黑胸大蠊浓核病毒非结构蛋白NS1的定位对病毒感染的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑胸大蠊浓核病毒(Periplaneta fuliginosa Densovirus,简称PfDNV)是武汉大学胡远扬教授等于1990年分离鉴定。由于其独特的结构和功能,根据2008年国际病毒学分类委员会(ICTV)的第九次报告中,特别设立了黑胸大蠊浓核病毒属(Pefudensovirus),代表种为黑胸大蠊浓核病毒PfDNV。
     NS1蛋白是PfDNV的一个主要的非结构蛋白,也是一个多功能的调控蛋白,在病毒的复制过程中起着重要作用。已经证明它的功能有ATP结合和水解活性、位点特异的DNA识别和结合活性、位点和链特异性切割活性、解旋酶活性和启动子反式调控作用等。它对病毒DNA的复制、基因表达以及子代病毒粒子的扩增都具有调节作用。此外,NS1蛋白与宿主细胞中的调控蛋白相互作用而影响关键的细胞调控过程,并可以通过内切酶活性直接对宿主细胞的DNA进行攻击。
     不同浓核病毒的宿主域有宽有窄,如鹿眼蛱蝶浓核病毒(JcDNV)可引起蛱蝶和某些夜蛾的幼虫感染;而PfDNV则只能使大蠊感染,但不能感染德国小蠊。由于PfDNV的宿主特异性,目前还没有找到一个可稳定感染的细胞系。在本文中,我们将详细讨论NS1蛋白核定位信号对PfDNV感染的影响。
     我们根据已经发表的ns1基因的核酸序列设计特异性引物,以含有PfDNV全基因组的感染性克隆pUC-PfDNV为模板进行PCR,扩增得到编码NS1蛋白的基因。然后将其克隆至原核表达载体pET28-a,转化至大肠杆菌E.coli.BL21(DE3)菌株中,通过IPTG诱导,高效表达出了大量的NS1蛋白。表达产物经亲和层析柱分离纯化后免疫雄性新西兰大白兔,得到特异性抗NS1血清。
     我们利用DEAE-dextran转染技术,将含有PfDNV基因组的感染性克隆pUC-PfDNV注射入黑胸大蠊三龄幼虫体内,待蟑螂发病后,提取PfDNV病毒粒子。为了检测PfDNV对昆虫病毒的敏感性,提纯的病毒粒子感染Schneider line 2 (S2), Aedes albopictus C6/36 cells (C6/36),和蟑螂血细胞(Hemocytes)。蟑螂血细胞是我们利用原代培养的方法对蟑螂的血细胞进行维持培养。大蠊的原血细胞是一类分化较低细胞,具有极强的分裂能力,能够通过有丝分裂来保证昆虫血细胞数目的稳定。我们只有在蟑螂血细胞实验组中看到了细胞聚集、膨胀、脱落等致细胞病变效应(CPE),在昆虫S2和C6/36细胞中始终都没有看到CPE现象。蟑螂血细胞中的CPE现象大约在感染后48小时就可以看到,到72小时,CPE现象更加明显,已经有60-70%的细胞出现了病变。
     为了研究NS1蛋白定位,我们通过PCR的方法将nsl基因亚克隆至pAc5.1/V5-His瞬时表达载体后,利用脂质体Cellfectin转染昆虫细胞(S2,C6/36和Hemocytes)。通过荧光抗体复染的激光共聚焦显微镜检测以及Western blot检测,发现NS1蛋白在S2、C6/36细胞内能够正常表达,然而,NS1蛋白无法进入昆虫细胞的细胞核。一个在细胞质中定位的调控蛋白,无法调控PfDNV的转录和复制。NS1蛋白不但能在黑胸大蠊幼虫血细胞中表达,而且能够通过细胞核膜,进入细胞核内。
     单个的NS1蛋白能够表达并通过核孔进入细胞核,但在真实情况下,对整个病毒感染而言,NS1蛋白是否能够通过黑胸大蠊幼虫血细胞核孔进入细胞核还是一个疑问。于是我们用PfDNV病毒粒子感染昆虫细胞,PfDNV的启动子能够被S2、C6/36和蟑螂血细胞识别而表达出NS1蛋白,而正如含nsl基因的质粒转染的结果一样,NS1蛋白在感染中只能够进入黑胸大蠊血细胞核。
     NS 1蛋白能够进入黑胸大蠊血细胞核而被S2和C6/36细胞排斥在细胞核外的现象表明,NS1可能存在核定位信号。序列分析发现,NS1蛋白存在两个碱性氨基酸富集区(KAKRRGAIRKRKA (KAK region) and RRRRRR (6R region))。于是我们分别用缺失突变的方法对这两个区域进行研究,证明6R区域具有核定位信号功能,为了进一步证明,我们将6R区与流感病毒的血凝素抗原(HA)连接,在6R区的帮助下HA能够定位在细胞核。而对6R区的点突变实验证明任何一个精氨酸的缺失将导致该区域核定位功能的丧失。
Periplaneta fuliginosa Densovirus (PfDNV) isolated from cockroaches in Wuhan, PRC, has been systematically studied for about 20 years. In 2004, International Committee on Taxonomy of Viruses (ICTV) created a new genus (Pefudensovirus) in the subfamily Densovirinae with Periplaneta fuliginosa densovirus as type species owing to its divergences in the genome structure and the gene expression strategy between PfDNV and other DNVs.
     The regulatory protein NS1 is a key molecule in viral replication.It is a multi-functional protein that has several catalytic activities, including ATP binding and hydrolysis, oligomerization, sitespecific DNA binding to a cognate recognition motif, site-and strand-specific nicking, helicase activity, and promoter trans-regulation. These activities allow this pleiotropic protein to execute the different functions necessary for progeny virion production, including regulation of viral DNA amplification and gene expression. Additionally, some of the latter functions may also act upon the host cell genome and may contribute to the cytotoxic activities of NS1. Moreover, the ability of NS1 physically interacts with a variety of host cell proteins, including components of the DNA replication machinery and transcriptional regulators may represent another "scavenging"mechanism by which NS1 negatively interferes with essential cellular processes.
     The host ranges of different densoviruses are variable. JcDNV can infect butterfly and some nymph of nocturnal moth; while PfDNV just infects Periplaneta fuliginosa cochroch. Lack of a suitable cell line that permits virus replication to high titers has been a long-standing problem in densovirus research. In this study, infected primary hemocyte cells produced a typical cytopathic effect characterized by cell clumping and syncytia. So the hemocyte cells of P. fuliginosa nymphs, which were permissive for both infection with the purified PfDNV virions and transfection by plasmids, were used to study the nuclear localization signal of the NS1 protein and PfDNV infection.
     Firstly, the cDNA clone encoding NS1 of PfDNV was prepared from the total mRNA of PfDNV-infected crockroach by reverse transcription-PCR. For expression in E. coli, the DNA fragment was cloned in pET28a plasmid and the protein with his-tagged was expressed and purified by Ni-NTA affinity chromatography for generating polyclonal rabbit antibodies. Affinity and specificity of the anti-NS1 serum were tested by Western blot analysis.
