidiacono, Doriana Misceo, et al. Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biology,2003, 4:R50.
    12. Violaine Goidts, Justyna M. Szamalek, Horst Hameister, et al. Segmental duplication associated with the human-specific inversion of chromosome 18:a further example of the impact of segmental duplications on karyotype and genome evolution in primates. Hum Genet,2004, 115:116-122.
    13. Justyna M. Szamalek, Violaine Goidts, David N. Cooper, et al. Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes. Hum Genet,2006,120:126-138.
    14. Hildegard Kehrer-Sawatzki 1, David N. Cooper. Molecular mechanisms of chromosomal rearrangement during primate evolution. Chromosome Research,2008,16:41-56.
    15. Kehrer-Sawatzki H, Sandig C, Chuzhanova N, et al. Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes). Hum Mutat,2005,25(1):45-55.
    16. Justyna M. Szamalek, Violaine Goidts, Nadia Chuzhanova, et al. Molecular characterisation of the pericentric inversion that distinguishes human chromosome 5 from the homologous chimpanzee chromosome. Hum Genet,2005,117:168-176.
    17. H. Kehrer-Sawatzki, C.A. Sandig, V. Goidts, et al. Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans. Cytogenet Genome Res 2005,108:91-97.
    18. M.K. Shimada, C.-G. Kim, T. Kitano, et al. Nucleotide sequence comparison of a chromosome
    rearrangement on human chromosome 12 and the corresponding ape chromosomes. Cytogenet Genome Res,2005,108:83-90.
    19. Hildegard Kehrer-Sawatzki, Justyna M. Szamalek, Simone Tanzer, et al. Molecular characterization of the pericentric inversion of chimpanzee chromosome 11 homologous to human chromosome 9. Genomics,2005,85:542-550.
    20. Violaine Goidts, Justyna M. Szamalek, Pieter J. de Jong, et al. Independent intrachromosomal recombination events underlie the homologous to human chromosome 16 pericentric inversions of chimpanzee and gorilla chromosomes. Genome Res,2005,15:1232-1242.
    21. Hildegard Kehrer-Sawatzki, Bettina Schreiner, Simone Tanzer, et al. Molecular Characterization of the Pericentric Inversion That Causes Differences Between Chimpanzee Chromosome 19 and Human Chromosome 17. Am J Hum Genet,2002,71:375-388.
    22. Pawel Stankiewicz, Christine J. Shaw, Marjorie Withers, et al. Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res,2004, 14:2209-2220.
    23. Liqing Zhang, Henry H. S. Lu, Wen-yu Chung, et al. Patterns of Segmental Duplication in the Human Genome. Mol Biol Evol,2005,22(1):135-141.
    24. Evan E. Eichler. Masquerading Repeats:Paralogous Pitfalls of the Human Genome. Genome Res, 1998,8:758-762.
    25. Anna Antonell, Oscar de Luis, Xavier Domingo-Roura, et al. Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23. Genome Res,2005,15:1179-1188.
    26. Jeffrey A. Bailey, Ge Liu, Evan E. Eichler. An Alu Transposition Model for the Origin and Expansion of Human Segmental Duplications. Am J Hum Genet,2003,73:823-834.
    27. Zhaoshi Jiang, Haixu Tang, Mario Ventura, et al. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat Genet,2007, 39(11):1361-1368.
    28. Ze Cheng, Mario Ventura, Xinwei She, et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature,2005,437(1):88-93.
    29. Jan O. Korbel, Alexander Eckehart Urban, Fabian Grubert, et al. Systematic prediction and validation of breakpoints associated with copy-number variants in the human genome. PNAS, 2007,104(24):10110-10115.
    30. Violaine Goidts, David N. Cooper, Lluis Armengol, et al. Complex patterns of copy number variation at sites of segmental duplications:an important category of structural variation in the human genome. Hum Genet,2006,120:270-284.
    31. Elena V. Linardopoulou, Eleanor M. Williams, Yuxin Fan, et al. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature,2005,437(7055): 94-100.
    32. Sharp AJ, Hansen S, Selzer RR, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet,2006,38(9):1038-42.
    33. Kendy K. Wong, Ronald J. deLeeuw, Nirpjit S. Dosanjh, et al. A Comprehensive Analysis of Common Copy-Number Variations in the Human Genome. Am J Hum Genet,2007,80:91-104.
    34. Beverly S. Emanuel, Tamim H. Shaikh. Segmental Duplications:An'Expanding'Role in Genomic Instability and Disease. Nat Rev Genet,2001,2:791-800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700