Wnt-5a对Aβ诱发的突触可塑性和认知功能损害的保护性作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer's disease, AD)是一种病因不明的神经系统退行性疾病。病理学特征为神经细胞外老年斑(senile plaque, SP)沉积、神经细胞内神经原纤维缠结(neurofibrillary tangles, NFTs)和神经细胞缺失。β淀粉样蛋白(β-amyloid protein,Aβ)是老年斑的主要成分,Aβ是各种原因诱发AD的中心环节,但是Aβ发挥神经毒性作用的具体机制,迄今为止尚不十分清楚,目前临床应用治疗AD的药物多有明显的副作用,而且疗效不够确切,还须进一步实验研究。
     长时程增强(long-term potentiation, LTP)是突触功能可塑性的主要形式,可作为研究学习记忆的细胞水平的模型,它反映了突触可塑性变化中的神经电生理活动方面的改变。在AD发病过程中,Aβ的神经毒性作用可以通过影响突触后结构成分特别是影响Postsynaptic density-95 (PSD-95)而导致LTP的抑制及突触功能障碍。因此,PSD-95蛋白的表达水平变化为大鼠海马的突触可塑性提供了另一个检测指标,与学习和记忆能力变化密切相关。
     近来Wnt信号通路在调节神经发育、突触发生、突触可塑性等方面的作用越来越受到重视,大量研究提示Wnt信号通路的活化能够增加PSD-95蛋白的表达,增强LTP及学习记忆能力。虽然大量研究证据都将Wnt信号通路与AD的发病机制联系在一起,但是过去的报道只是提供了一些提示性的结果,并不足以支持Wnt-5a配体对Aβ的神经毒性具有保护作用,且发挥作用机制尚不明确。推测Wnt-5a配体可能为拮抗Aβ的神经毒性作用开辟新的治疗药物,但是还需要进一步的实验证实其神经保护性作用,并深入研究其发挥作用的机制。本文中提供一些证据证实Wnt-5a配体能够拮抗Aβ导致突触可塑性损害,并且在此基础上还首次评价了Wnt-5a对Aβ引发的认知功能损害的保护作用,进一步的研究了Wnt信号通路在AD发病机制中的作用。
Background:Alzheimer's disease(AD) is the most prevalent neurodegenerative disease leading to dementia. It has been reported widely that Aβoligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. However, the mechanisms underlying Aβ-neurotoxicity are unknown so far. At present, it is necessary to find the new clinical therapeutical drugs for AD patients. Recently, it is found that Wnt signaling pathway plays a role in multiple modulation of synaptic differentiation and synaptic plasticity during neuronal development. A lot of studyies suggest that activation of Wnt signaling pathway is able to increase the expression of PSD-95 protein, upregulate LTP and enhance learning and memory funtion. Although various evidence has associated Wnt signaling with AD pathogenesis, previous experiments just provide some suggestive results which are not adequate for supporting a major protective role of Wnt-5a ligands in Aβneurotoxicity and the mechanism of protevtive effect is not definitive. Wnt-5a ligands may protect against Aβneurotoxicity and develop a new therapeutical strategy for the AD patient in the future, but it is nessesary to carry out the further experiment to investigate the neuroprotective role and the mechanism of the effect.
     Objective:The present study observes the roles of Wnt-5a ligands which play in the Aβ25-35-induced depression of synaptic plasticity, moreover, we examine whether the Wnt antagonist sFRP affects Wnt-5a ligands'effect on LTP; We further investigate the effect of Wnt-5a ligands on the cognitive functin of AD model rats; We discuss the postsynaptic mechanism through which Wnt signaling pathway play the protective effect on the AD pathogenesis.
     Methods:Making AD model with intracerebroventricular (i.c.v) injection of Aβ25-35, we examine the effects of intracerebroventricular (i.c.v.) injection of Wnt-5a ligands on the Aβ25-35-induced suppression of LTP in the rat hippocampal CA1 region in vivo with field potential recording technique and clarify whether Wnt antagonist sFRP affects the role of Wnt-5a. Morris water maze is used to examine the spatial learing and menory, annalyzing the change of PSD-95 proteins expression in the CA1 region of rat hippocampus by means of immunofluorescence and Western-Blot methods.
     Results:(1) LTP in vivo was successfully induced in the control group after applying high-frequency stimulus (HFS). I.c.v. injection of 10 nmol Aβ25-35 had no effect on baseline synaptic transmission, but it significantly depressed (P<0.01) the induction of LTP after HFS as compared to control group; Application of 10 pmol Wnt-5a alone enhanced baseline synaptic transmission without significant effect (P>0.05) on HFS-induced LTP compared with control; However, co-injection of Wnt-5a and Aβ25-35 reversed the depression of LTP by Aβ25-35 alone in a dose-dependent manner. After i.c.v. co-injection of 2 pmol Wnt-5a with 10nmol AP25-35, the LTP post HFS had no significance compared with Aβ25-35 alone. However, i.c.v. co-injection of 10 pmol (P<0.05) or 50 pmol (P<0.01) with 10nmol Aβ25-35 is sigficantly higher than Aβ25-35; Separate application or co-application of Wnt-5a and Aβ25-35 showed no significant effect (P>0.05) on paired pulse-evoked facilitation. Pretreatment with 100 pmol sFRP obviously attenuated the protection of Wnt-5a against Aβ25-35-induced LTP impairment (P<0.05).