     The infectious plasmid pUC119-PfDNV was mixed with DEAE-dextran and injected in 3 star nymph of Periplaneta fuliginosa. The PfDNV virion was purified from the infected cochroch. To understand clearly the sensitivity of insect cells, we infected the insect cells of hemocyte, S2 and C6/36 by PfDNV strains. The characteristic cytopathic effect typical for PfDNV, in the form of clumping and ballooning of cells and syncytia formation, was observed in hemocyte cells at around 48 h post-infection. Hemocyte showed an extensive CPE (60-70%) at 72 h post-infection. And the cells were split seriously after 72 h post-infection, and no difference was found between the mock-cells and the insect cell lines, S2 and C6/36.
     To understand clearly the localization of NS1, we constructed a plasmid, pAcNS1, by PCR the nsl sequence from pUC-PfDNV. Immunofluorescence was then used to determine the cellular distribution of NS1 in the transfected cells. After the pAcNS1 was transfected into the insect cells (hemocytes, S2 and C6/36), NS1 protein was detected at 48 h post-transfection.We found that NS1 was localized to both cytoplasm and nucleus of hemocytes, while it was localized to only the cytoplasm of S2 and C6/36. Transfection efficiency of the plasmid pAcNS1 of hemocyte, S2 and C6/36 cells were 32%,41%and 38%, respectively. In order to confirm these results, cytoplasmic and nuclear extracts were isolated from NS1-transfected cells and analyzed by Western blot. NS1 protein (approximately 71 kDa, with tag) was present in the cytoplasm of the insect cell lines, while NS1 was detected in the nuclear extracts of hemocytes.
     We next asked whether the NS1 protein was expressed and localized to the nucleus in these insect cells following PfDNV infection. Infection of insect cells using virions of PfDNVwas carried out. Because of the cytopathic effect, immunofluorescence diagnosis directed against NS1 using polyclonal antibodies were performed at 36 h post-infection. NS1 could be observed in insect cells, and was localized to the nucleus exclusively in the hemocyte cells. Infection efficiencies of hemocyte, S2 and C6/36 cells, which accorded to the number of cells expressing NS1, were 16%,31%and 25%, respectively. Western blotting of the fractionated lysates confirmed that NS1 was in the nucleus of hemocyte.
引文
郭海涛,张珈敏,胡远扬.蟑螂浓核病毒全核苷酸序列与基因组结构.科学通报,2000;45(10):1076-1080.
    胡远扬,黄远达.发现黑胸大蠊(Periplaneta fuliginosa)非包涵体病毒.武汉大学学报,1991;1:114.
    李莉,谌东华,周正洪,张珈敏,胡远扬.蟑螂浓核病毒三维结构的对比分析.科学通报,2002;47(23):1807-1810.
    刘文斌,胡远扬,张珈敏.黑胸大蠊浓核病毒的病理学研究.湖北大学学报,1998;20(1):91-93.
    吕鸿声.昆虫病毒与昆虫病毒病.北京科学出版社.1981;125~128.
    吕鸿声.昆虫病毒分子生物学.1998;中国农业科技出版社.
    罗祖玉,施志仪,林万敏.自主性细小病毒非结构蛋白NS1对转化细胞的毒性及其调控DNA复制和转录的机制.复旦学报.1999;38(5):578-583.
    齐义鹏.基因及其操作原理.1999;武汉大学出版社.
    孙乃恩,孙东旭,朱德熙.分子遗传学.1990;南京大学出版社,
    施志仪,马承武,黄建等.细小病毒H21对人肝癌移植瘤的抑制及其组织学与组织化学的研究.实验生物学报.1997;30(3):247-259.
    陶义询主编.免疫学和免疫学检测,第二版.1997;人民卫生出版社.
    姚二梅.蜚蠊浓核病毒的理化特性及其物理图谱的构建(武汉大学硕士论文)1994.
    杨复华.病毒学.1992;湖南科学技术出版社.
    杨娟,张珈敏,蒋洪,邓晓军,胡建芳,胡远扬.含荧光素酶基因的黑胸大蠊浓核病毒重组质粒的构建与表达.中国病毒学.2003;18(2):178-180.
    岩下嘉光,曹治孙.中国株家蚕浓核症病毒的发育.蚕业科学.1983;9(4):119-122.
    张英.细小病毒分子生物学.中国病毒学.1996;11:193-200.
    Ahn JK, Gavin BJ, Kumar G, Ward DC. Transcriptional analysis of minute virus of mice P4 promoter mutants. J Virol.1989 Dec;63(12):5425-5439.
    Akache B, Grimm D, Shen X, Fuess S, Yant RS, Glazer DS, Park J, Kay AM. A two-hybrid screen identifies cathepsins B and L as uncoating factors for adeno-associated virus 2 and 8. Mol. Ther.2007; 15:330-339.
    Alexandersen S, Bloom ME, Perryman S. Detailed transcription map of Aleutian mink disease parvovirus. J Virol.1988 Oct;62(10):3684-3694.
    Antonietti JP, Sahli R, Beard P, Hirt B. Characterization of the cell type-specific determinant in the genome of minute virus of mice. J Virol.1988 Feb;62(2):552-557.
    Ashktorab H, Srivastava A. Identification of nuclear proteins that specifically interact with adeno-associated virus type 2 inverted terminal repeat hairpin DNA. J Virol.1989 Jul;63(7):3034-3039.
    Astell CR, Smith M, Chow MB, Ward DC. Structure of the 3'hairpin termini of four rodent parvovirus genomes:nucleotide sequence homology at origins of DNA replication. Cell.1979 Jul;17(3):691-703.
    Astell CR, Thomson M, Merchlinsky M, Ward DC. The complete DNA sequence of minute virus of mice, an autonomous parvovirus. Nucleic Acids Res.1983 Feb 25;11(4):999-1018.
    Astell CR, Chow MB, Ward DC. Sequence analysis of the termini of virion and replicative forms of minute virus of mice DNA suggests a modified rolling hairpin model for autonomous parvovirus DNA replication. J Virol.1985 Apr;54(1):171-177.
    Astell CR, Blundell MC. Sequence of the right hand terminal palindrome of the human B19 parvovirus genome has the potential to form a 'stem plus arms'structure. Nucleic Acids Res.1989 Jul 25;17(14):5857.
    Bando H, Kusuda J, Gojobori T, Maruyama T, Kawase S. Organizationand nucleotide sequence of a densovirus genome imply a host-dependent evolution of the parvoviruses. J. Virol.1987.61,553-560.
    Bantel-Schaal U, Zur Hausen H. Dissociation of carcinogen-induced SV40 DNA-amplification and amplification of AAV DNA in a Chinese hamster cell line. Virology.1988 Sep;166(1):113-122.
    Bantel-Schaal U, Hub B, Kartenbeck J, Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment. J. Virol.2002; 76: 2340-2349.
    Barbis, DP, Chang SF, Parrish CR. Mutations adjacent to the dimple of canine parvovirus capsid structure affect sialic acid binding. Virology 1992; 191:301-308.
    Bartlett JS, Wilcher R, Samulski RJ, Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J. Virol.2000; 74:2777-2785.
    Bauer HJ, Monreal G. Herpesviruses provide helper functions for avian adeno-associated parvovirus. J Gen Virol.1986 Jan;67:181-185.
    Beaton A, Palumbo P, Berns KI. Expression from the adeno-associated virus p5 and p19 promoters is negatively regulated in trans by the rep protein. J Virol.1989 Oct;63(10):4450-4454.
