突扩连通结构振荡管性能研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业生产中,旋转式气波制冷机作为一种膨胀制冷设备,具有处理量寺、成本低、运转平稳、操作维护方便、使用寿命长、节能和能够适应气液两相流等优点。但也存在一些问题,如设备体积庞大、振荡管利用率低、震动剧烈,并且研究表明随着射流频率的变化,旋转式气波制冷机的等熵制冷效率出现大幅度波动,不利于其稳定运行。针对这些问题,本文采用实验与数值模拟相结合的方法,对旋转式气波制冷机关键部件——振荡管结构进行了改进,提出了突扩连通结构振荡管。获得了突扩连通结构振荡管内波动瞬态压力、壁温、射流频率、膨胀比、出口压力等参数对振荡管制冷性能的影响,了解了传热行为和内部波系流动的规律,寻找出提高旋转式气波制冷机制冷效率的途径。
     本文主要工作和研究结论如下:
     (1)建立了旋转式气波制冷机的实验平台和完善的测最系统。同时采用滑移网格技术建立了与真实情况比较接近的多管、多周期的,能够模拟振荡管与喷嘴渐开渐闭过程的数值模拟模型。在模型中1的振荡管管壁上,通过自定义程序(LDF),加入实验测得的壁温,避免了振荡管边界条件不准确的问题,节省了模拟计算的时间,克服了累积误差大的缺点。经验证,此模型能够很好的对实验机进行数值模拟。
     (2)在各种操作条件下,对一端封闭均直振荡管内部波系运动和传热进行了分析和研究。
     (3)突扩连通结构,能够吸收振荡管中入射激波的能量,将入射激波的反射波变为膨胀波,有利于提高振荡管的制冷效率。突扩连通结构的振荡管等熵制冷效率随射流频率的变化也呈现“马鞍状”,也有极值现象。突扩连通结构的振荡管等熵制冷效率明显的要比一端封闭的均直振荡管制冷效率要高,可提高10%以上。
     (4)突扩连通结构振荡管直管段与一端封闭均直振荡管壁温分布趋势基本相同。随膨胀比增加,振荡管入口端壁温降低,末端壁温升高。在同样温差条件下,突扩连通结构的表而散热量更多,即突扩连通结构能够向外界环境中散发出更多的热量。从而说明了突扩连通结构具有更好的制冷性能。
     封闭端突扩连通结构振荡管内的入射激波的运行过程和一端封闭均直振荡管内的入射激波运行过程相同。但两种振荡管内激波扰动范围各不同,封闭端突扩连通结构振荡管的激波扰动范围明显较小。加入连通腔后,内部的压力波振荡幅度明显的减弱。
     (5)对突扩连通结构振荡管进行强制集中换热,在相同条件下,降低换热器中介质温度,有利于气波制冷机的效率提高。
In industry, as a kind of gas expansion refrigeration equipment,Gas Wave Refrigerator(GWR) has good features, such as high throughput, low cost, smooth operation under different conditions easy operation, simple maintenance, long operating life and can be used in gas-liquid two-phase flow. But. it also has some disadvantages, for example, large sized, low utilization rate of oscillating tube,intense vibration. And the investigation indicated that the isentropic refrigeration of the Gas Wave Refrigeration undulate consumingly with the changing of the jet flow frequency, and that is not helpful of the smooth operation. Aiming at these shortcomings, the method of combination of experimental and numerical simulation was adopted by this paper to improve the structure of the oscillating tube which is key components of rotating Gas Wave Refrigerator, and a sudden-expansion structure was proposed. The parameters, such as transient pressure, outer wall temperature, expansion ratio, exit pressure, frequency and inner wave motion, how to affect the refrigeration capability was acquired,realized the operation rules of the GWR.Analyzed and studied the effect of on the refrigeration performance,acquired the operation rules of the GWR. This paper sought the way in which can elevate the isentropic refrigeration efficiency of GWR.
     The main research and achievements are as following:
     (1) The reasonable experiment device and measure system were set up to ensure accomplish large of experimental works concerning GWR. Using sliding mesh technique, making a model can complete the multi-period computation and simulate the influence between adjacent oscillating tubes. This model can conquer the shortcoming of old model. There are a number of disadvantages in old model. For example, inaccurate initial conditions and boundary conditions. By solving the problems of long computing time and large accumulated error, this paper adopted the Used Define Function (UDF). UDF can join tube wall temperature distribution which is obtained from experiments in this model. By analyzing the results of experiments and numerical,this model was in good agreement with the experiment.