    Becerra SP, Rose JA, Hardy M, Baroudy BM, Anderson CW. Direct mapping of adeno-associated virus capsid proteins B and C:a possible ACG initiation codon. Proc Natl Acad Sci U S A.1985 Dec;82(23):7919-7923.
    Becerra SP, Koczot F, Fabisch P, Rose JA. Synthesis of adeno-associated virus structural proteins requires both alternative mRNA splicing and alternative initiations from a single transcript. J Virol.1988 Aug;62(8):2745-2754.
    Ben-Asher E, Aloni Y. Transcription of minute virus of mice, an autonomous parvovirus, may be regulated by attenuation. J Virol.1984 Oct;52(1):266-276.
    Bergoin M, Tijssen P. Biological and molecular properties of densoviruses and their use in protein expression and biological control.1998; p.141-169. In L. K. Miller and L. A. Ball (ed.), The insect viruses. Plenum Publishing, Inc., New York, N.Y..
    Bergs VV, Rat virus-mediated suppression of leukemia induction by Moloney virus in rats. Cancer Res.1969 Sep;29(9):1669-1672.
    Berns KI, Adler S. Separation of two types of adeno-associated virus particles containing complementary polynucleotide chains. J. Virol.,1972;9:394-396.
    Berns KI, Pinkerton TC, Thomas GF, Hoggan MD. Detection of adeno-associated virus (AAV)-specific nucleotide sequences in DNA isolated from latently infected Detroit 6 cells. Virology.1975 Dec;68(2):556-560.
    Best SM, Shelton JF, Pompey JM, Wolfinbarger JB, Bloom ME, Caspase cleavage of the nonstructural protein NS1 mediates replication of Aleutian mink disease parvovirus. J. Virol.2003;77 (9):5305-5312.
    Bleker S, Sonntag F, Kleinschmidt JA., Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity. J. Virol.2005;79: 2528-2540.
    Bloom ME, Alexandersen S, Perryman S, Lechner D, Wolfinbarger JB. Nucleotide sequence and genomic organization of Aleutian mink disease parvovirus (ADV):sequence comparisons between a nonpathogenic and a pathogenic strain of ADV. J Virol.1988 Aug;62(8):2903-2915.
    Blundell MC, Beard C, Astell CR. In vitro identification of a B19 parvovirus promoter. Virology.1987 Apr; 157(2):534-538.
    Blundell MC, Astell CR. A GC-box motif upstream of the B19 parvovirus unique promoter is important for in vitro transcription. J Virol.1989 Nov;63(11):4814-4823.
    Bohenzky RA, LeFebvre RB, Berns KI. Sequence and symmetry requirements within the internal palindromic sequences of the adeno-associated virus terminal repeat. Virology.1988 Oct;166(2):316-327.
    Bohenzky RA, Berns KI. Interactions between the termini of adeno-associated virus DNA. J Mol Biol.1989 Mar 5;206(1):91-100.
    Boschetti N, Niederhauser I, Kempf C, Stuhler A, Lower J, Blumel J. Different susceptibility of B19 virus and mice minute virus to low pH treatment. Transfusion. 2004;44:1079-1086.
    Boublik Y, Jousset F-X, Bergion M. Complete nucleotide seuence and genomic organization of the Aedes albopictus parvovirus (AaPV) pathogenic for Aedes aegypti larvae. Virology,1994; 200:752-763.
    Brandenburger A, Legendre D, Avalosse B, Rommelaere J. NS-1 and NS-2 proteins may act synergistically in the cytopathogenicity of parvovirus MVMp. Virology.1990 Feb;174(2):576-584.
    Buller RM, Janik JE, Sebring ED, Rose JA. Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol.1981 Oct;40(1):241-247.
    Campbell DA, Jr, Staal SP, Manders EK, Bonnard GD, Oldham RK, Salzman LA, Herberman RB. Inhibition of in vitro lymphoproliferative responses by in vivo passaged rat 13762 mammary adenocarcinoma cells. Ⅱ. Evidenceth Kilham rat virus is responsible for the inhibitory effect. Cell Immunol.1977 Oct;33(2):378-391.
    Cassinotti P, Weitz M, Tratschin JD. Organization of the adeno-associated virus (AAV) capsid gene:mapping of a minor spliced mRNA coding for virus capsid protein 1. Virology.1988 Nov;167(1):176-184.
    Casto BC, Armstrong JA, Atchison RW, Hammon WM. Studies on the relationship between adeno-associated virus type 1 (AAV-1) and adenoviruses. Ⅱ. Inhibition of adenovirus plaques by AAV; its nature and specificity. Virology.1967 Nov;33(3):452-458.
    Casto BC, Goodheart CR. Inhibition of adenovirus transformation in vitro by AAV-1. Proc Soc Exp Biol Med.1972 May; 140(1):72-78.
    Chang LS, Shi Y, Shenk T. Adeno-associated virus P5 promoter contains an adenovirus ElA-inducible element and a binding site for the major late transcription factor. J Virol.1989 Aug;63(8):3479-3488.
    Chejanovsky N, Carter BJ. Mutagenesis of an AUG codon in the adeno-associated virus rep gene:effects on viral DNA replication. Virology.1989 Nov;173(1):120-128.
    Chen KC, Shull BC, Moses EA, Lederman M, Stout ER, Bates RC. Complete nucleotide sequence and genome organization of bovine parvovirus. J Virol.1986 Dec;60(3):1085-1097.
    Cheung AK, Hoggan MD, Hauswirth WW, Berns KI. Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J Virol.1980 Feb;33(2):739-748.
    Christensen J, Tattersall P. Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system. J. Virol.2002; 76:6518-6531.
    Chow M, Bodnar JW, Polvino-Bodnar M, Ward DC. Identification and characterization of a protein covalently bound to DNA of minute virus of mice. J Virol. 1986 Mar;57(3):1094-1104.
    Clemens KE, Pintel DJ. The two transcription units of the autonomous parvovirus minute virus of mice are transcribed in a temporal order. J Virol.1988 Apr;62(4):1448-1451.
    Cohen S, Pante N, Pushing the envelope:microinjection of Minute virus of mice into Xenopus oocytes causes damage to the nuclear envelope. J. Gen. Virol.2005; 86:3243-3252.
    Cohen S, Behzad AR, Carroll JB, Pante N. Parvoviral nuclear import:bypassing the host nuclear-transport machinery. J. Gen. Virol.2006; 87:3209-3213.
    Collins MJ Jr, Parker JC. Murine virus contaminants of leukemia viruses and transplantable tumors. J Natl Cancer Inst.1972 Oct;49(4):1139-1143.
    Cornelis JJ, Becquart P, Duponchel N, Salome N, Avalosse BL, Namba M, Rommelaere J. Transformation of human fibroblasts by ionizing radiation, a chemical carcinogen, or simian virus 40 correlates with an increase in susceptibility to the autonomous parvoviruses H-1 virus and minute virus of mice. J Virol.1988 May;62(5):1679-1686.
    Cornelis JJ, Spruyt N, Spegelaere P, Guetta E, Darawshi T, Cotmore SF, Tal J, Rommelaere J. Sensitization of transformed rat fibroblasts to killing by parvovirus minute virus of mice correlates with an increase in viral gene expression. J Virol.1988 Sep;62(9):3438-3444.
    Cotmore SF, Gunther M, Tattersall P. Evidence for a ligation step in the DNA replication of the autonomous parvovirus minute virus of mice. J Virol.1989 Feb;63(2):1002-1006.
    Cotmore SF, Sturzenbecker LJ, Tattersall P. The autonomous parvovirus MVM encodes two nonstructural proteins in addition to its capsid polypeptides. Virology. 1983 Sep;129(2):333-343.
    Cotmore SF, Tattersall P. The NS-1 polypeptide of the autonomous parvovirus MVM is a nuclear phosphoprotein.,Virus Res.1986 May;4(3):243-250.
    Cotmore SF, Tattersall P. The autonomously replicating parvoviruses of vertebrates. Adv Virus Res.1987;33:91-174.
    Cotmore SF, Tattersall P. The NS-1 polypeptide of minute virus of mice is covalently attached to the 5'termini of duplex replicative-form DNA and progeny single strands. J Virol.1988 Mar;62(3):851-860.
    Cotmore SF, Tattersall P. A genome-linked copy of the NS-1 polypeptide is located on the outside of infectious parvovirus particles. J Virol.1989 Sep;63(9):3902-3911.
    Cotmore SF, D'abramo AM Jr, Ticknor CM, Tattersall P. Controlled conformational transitions in the MVM virion expose the VP1 N-terminus and viral genome without particle disassembly. Virology 1999; 254:169-181.
    Cotmore SF, Tattersall P, Parvoviral host range and cell entry mechanisms. Adv. Virus Res.2007; 70:183-232.
    Davidson FF., Steller H. Blocking apoptosis prevents blindness in Drosophila retinal degeneration mutants. Nature.1998; 391:587-591.
    Cukor G, Blacklow NR, Kibrick S, Swan IC. Effect of adeno-associated virus on cancer expression by herpesvirus-transformed hamster cells. J Natl Cancer Inst.1975 Oct; 55(4):957-959.
    De la Maza LM, Carter BJ. Inhibition of adenovirus oncogenicity in hamsters by adeno-associated virus DNA. J Natl Cancer Inst.1981 Dec;67(6):1323-1326.
    Diffoot N, Shull BC, Chen KC, Stout ER, Lederman M, Bates RC. Identical ends are not required for the equal encapsidation of plus-and minus-strand parvovirus LuIII DNA. J Virol.1989 Jul;63(7):3180-3184.
    Ding W, Zhang L, Yan Z, Engelhardt JF. Intracellular trafficking of adeno-associated viral vectors. Gene Ther.2005; 12:873-880.
    Ding W, Zhang LN, Yeaman C, Engelhardt JF. rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion. Mol. Ther.2006; 13: 671-682.
    Doerig C, Beard P, Hirt B. A transcriptional promoter of the human parvovirus B19 active in vitro and in vivo. Virology.1987 Apr;157(2):539-542.
    Doerig C, Hirt B, Beard P, Antonietti JP. Minute virus of mice non-structural protein NS-1 is necessary and sufficient for trans-activation of the viral P39 promoter. J Gen Virol.1988 Oct;69(Pt 10):2563-2573.
    Doerig C, Hirt B, Antonietti JP, Beard P. Nonstructural protein of parvoviruses B19 and minute virus of mice controls transcription. J Virol.1990 Jan;64(1):387-396.
    Duan D, Yue Y, Yan Z, McCray PB Jr, Engelhardt JF. Polarity influences the efficiency of recombinant adenoassociated virus infection in differentiated airway epithelia. Hum. Gene Ther.1998; 9:2761-2776.
    Duan D, Li Q, Kao AW, Yue Y, Pessin JE, Engelhardt JF. Dynamin is required for recombinant adeno-associated virus type 2 infection. J. Virol.1999; 73:10371-10376.
    Dumas B, Jourdan M, Pascaud AM, Bergoin M. Complete nucleotide sequence of the cloned infectious genome of Junonia coenia densovirus reveals an organization unique among parvoviruses. Virology.1992.191:202-222.
    Dupressoir T, Vanacker JM, Cornelis JJ, Duponchel N, Rommelaere J. Inhibition by parvovirus H-1 of the formation of tumors in nude mice and colonies in vitro by transformed human mammary epithelial cells. Cancer Res.1989 Jun 15;49(12):3203-3208.
    Faisst S, Schlehofer JR, Zur Hausen H. Transformation of human cells by oncogenic viruses supports permissiveness for parvovirus H-1 propagation. J Virol. 1989 May;63(5):2152-2158.
    Farr GA, and Tattersall P. A conserved leucine that constricts the pore through the capsid fivefold cylinder plays a central role in parvoviral infection. Virology 2004; 323: 243-256.
    Farr GA, Zhang LG, Tattersall P. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc. Natl. Acad. Sci. U. S. A.2005; 102:17148-17153.
    Farr GA, Cotmore SF, Tattersall P. VP2 cleavage and the leucine ring at the base of the fivefold cylinder control pH-dependent externalization of both the VP1 N terminus and the genome of minute virus of mice. J. Virol.2006; 80:161-171.
    Furuichi Y, Miura K. A blocked structure at the 5'terminus of mRNA from cytoplasmic polyhedrosis virus. Nature.1975.253:374-375.
    Gardiner EM, Tattersall P. Evidence that developmentally regulated control of gene expression by a parvoviral allotropic determinant is particle mediated. J Virol. 1988 May;62(5):1713-1722.
    Gardiner EM, Tattersall P. Mapping of the fibrotropic and lymphotropic host range determinants of the parvovirus minute virus of mice. J Virol.1988 Aug;62(8):2605-2613.
    Geda P, Patury S, Ma J, Bharucha N, Dobry CJ, Lawson SK, Gestwicki JE Kumar A. A small molecule-directed approach to control protein localization and function. Yeast 2008; 25 (8):577-594.
    Georg-Fries B, Biederlack S, Wolf J, zur Hausen H. Analysis of proteins, helper dependence, and seroepidemiology of a new human parvovirus. Virology.1984 Apr 15;134(1):64-71.
    Girod A, Wobus CE, Zadori Z, Ried M, Leike K, Tijssen P, Kleinschmidt JA, Hallek M. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J. Gen. Virol.2002; 83: 973-978.
    Goldfarb DS, Gariepy J, Schoolnik G Kornberg RD, Synthetic peptides as nuclear localization signals. Nature 1986; 322:641-644.
    Green MR, Roeder RG. Definition of a novel promoter for the major adenovirus-associated virus mRNA. Cell.1980 Nov;22(1 Pt 1):231-242.
    Green MR, Roeder RG. Transcripts of the adeno-associated virus genome: mapping of the major RNAs. J Virol.1980 Oct;36(1):79-92.
    Green MR, Straus SE, Roeder RG. Transcripts of the adenovirus-associated virus genome:multiple polyadenylated RNAs including a potential primary transcript. J Virol.1980 Aug; 35(2):560-565.
    Grieger JC, Johnson JS, Gurda-Whitaker B, Agbandje-McKenna M, Samulski RJ. Surface exposed adeno-associated virus Vp1-NLS capsid fusion protein rescues infectivity of non-infectious wild-type Vp2/Vp3 and Vp3-only capsids, but not 5-fold pore mutant virions. J. Virol.2007; 81:7833-7843.
    Gottlieb J, Muzyczka N. In vitro excision of adeno-associated virus DNA from recombinant plasmids:isolation of an enzyme fraction from HeLa cells that cleaves DNA at poly(G) sequences. Mol Cell Biol.1988 Jun;8(6):2513-2522.