     (2) In the kind of operating condition,analyzing and researching the process of the internal flow and heat transfer of one-end-closed oscillating tube.
     (3) A sudden-expansion structure oscillating tube can absorb the energy of shock wave and become reflected wave into expansion wave. So it is helpful of improving the refrigeration capability. This structure oscillating also presents the "saddle shape'", and also has extremum phenomenon. The isentropic refrigeration efficiency of sudden-expansion structure oscillating is more than one-end-closed oscillating tube and can improve the efficiency to 10% or more.
     (4) A sudden-expansion structure and one-end-closed structure has the same trend on the wall temperature. With the expansion ratio increases,inlet temperature of oscillating lower, and the end rise.Because in the same condition,a sudden-expansion structure has more superficial heat dissipating capacity,it sends out more quantity of heat. These prove that this structure has greater refrigeration capability.
     (5) During wave motion,the process of incident shock wave is the same in sudden-expansion structure and one-end-closed structure.But in two kinds of oscillating tubes, the shock wave disturbance scope is respectively different.The scope of sudden-expansion structure is obviously smaller. Add the connectivity chamber, the oscillation amplitude of internal pressure wave obvious weakening.
     (6) When mandatory centralized heat transfer, reducing heat exchanger medium temperature helps the improvement of refrigeration capability in the same condition.
引文
[1]王铭,徐剑华.世界液化天然气航运市场走势分析.中国水运,2007,4.
    [2]E. Brocher, C. Maresca and M. H. Boumay. J. Fluid Mech,1970,43(2):369-384.
    [3]Rennaz M C.New French gas cooler recovers 120bPd gasoline. World Oil,1973,8:57-59.
    [4]Christian D, Amande J C, Viltard C. Barge-mounted NGL plant boosts recovery from off shore field. World Oil,1982,7:105-107.
    [5]Rennaz M C. Well head gas refrigerator field strips condensate. World Oil,1971, 10:60-61.
    [6]Marehal P, Malek S, Vitard J C. Skid-mounted rotating thermal separator. Oil and Gas, 1984,11:55-58.
    [8]间宫林荣.かス冷却分离装置の化学工业への利用[J].化学装置,1978,2:52-57.
    [9j Saito T, Voinovich P, Zhao W et al. Experimental and numerical study of pressure wave refrigerator performance. Shock wave,2003,13:253-259.
    [10]Shao J, Bao Y D, Shen Y N et al. Experimental Investigation of an new type expander. Advances in Cryogenic Engineering,1986,31:685-692.
    [11]Shao J, Shen Y N, Feng Y P et al. Thermodynamic analysis and experimental study on Petroleum gas separation system incorporating RJE. Proceeding of ICESR,1986,9.
    [12]Shao J, Gao J, Feng Y et al. Experimental stuay of influence of transient performance in pressure plus tubes on isentropic efficiency of RJE. Cryogenics,1986, 26(11):634-636.
    [13]方曜奇等.第四届全国激波管与激波,学术会论文集.1987:67-71.
    [14]黄志达,黄钟岳,方曜奇.新型节能装置-透平式热分离机的研究.大连工学院学报,1983,22(:3):115-119.
    [15]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用.大连工学院学报,1985,24(4):123-124.
    [16]方曜奇,胡志敏.振荡管结构对热分离机制冷的影响.流体工程,1987,17(3):15-18.
    [17]邵件,包裕弟,沈永年竺.转动喷嘴膨胀机的实验研究.浙江大学学报,1984,8(3):25-34.
    [18]邵件,沈永年.转动式热分离机转速与变压管长度匹配的研究.浙江大学学报,1988,22(5):114-119.
    [19]包裕弟,沈永年,张朝涵等.回收气体压力能的转动喷嘴膨胀机研究.能源工程,1981,2:27-30.
    [20]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用.制冷,1995,50(1):10-15.
    [21]朱彻,李洪安,邹久朋等. 一项新兴的天然气脱水净化技术.天然气工业,1995,
    [22]张朝函.一种新型机械-旋转式制冷机.低温工程,1993,1-34.
    [23]尹荣辅.川中油气田轻烃资源回收的问题和讨论.石油和天然气化工,1994,24(1):19-22.
    [24]蒋洪,朱聪.轻烃回收技术的现状及发展方向.石油规划设计,2000,11(2):15-16.
    [25]黄齐飞,李学来.热分离技术发展现状与应用前景.福建化工,2001,2:10-14.