    Guetta E, Graziani Y, Tal J. Suppression of Ehrlich ascites tumors in mice by minute virus of mice. J Natl Cancer Inst.1986 Jun;76(6):1177-1180.
    Gunther M, Tattersall P. The terminal protein of minute virus of mice is an 83 kilodalton polypeptide linked to specific forms of double-stranded and single-stranded viral DNA. FEBS Lett.1988 Dec 19;242(1):22-26.
    Guo HT, Zhang JM, Hu YY. Complete sequence and organization of Periplaneta fuliginosa densovirus genome. Acta Virol.2000; 44:315-322.
    Handa H, Shiroki K, Shimojo H. Establishment and characterization of KB cell lines latently infected with adeno-associated virus type 1. Virology.1977 Oct 1;82(1):84-92.
    Hansen, J. Qing K, Srivastava A. Adeno-associated virus type 2-mediated gene transfer:altered endocytic processing enhances transduction efficiency in murine fibroblasts. J. Virol.2001; 75:4080-4090.
    Hauswirth WW, Berns KI. Origin and termination of adeno-associated virus DNA replication. Virology.1977 May 15;78(2):488-499.
    Hayakawa T, Asano S, Sahara K, Iizuka T, Bando H. (). Detection of replicative intermediate with closed terminus of Bombyx densonucleosis virus. Arch. Virol. 1997;142:393-399.
    Heilbronn R, Schlehofer JR, Zur Hausen H. Selective killing of carcinogen-treated SV40-transformed Chinese hamster cells by a defective parvovirus. Virology.1984 Jul 30;136(2):439-441.
    Hermonat PL, Labow MA, Wright R, Berns KI, Muzyczka N. Genetics of adeno-associated virus:isolation and preliminary characterization of adeno-associated virus type 2 mutants. J Virol.1984 Aug;51(2):329-339.
    Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector:transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA.1984 Oct;81(20):6466-6470.
    Hermonat PL. The adeno-associated virus Rep78 gene inhibits cellular transformation induced by bovine papillomavirus. Virology.1989 Sep;172(1):253-261.
    Hirosue S, Senn K, Clement N, Nonnenmacher M, Gigout L, Linden RM, Weber T. Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction. Virology 2007; 367:10-18.
    Hisahara S, Araki T, Sugiyama F, Yagami K, Suzuki M, Abe K, Yamamura K, Miyazaki J, Momoi T, Saruta T, Bernard CC, Okano H, Miura M. Targeted expression of baculovirus p35 caspase inhibitor in olgodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J.2000; 19:341-348.
    Hueffer K, Parker JS, Weichert WS, Geisel RE, Sgro JY, Parrish CR. The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. J. Virol.2003; 77:1718-1726.
    Hueffer K, Palermo LM, Parrish CR. Parvovirus infection of cells by using variants of the feline transferrin receptor altering clathrin-mediated endocytosis, membrane domain localization, and capsid-binding domains. J. Virol.2004; 78:5601-5611.
    Im DS, Muzyczka N. Factors that bind to adeno-associated virus terminal repeats. J Virol.1989 Jul;63(7):3095-3104.
    Im DS, Muzyczka N. The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell.1990 May 4;61(3):447-457.
    Janik JE, Huston MM, Cho K, Rose JA. Efficient synthesis of adeno-associated virus structural proteins requires both adenovirus DNA binding protein and VAI RNA. Virology.1989 Feb;168(2):320-329.
    Janik JE, Huston MM, Rose JA. Locations of adenovirus genes required for the replication of adenovirus-associated virus. Proc Natl Acad Sci U S A.1981 Mar;78(3):1925-1929.
    Jay FT, Laughlin CA, Carter BJ. Eukaryotic translational control: adeno-associated virus protein synthesis is affected by a mutation in the adenovirus DNA-binding protein. Proc Natl Acad Sci U S A.1981 May;78(5):2927-2931.
    Jindal HK, Yong CB. Wilson GM, Tam P, Astell CR. Mutations in the NTP-binding motif of minute virus of mice (MVM) NS1 protein uncouple ATPase and DNA helicase functions. J. Biol. Chem.1994; 269:3283-3289.
    Kalderon D., B.L. Roberts, W.D. Richardson and A.E. Smith, A short amino acid sequence able to specify nuclear location. Cell 1984; 39:499-509.
    Katz E, Carter BJ. Effect of adeno-associated virus on transformation of NIH 3T3 cells by ras gene and on tumorigenicity of an NIH 3T3 transformed cell line. Cancer Res.1986 Jun;46(6):3023-3026.
    Kaufmann W, Paules R. DNA damage and cell cycle checkpoints. FASEB J.1996; 10:238-247.
    Kelkar S, De BP, Gao G, Wilson JM, Crystal RG, Leopold PL. A common mechanism for cytoplasmic dynein-dependent microtubule binding shared among adeno-associated virus and adenovirus serotypes. J. Virol.2006; 80:7781-7785.
    Kilham L. Moloney JB. Assoclation of rat virus and moloney leukemia virus in tissues of inoculated rats. J Natl Cancer Inst.1964 Feb;32:523-531.
    Kilham L, Olivier LJ. A latent virus of rats isolated in tissue culture. Virology. 1959Apr;7(4):428-437.
    Kirschstein RL, Smith KO, Peters EA. Inhibition of adenovirus 12 oncogenicity by adeno-associated virus. Proc Soc Exp Biol Med.1968 Jul;128(3):670-673.
    Koczot FJ, Carter BJ, Garon CF, Rose JA. Self-complementarity of terminal sequences within plus or minus strands of adenovirus-associated virus DNA. Proc Natl Acad Sci U S A.1973 Jan;70(1):215-219.
    Kollek R, Tseng BY, Goulian M. DNA polymerase requirements for parvovirus H-1 DNA replication in vitro. J Virol.1982 Mar;41(3):982-989.
    Kotin RM, Berns KI. Organization of adeno-associated virus DNA in latently infected Detroit 6 cells. Virology.1989 Jun;170(2):460-467.
    Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns KI. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A.1990 Mar;87(6):2211-2215.
    Labow MA, Hermonat PL, Berns KI. Positive and negative autoregulation of the adeno-associated virus type 2 genome. J Virol.1986 Oct;60(1):251-258.
    Labow MA, Graf LH, Jr, Berns KI. Adeno-associated virus gene expression inhibits cellular transformation by heterologous genes. Mol Cell Biol.1987 Apr;7(4):1320-1325.
    Labow MA, Berns KI. The adeno-associated virus rep gene inhibits replication of an adeno-associated virus/simian virus 40 hybrid genome in cos-7 cells. J Virol.1988 May;62(5):1705-1712.
    LaFace D, Hermonat P, Wakeland E, Peck A. Gene transfer into hematopoietic progenitor cells mediated by an adeno-associated virus vector. Virology.1988 Feb;162(2):483-486.
    Lanford RE, Butel JS. Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell.1984; 37:801-813.
    Laughlin CA, Jones N, Carter BJ. Effect of deletions in adenovirus early region 1 genes upon replication of adeno-associated virus. J Virol.1982 Mar;41(3):868-876.
    Laughlin CA, Tratschin JD, Coon H, Carter BJ. Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene.1983 Jul;23(1):65-73.