    [26]俞鸿儒.用于低温风洞的新颖制冷方法.力学学报,1999,31(6):645-651.
    [27]俞鸿儒.产生风洞低温试验气流的新途径.流体力学实验与测量,1997,11(1):1-5.
    [28]胡大鹏.SB416航空发动机高空模拟试验气波制冷系统研究与开发,2003.
    [29]梁世斌,方曜奇.利用低温技术进行物料细粉碎的实验研究.制冷学报,1995,3:27-29.
    [30]梁世斌,方曜奇.利用低温技术进行胎面胶细粉碎的实验研究.制冷学报,1996,1:20-22.
    [31]李兆慈,徐烈,赵兰萍.脉管制冷与气波制冷耦合的研究.低温与超导,2000,(2):1-5.
    [32]李兆慈.脉管式气波制冷机耦合特性的研究田.上海:上海交通大学,2001.
    [33]徐烈,熊炜,孙恒.脉管式气波制冷的实验研究.低温工程,1999,(4):136-141.
    [34]代瑞国,刘学武.旋射流型式气波制冷机实验研究.安徽化工,2003,6:45-47.
    [35]David M, Marechal J C, Simon Y et al. Theory flow in orifice pulse tube refrigerator. Cryogenics,1993,33:154-159.
    [36]De Boer P C T. Pressure heat pumping in the orifice pulse-tube refrigerator. Adv. Cry. Eng,1996,41:1471-1478.
    [37]Kittel P. Ideal orifice pulse tube refrigerator performance. Cryogenics,1992, 32(9):843-844.
    [38]Nalim, M. R.. Preliminary Assessment of Combustion Modes for Internal Combustion Wave Rotors. A1AA-1995-2801-927.
    [39]Wilson, J., Paxson, D.E.. Wave Rotor optimization for Gas Turbine Topping Cyeles. Journal of Propulsion and Power,1996,12(4):778-785.
    [40]Hoxie, S.S., Lear, W. E., Mieklow, G.J.. A CFD Study of Wave Rotor Losses Due to the Gradua lopening of Rotor Passage Inlets. A1AA1998-3253-993.
    [41]Nalim, M. R.. Wave Roto rDetonation Engine. US,6460342,2002.
    [42]Snyder, P., Alparslan, B., Nalim, M. R.. Wave Rotor Combustor Test Rig Preliminary Design.2004 International Mechanical Engineering Conference, ASME Paper IMECE2004-61795,2004.
    [43]Okamoto, K., Nagashima, T., A Simple Numerical Approach of Micro Wave Rotor Gasdynamic Design.16th International Symposium on Airbreathing Engines, Paper ISABE-2003-1213, 2003.
    [44]Okamoto, K., Nagashima, T., Yamaguchi, K.. Rotor-wall Clearance Effects upon wave Rotor Passage Flow.15th International Symposium on Airbreathing Engines, Paper ISABE-2001-1222,2001.
    [45]Okamoto, K., Nagashima, T., Yamaguchi, K.. Introductory Investigation of Micro Wave Rotor.2003 International Gas Turbine Congress, ASME Paper IGTC03-FR-302, Japan, 2003.
    [46]Akbari, P., Muller, N.. Preliminary Design Procedure for Gas Turbine Topping Reverse-Flow Wave Rotors.2003 International Gas Turbine Congress, ASME Paper IGTC03-FR-301,2003.
    [47]Akbari, P., Muller, N.. Gas Dynamic Design Analyses of Charging Zone for Reverse-Flow Pressure Wave Superchargers.2003 ASME Spring Technieal Conference, ASME Paper ICES2003-690,2003.
    [48]刘虎.压力交换制冷机结构参数优化研究.大连:大连理工大学,2006.
    [49]丁美艘.压力交换制冷机参数对性能的影响.大连:大连理工大学,2007
    [50]方曜奇,郑洁.一种新型的制冷技术-气波制冷机.辽宁化工,1990,(5):1-54.
    [51]李力.气波制冷机接受管内不定常流数值模拟.大连:大连理工大学,1994.
    [52]俞鸿儒.热分离机内的流动.大连工学院学报,1984,23(4):1-7.
    [53]熊炜.脉管式气波制冷机的实验研究.上海:上海交通大学.1999.
    [54]蒋洪,朱聪.轻烃同收技术的现状及发展方向.石油规划设计,2000,11(2):15-16
    [55]李学来,方曜奇.气波制冷机振荡管外强化换热的实验研究.制冷,1996,4:7-9.
    [56]李学来.压力波制冷机工作管开口端处的流动分析.福州大学学报,2001,29(5):108-110.
    [57]方曜奇,郑洁,刘润杰等.气波制冷效率影响因素的实验研究.气动试验与测量控制,1993,7(3):15-18.
    [58]朱雪琴.气波制冷机振荡管最佳管长的研究.无锡轻工业学院学报,1993,2:135-140.
    [59]李学来.管长对振荡管冷效应影响的实验研究.制冷,1996,(2):15-17.
    [60]李兆慈,徐烈,张存泉,孙恒,赵兰萍.气波制冷机等熵效率影响因素的实验研究.低温!:程,2000,5:50-54.
    [61]李学来.振荡管管壁轴向导热的实验研究.大连理工大学学报,1996,36(1):37-40.
    [62]李学来.振荡管管壁轴向传热的研究:(博士学位论文).大连:大连理工大学,1996.
    [63]李学来,方曜奇,朱彻竺.振荡管管壁轴向导热的试验研究.大连理工大学学报,1996,36(1):37-40.
    [64]李学来,朱彻,方曜奇.振荡管最佳隔热位置.化工学报,2001,52(9):757-760.
    [65]李学来.两种管外传热型式对振荡管性能的影响.化工学报,2000,51(1):12-16.
    [66]李学来,郭荣伟.振荡管最佳射流激励频率钳制效应.南京航空航天大学学报,1998,30(6):606-610.
    [67]李学来,黄齐习,朱彻.有关因素对振荡管最佳射流激励频率的影响.化工学报,2002,53(2):194-198.
    [68]Shih T H, Liou W W, Shabbir A et al. A new κ-ε eddy viscosity model for high Reynolds number turbulent flows. Compute Fluids,1995,24(3):227-238.
    [69]李学来,黄齐飞,朱彻.反射激波的吸收对热分离器性能的影响.化工学报,2003,54(2):170-175.
    [70]于伟.利用多孔板阻尼提高热分离器效率.青年力学协会第二届年会文流论文,1992:111-134.
    [71]YuWei(于伟).Study on the factors effect on refrigeration efficiency of thermal separator:(学位论文).Beijing:Institute of Mechanics, Chinese Academy of Sciences, 1988.
    [72]李学来,朱彻.振荡管复合阻尼陷波.化工学报,2001,52(5):379-380.
    [73]代玉强,胡大鹏,刘伟,朱彻.含有复合阻尼结构的压力波制冷机振荡管内流动分析.低温与特气,2003,21(2):23-25.
    [74]刘润杰.气波制冷机转速与动态压力的同步测量.气动实验与测量控制,1995, 2:79-82.
    [75]Okamoto K., Araki M.:Shock wave observation in narrow tubes for a parametric study on microwave rotor design. Journal of thermal science,2008,17:134-140.
    [76]马铁犹.计算流体力学.北京:北京航空航天大学出版社,1987.
    [77]王承尧,王正华.计算流体力学及并行计算.长沙:国防科技大学出版社,2000.
    [78]Gupta S K, Petal R D, Ackerberg R C. Wall heat mass transfer in pulsatile flow.Chem. Eng. Sci.,1982,37(12):1727-1739.
    [79]Lemlieh R, Armour J C. Forced convective heat transfer to a pulsed liquid[J]. Heat. transfer, Boston, Chem. Eng. Prog. Symp. Series,1965,61:83-96.
    [80]陈作斌.计算流体力学及应用.北京:国防工业出版社,2003
    [81]李德元.二维非定常流体力学数值计算.北京:科学出版社,1987.
    [82]黄敦.复杂激波的数值模拟.现代流体力学进展,1992,1:60-72.
    [83]童秉纲,张炳营,崔而杰.非定常流与涡运动.北京:国防工业出版社,1993.
    [84]Van Leer B. Upwind-difference methods for aerodynamics problems governed by the Euler equations of gas dynamics. Lectures in Applied Mathematics,1985, (22):327-336.
    [85]黄国平,梁德旺.块结构的MUSCL算法求解二维进气道流场.空气动力学学报,2000,18(2):194-199.
    [86]刘培启.对冲阻尼型气波制冷机性能研究:(博士学位论文).大连:大连理工大学,2009.
    [87]胡大鹏.压力振荡管流动和热效应的研究:(博士学位论文).大连:大连理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700