    Laughlin CA, Cardellichio CB, Coon HC. Latent infection of KB cells with adeno-associated virus type 2. J Virol.1986 Nov;60(2):515-524.
    Lebkowski JS, McNally MM, Okarma TB, Lerch LB. Adeno-associated virus:a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Mol Cell Biol.1988 Oct;8(10):3988-3996.
    Lederman M, Cotmore SF, Stout ER, Bates RC. Detection of bovine parvovirus proteins homologous to the nonstructural NS-1 proteins of other autonomous parvoviruses. J Virol.1987 Nov;61(11):3612-3616.
    Lefebvre RB, Riva S, Berns KI. Conformation takes precedence over sequence in adeno-associated virus DNA replication. Mol Cell Biol.1984 Jul;4(7):1416-1419.
    Linser P, Bruning H, Armentrout RW. Specific binding sites for a parvovirus, minute virus of mice, on cultured mouse cells. J. Virol.1977; 24:211-221.
    Lusby EW, Berns KI. Mapping of the 5'termini of two adeno-associated virus 2 RNAs in the left half of the genome. J Virol.1982 Feb;41(2):518-526.
    Lux K, Goerlitz N, Schlemminger S, Perabo L, Goldnau D, Endell J, Leike K, Kofler DM, Finke S, Hallek M, Buning H. Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. J. Virol.2005; 79:11776-11787.
    Mani B, Baltzer C, Valle N, Almendral JM, Kempf C, Ros C. Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome. J. Virol.2006; 80:1015-1024.
    Mann DA, Frankel AD. Endocytosis and targeting of exogenous HIV-1 TAT protein, EMBO J.1991; 10:1733-1739.
    Marsh EW, Leopold PL, Jones NL, Maxfield FR. Oligomerized transferrin receptors are selectively retained by a lumenal sorting signal in a long-lived endocytic recycling compartment. J. Cell Biol.1995; 129:1509-1522.
    Marsh M, Helenius A. Virus entry:open sesame. Cell 2006; 124:729-740.
    Mayo MA. Changes to virus taxonomy. Arch. Virol.2004; 150:189-198.
    Mayor HD, Drake S, Stahmann J, Mumford DM. Antibodies to adeno-associated satellite virus and herpes simplex in sera from cancer patients and normal adults. Am J Obstet Gynecol.1976 Sep 1;126(1):100-104.
    McLaughlin SK, Collis P, Hermonat PL, Muzyczka N. Adeno-associated virus general transduction vectors:analysis of proviral structures. J Virol.1988 Jun; 62(6):1963-1973.
    McMaster GK, Beard P, Engers HD, Hirt B. Characterization of an immunosuppressive parvovirus related to the minute virus of mice. J Virol.1981 Apr; 38(1):317-326.
    McPherson RA, Ginsberg HS, Rose JA. Adeno-associated virus helper activity of adenovirus DNA binding protein. J Virol.1982 Nov;44(2):666-673.
    Mendelson E, Smith MG, Carter BJ. Expression and rescue of a nonselected marker from an integrated AAV vector. Virology.1988 Sep;166(1):154-165.
    Mendelson E, Smith MG, Miller IL, Carter BJ. Effect of a viral rep gene on transformation of cells by an adeno-associated virus vector. Virology.1988 Oct;166(2):612-615.
    Mendelson E, Trempe JP, Carter BJ. Identification of the trans-acting Rep proteins of adeno-associated virus by antibodies to a synthetic oligopeptide. J Virol.1986 Dec;60(3):823-832.
    Merchlinsky MJ, Tattersall PJ, Leary JJ, Cotmore SF, Gardiner EM, Ward DC. Construction of an infectious molecular clone of the autonomous parvovirus minute virus of mice. J Virol.1983 Jul;47(1):227-232.
    Michael WM, Eder PS, Dreyfuss G. The K nuclear shuttling domain:a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J.1997; 16:3587-3598.
    Michaud N, Goldfarb D. Multiple pathways in nuclear transport:the import of U2 snRNP occurs by a novel kinetic pathway. J. Cell Biol.1991; 112:215-223.
    Miller RA, Ward DC, Ruddle FH. Embryonal carcinoma cells (and their somatic cell hybrids) are resistant to infection by the murine parvovirus MVM, which does infect other teratocarcinoma-derived cell lines. J Cell Physiol.1977 Jun;91(3):393-401.
    Miller CL, Pintel DJ. Interaction between parvovirus NS2 protein and nuclear export factor Crml is important for viral egress from the nucleus of murine cells. J. Virol.2002; 76:3257-3266.
    Molitor TW, Joo HS, Collett MS. Identification and characterization of a porcine parvovirus nonstructural polypeptide. J Virol.1985 Sep;55(3):554-559.
    Morgan WR, Ward DC. Three splicing patterns are used to excise the small intron common to all minute virus of mice RNAs. J Virol.1986 Dec;60(3):1170-1174.
    Mousset S, Rommelaere J. Minute virus of mice inhibits cell transformation by simian virus 40. Nature.1982 Dec 9; 300(5892):537-539.
    Mousset S, Rommelaere J. Susceptibility to parvovirus Minute virus of mice as a function of the degree of host cell transformation:little effect of simian virus 40 infection and phorbol ester treatment. Virus Res.1988 Feb; 9(2-3):107-117.
    Nuesch JP, and Tattersall P. Nuclear targeting of the parvoviral replicator molecule NS1:evidence for self-association prior to nuclear transport. Virology 1993; 196:637-651.
    Ostrove JM, Duckworth DH, Berns KI. Inhibition of adenovirus-transformed cell oncogenicity by adeno-associated virus. Virology.1981 Sep;113(2):521-533.
    Ozawa K, Ayub J, Hao YS, Kurtzman G, Shimada T, Young N. Novel transcription map for the B19 (human) pathogenic parvovirus. J Virol.1987 Aug;61(8):2395-2406.
    Ozawa K, Ayub J, Kajigaya S, Shimada T, Young N. The gene encoding the nonstructural protein of B19 (human) parvovirus may be lethal in transfected cells. J Virol.1988 Aug;62(8):2884-2889.
    Ozawa K, Ayub J, Young N. Translational regulation of B19 parvovirus capsid protein production by multiple upstream AUG triplets. J Biol Chem.1988 Aug 5;263(22):10922-10926.
    Ozawa K, Young N. Characterization of capsid and noncapsid proteins of B19 parvovirus propagated in human erythroid bone marrow cell cultures. J Virol.1987 Aug;61(8):2627-2630.
    Paine PL, Moore LC, Horowitz SB. Nuclear envelope permeability. Nature 1975; 254:109-114.
    Palermo LM, Hueffer K, Parrish CR. Residues in the apical domain of the feline and canine transferrin receptors control host-specific binding and cell infection of canine and feline parvoviruses. J. Virol.2003; 77:8915-8923.
    Paradiso PR. Identification of multiple forms of the noncapsid parvovirus protein NCVP1 in H-1 parvovirus-infected cells. J Virol.1984 Oct;52(1):82-87.
    Parker JC, Collins MJ, Jr, Cross SS, Rowe WP. Minute virus of mice. Ⅱ. Prevalence, epidemiology, and occurrence as a contaminant of transplanted tumors. J Natl Cancer Inst.1970 Aug;45(2):305-310.
    Parker JS, Parrish CR. Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J. Virol.2000; 74:1919-1930.
    Parker JSL, Murphy WJ, Wang D, O'Brien SJ, Parrish CR. Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J. Virol.2001; 75:3896-3902.
    Raab U, Beckenlehner K, Lowin T, Niller HH, Doyle S, Modrow S, NS1 protein of parvovirus B19 interacts directly with DNA sequences of the p6 promoter and with the cellular transcription factors Spl/Sp3. Virology 2002; 293:86-93.
    Redemann BE, Mendelson E, Carter BJ. Adeno-associated virus rep protein synthesis during productive infection. J Virol.1989 Feb;63(2):873-882.
    Reed AP, Jones EV, Miller TJ. Nucleotide sequence and genome organization of canine parvovirus. J Virol.1988 Jan;62(l):266-276.
    Revie D, Tseng BY, Grafstrom RH, Goulian M. Covalent association of protein with replicative form DNA of parvovirus H-1. Proc Natl Acad Sci USA.1979 Nov;76(11):5539-5543.
    Rhode SL.,3rd Replication process of the parvovirus H-1. I. Kinetics in a parasynchronous cell system. J Virol.1973 Jun;11(6):856-861.
    Rhode SL.,3rd trans-Activation of parvovirus P38 promoter by the 76K noncapsid protein. J Virol.1985 Sep;55(3):886-889.
    Rhode SL.,3rd Both excision and replication of cloned autonomous parvovirus DNA require the NS1 (rep) protein. J Virol.1989 Oct; 63(10):4249-4256.
    Rhode SL,3rd, Paradiso PR. Parvovirus genome:nucleotide sequence of H-1 and mapping of its genes by hybrid-arrested translation. J Virol.1983 Jan;45(1):173-184.
    Rhode SL,3rd, Paradiso PR. Parvovirus replication in normal and transformed human cells correlates with the nuclear translocation of the early protein NS1. J Virol. 1989 Jan;63(1):349-355.
    Rhode SL 3rd, Richard SM. Characterization of the trans-activation-responsive element of the parvovirus H-1 P38 promoter. J Virol.1987 Sep;61(9):2807-2815.
    Richardson WD, Westphal H. A cascade of adenovirus early functions is required for expression of adeno-associated virus. Cell.1981 Nov;27(1 Pt 2):133-141.
    Richardson WD, Westphal H. Requirement for either early region 1a or early region 1b adenovirus gene products in the helper effect for adeno-associated virus. J Virol.1984 Aug;51(2):404-410.
    Ros C, Burckhardt CJ, Kempf C. Cytoplasmic trafficking of minute virus of mice: low-pH requirement, routing to late endosomes, and proteasome interaction. J. Virol. 2002;76:12634-12645. Ros C, Kempf C. The ubiquitin-proteasome machinery is essential for nuclear translocation of incoming minute virus of mice. Virology 2004; 324:350-360.
    Ros C, Gerber M, Kempf C. Conformational changes in the VP1-unique region of native human parvovirus B19 lead to exposure of internal sequences that play a role in virus neutralization and infectivity. J. Virol.2006; 80:12017-12024.
    Samulski RJ, Berns KI, Tan M, Muzyczka N. Cloning of adeno-associated virus into pBR322:rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A.1982 Mar;79(6):2077-2081.
    Samulski RJ, Chang LS, Shenk T. Helper-free stocks of recombinant adeno-associated viruses:normal integration does not require viral gene expression. J Virol.1989 Sep;63(9):3822-3828. Samulski RJ, Shenk T. Adenovirus E1B 55-Mr polypeptide facilitates timely cytoplasmic accumulation of adeno-associated virus mRNAs. J Virol.1988 Jan;62(1):206-210.
    Samulski RJ, Srivastava A, Berns KI, Muzyczka N. Rescue of adeno-associated virus from recombinant plasmids:gene correction within the terminal repeats of AAV. Cell.1983 May;33(1):135-143.
    Sanlioglu S, Benson PK, Yang J, Atkinson EM, Reynolds T, Engelhardt JF. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by racl and phosphatidylinositol-3 kinase activation. J. Virol.2000; 74; 9184-9196.
    Sasaki J., Nakashima N. Methionine-independent initiation of translation in the capsid protein of an insect RNA virus. Proc Natl Acad Sci USA 2000; 97:1512-1515.
    Schlehofer JR, Ehrbar M, zur Hausen H. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus. Virology.1986 Jul 15;152(1):110-117.
    Schlehofer JR, Heilbronn R, Georg-Fries B, zur Hausen H. Inhibition of initiator-induced SV40 gene amplification in SV40-transformed Chinese hamster cells by infection with a defective parvovirus. Int J Cancer.1983 Nov 15;32(5):591-595.
    Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001; 294:1929-1932.
    Senapathy P, Tratschin JD, Carter BJ. Replication of adeno-associated virus DNA. Complementation of naturally occurring rep-mutants by a wild-type genome or an ori-mutant and correction of terminal palindrome deletions. J Mol Biol.1984 Oct 15;179(1):1-20.
    Shade RO, Blundell MC, Cotmore SF, Tattersall P, Astell CR. Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. J Virol.1986 Jun;58(3):921-936.
    Sieczkarski SB, Whittaker GR. Viral entry. Curr. Top. Microbiol. Immunol.2005; 285:1-23.
    Siegl G, Gautschi M. The multiplication of parvovirus Lu3 in a synchronized culture system. Ⅱ. Biochemical characteristics of virus replication. Arch Gesamte Virusforsch.1973;40(1):119-127.
    Siegl G, Bates RC, Berns KI, Carter BJ, Kelly DC, Kurstak E, Tattersall P. Characteristics and taxonomy of Parvoviridae. Intervirology.1985;23(2):61-73.
    Simpson AA, Chandrasekar V, Hebert B, Sullivan GM, Rossmann MG, Parrish CR. Host range and variability of calcium binding by surface loops in the capsids of canine and feline parvoviruses. J. Mol. Biol.2000; 300:597-610.
    Smith AE, Helenius A. How viruses enter animal cells. Science 2004; 304: 237-242.
    Snyder RO, Samulski RJ, Muzyczka N. In vitro resolution of covalently joined AAV chromosome ends. Cell.1990 Jan 12;60(1):105-113.
    Sollner TH. Intracellular and viral membrane fusion:a uniting mechanism. Curr. Opin. Cell Biol.2004; 16:429-435.
    Sonntag F, Bleker S, Leuchs B, Fischer R, Kleinschmidt JA. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J. Virol.2006; 80:11040-11054.
    Spalholz BA, Tattersall P. Interaction of minute virus of mice with differentiated cells:strain-dependent target cell specificity is mediated by intracellular factors. J Virol.1983 Jun;46(3):937-943.
    Sprecher-Goldberger S, Thiry L, Lefebvre N, Dekegel D, de Halleux F. Complement-fixation antibodies to adenovirus-associated viruses, cytomegaloviruses and herpes simplex viruses in patients with tumors and in control individuals. Am J Epidemiol.1971 Oct;94(4):351-358.
    Srivastava A, Lusby EW, Berns KI. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol.1983 Feb;45(2):555-564.
    Straus SE, Sebring ED, Rose JA. Concatemers of alternating plus and minus strands are intermediates in adenovirus-associated virus DNA synthesis. Proc Natl Acad Sci U S A.1976 Mar;73(3):742-746.
    Suikkanen S, Saajarvi K, Hirsimaki J, Valilehto O, Reunanen H, Vihinen-Ranta M, Vuento M. Role of recycling endosomes and lysosomes in dynein-dependent entry of canine parvovirus. J. Virol.2002; 76:4401-4411.
    Suikkanen S, Aaltonen T, Nevalainen M, Valilehto O, Lindholm L, Vuento M, Vihinen-Ranta M. Exploitation of microtubule cytoskeleton and dynein during parvoviral traffic toward the nucleus. J. Virol.2003; 77:10270-10279.
    Suikkanen S, Antila M, Jaatinen A, Vihinen-Ranta M, Vuento M. Release of canine parvovirus from endocytic vesicles. Virology 2003; 316:267-280.
    Tattersall P, Ward DC. Rolling hairpin model for replication of parvovirus and linear chromosomal DNA. Nature.1976 Sep 9;263(5573):106-109.
    Tattersall, P. et al., Parvoviridae. In:C.M. Fauquet et al., Editors, Virus Taxonomy: Ⅷth Report of the International Committee on Taxonomy of Viruses. Elsevier 2005 353-369.
    Tijssen P, Bergoin M. Densonucleosis viruses constitute an increasingly diversified subfamily among the parvoviruses. Semin. Virol.1995 6:347-355.
    Toolan HW. Lack of oncogenic effect of the H-viruses for hamsters. Nature.1967 Jun3;214(5092):1036-1036.
    Toolan HW, Ledinko N. Inhibition by H-l virus of the incidence of tumors produced by adenovirus 12 in hamsters. Virology.1968 Jul; 35(3):475-478.
    Toolan HW, Rhode SL 3rd, Gierthy JF. Inhibition of 7,12-dimethylbenz(a)anthracene-induced tumors in Syrian hamsters by prior infection with H-1 parvovirus. Cancer Res.1982 Jul; 42(7):2552-2555.
    Tratschin JD, Miller IL, Carter BJ. Genetic analysis of adeno-associated virus: properties of deletion mutants constructed in vitro and evidence for an adeno-associated virus replication function. J Virol.1984 Sep; 51(3):611-619.
    Tratschin JD, Miller IL, Smith MG, Carter BJ. Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol.1985 Nov;5(11):3251-3260.
    Tratschin JD, Tal J, Carter BJ. Negative and positive regulation in trans of gene expression from adeno-associated virus vectors in mammalian cells by a viral rep gene product. Mol Cell Biol.1986 Aug; 6(8):2884-2894.
    Tratschin JD, West MH, Sandbank T, Carter BJ. A human parvovirus, adeno-associated virus, as a eucaryotic vector:transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol.1984 Oct; 4(10):2072-2081.
    Trempe JP, Carter BJ. Alternate mRNA splicing is required for synthesis of adeno-associated virus VP1 capsid protein. J Virol.1988 Sep; 62(9):3356-3363.
    Tullis GE, Burger LR, Pintel DJ. The trypsin-sensitive RVER domain in the capsid proteins of minute virus of mice is required for efficient cell binding and viral infection but not for proteolytic processing in vivo. Virology 1992; 191:846-857.
    Van Hille B, Duponchel N, Salome N, Spruyt N, Cotmore SF, Tattersall P, Cornelis JJ, Rommelaere J. Limitations to the expression of parvoviral nonstructural proteins may determine the extent of sensitization of EJ-ras-transformed rat cells to minute virus of mice. Virology.1989 Jul;171(1):89-97.
    Van Vliet K, Blouin V, Agbandje-McKenna M, Snyder RO. Proteolytic mapping of the adeno-associated virus capsid. Mol. Ther.2006; 14:809-821.
    Van Weert AW, Dunn KW, Gueze HJ, Maxfield FR, Stoorvogel W. Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump. J. Cell Biol.1995; 130:821-834.
    Vihinen-Ranta M, Kakkola L, Kalela A, Vilja P, Vuento M. Characterization of a nuclear localization signal of canine parvovirus capsid proteins. Eur. J. Biochem.1997; 250:389-394.
    Vihinen-Ranta M, Kalela A, Makinen P, Kakkola L, Marjomaki V, Vuento M. Intracellular route of canine parvovirus entry. J. Virol.1998; 72:802-806.
    Vihinen-Ranta M, Yuan W, Parrish CR. Cytoplasmic trafficking of the canine parvovirus capsid and its role in infection and nuclear transport. J. Virol.2000; 74: 4853-4859.
    Vihinen-Ranta M, Wang D, Weichert WS, Parrish CR. The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection. J. Virol.2002; 76:1884-1891.
    Viswanath V, Wu Z, Fonck C, Wei Q, Boonplueang R, Andersen JK. Transgenic mice neuronally expressing baculoviral p35 are resistant to diverse types of induced apoptosis, including seizure-associated neurodegeneration. Proc Natl Acad Sci USA. 2000; 97:2270-2275.
    Wang P, Palese P, O'Neill RE. The NPI-1/NPI-3 (karyopherin a) binding site on the influenza A virus nucleoprotein NP is a nonconventional nuclear localization signal. J.Virol.1997; 71:1850-1856.
    Weichert WS, Parker JS, Wahid AT, Chang SF, Meier E, Parrish CR. Assaying for structural variation in the parvovirus capsid and its role in infection. Virology 1998; 250:106-117.
    Wilson JE, Petova TV, Hellen CUT, Sarnow P. Initiation of protein synthesis from the A site of the ribosome. Cell.2000; 102:511-520.
    Winocour E, Callaham MF, Huberman E. Perturbation of the cell cycle by adeno-associated virus. Virology.1988 Dec;167(2):393-399.
    Xiao W, Warrington KH Jr, Hearing P, Hughes J, Muzyczka N. Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2. J. Virol. 2002; 76:11505-11517.
    Yalkinoglu AO, Heilbronn R, Biirkle A, Schlehofer JR, zur Hausen H. DNA amplification of adeno-associated virus as a response to cellular genotoxic stress. Cancer Res.1988 Jun 1;48(11):3123-3129.
    Yakobson B, Koch T, Winocour E. Replication of adeno-associated virus in synchronized cells without the addition of a helper virus. J Virol.1987 Apr; 61(4): 972-981.
    Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF. Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J. Virol.2002; 76:2043-2053.
    Yang B, Zhang J, Cai D, Li D, Chen W, Jiang H, Hu Y. Biochemical characterization of Periplaneta fuliginosa densovirus non-structural protein NS1. Biochem. Biophys. Res. Commun.2006; 342:1188-1196.
    Young PJ, Jensen KT, Burger LR, Pintel DJ, Lorson CL. Minute virus of mice NS1 interacts with the SMN protein, and they colocalize in novel nuclear bodies induced by parvovirus infection. J. Virol.2002; 76:3892-3904.
    Zadori Z, Szelei J, Lacoste MC, Li Y, Gariepy S, Raymond P, Allaire M, Nabi IR, Tijssen P. A viral phospholipase A2 is required for parvovirus infectivity. Dev. Cell 2001; 1:291-302.
    Zhong L, Zhao W, Wu J, Li B, Zolotukhin S, Govindasamy L. Agbandje-McKenna M, Srivastava A. A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis. Mol. Ther.2007; 15:1323-1330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700