     (2) Under morris water maze, compared with the control group, AD group significantly increased (P<0.01) the mean escape latency, path length and reduced the number (P<0.01) that the rats crossed over the position where the platform located, percentage of time (P<0.05) spent in the target quadrant area relative to the total time in the pool; Compared with the control group, there was no significant change (P>0.05) in the mean escape latency, path length, the percentage of time spent in the target quadrant area relative to the total time and the number of crossing over the target position in Wnt-5a alone group. Compared with the AD group, co-application of 2 pmol Wnt-5a and Aβ25-35 had no significance (P>0.05) in mean escape latency, path length, the percentage of time spent in the target quadrant area relative to the total time and the number of crossing over the target position. I.c.v. co-injection of 10 pmol or 50 pmol Wnt-5a with 10nmol Aβ25-35 significantly reduced (P<0.05) the mean escape latency, path length and increased (P<0.05) the percentage of time spent in the target quadrant area relative to the total time, the number of crossing over the target position. The improved level of the high dose is better than the low one (P<0.05).
     (3) According to immunofluorescence and Western blot analysis, PSD-95 protein expression in the CA1 region of the rat hippocampus was significantly decreased in Aβ25-35 group (P<0.01, compared with control group). I.c.v. co-injection of 10 pmol (P<0.05) or 50 pmol (P<0.01) Wnt-5a with 10nmol Aβ25-35 signifigant reversed decresed PSD-95 protein level triggerd by Aβ25-35. Moreover, the increased level of the high dose is more than the low one (P<0.05). On the other hand, there is no difference between Wnt-5a alone group and control group (P>0.05).
     Conclusion:
     (1) Application of Wnt-5a ligands activate the Wnt signaling pathway to occlude the Aβ25-35 induced LTP depression;
     (2) Wnt-5a ligands improve the impairment of spatial learning and memory of AD model rats with intracerebroventricular (i.c.v) injection of Aβ25-35;
     (3) It is clarified that Wnt-5a ligands play protective roles in the synaptic plasticity and cognitive function of AD through the postsynaptic mechanism especially the moducation of PSD-95 protein.
引文
[1]Aliev G, Smith MA, Nunomura A, et al. The Role of Oxidative Stress in the Pathophysiology of Cerebrovascular Lesions in Alzheimer's Disease [J]. Brain Pathol,2002, 12:21-35.
    [2]Allison DW, Chervin AS, Gelfand VI, et al. Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons:maintenance of core components independent of actin filaments and microtubules[J]. J Neurosci,2000,20(12):4545-4554.
    [3]Almeida CG, Tampellini D, Takahashi RH, et al. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses[J]. Neurobiol Dis,2005,20(2): 187-198.
    [4]Almeida OF. Soluble beta-amyloid 1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses[J]. J Neurosci,2005,25:11061-11070.
    [5]Alvarez AR, Godoy JA, Inestrosa NC, et al. Wnt-3a overcomes β-amyloid toxicity in rat hippocampal neurons [J]. Experimental Cell Research,2004,297:186-196.
    [6]Anderton BH, Dayanandan R, Killick R, Lovestone S. Does dysregulation of the Notch and wingless/Wnt pathways underlie the pathogenesis of Alzheimer's disease? [J]. Mol Med Today,2000,6:54-59.
    [7]Andres C. Molecular genetics and animal models in autistic disorder[J]. Brain Res Bull,2002,57:109-119.
    [8]Ataman B, Ashley J, Budnik V, et al. Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling[J]. Neuron,2008,57: 705-718.
    [9]Ballotore C, M-Y Lee V, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders [J]. Nature Reviews Neuroscience,2007,8:663-72.
    [10]Barth AL, Malenka RC. NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses [J]. Nat Neurosci,2001,4(3):235-6.
    [11]Beaumont V, Thompson SA, et al. Evidence for an enhancement of excitatory transmission in adult CNS by Wnt signaling pathway modulation[J]. Mol Cell Neurosci,2007, 35:513-524.
    [12]Bliss TV, Collingridge GL. A synaptic mdoel of memoy:long term potentiation in Hippocampus [J]. Nature,1993,361:31-39.
    [13]Boeckers TM. The postsynaptic density [J]. Cell Tissue Res,2006,326(2):409-422.
    [14]Bourne JN, Harris KM. Balancing Structure and Function at Hippocampal Dendritic Spines [J]. Annu Rev Neurosci,2008,31:47-67.
    [15]Bresler T, Shapira M, Boeckers T, et al. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly[J]. J Neurosci.2004, 24:1507-1520.
    [16]Butterfield AD, Abdul HM, Opii W, et al. Pinl in Alzheimer's disease [J]. J Neurochem,2006,98:1697-706.
    [17]Bush AI. The metallobiology of Alzheimer's disease[J]. Trends Neurosci,2003,26: 207-14.
    [18]Budnik V, Salinas PC. Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol[J].2011,21(1):151-9.
    [19]Caraci F, Busceti C, Caricasole A. The Wnt antagonist, Dickkopf-1, as a target for the treatment of neurodegenerative disorders [J]. Neurochem Res,2008,33(12):2401-6.
    [20]Carmignoto G,Vicini S.Activity-dependent decrease in NMDA receptor responses during development of the visual cortex[J].Science,1992,258(5084):1007-11.
    [21]Caricasole A, Bakker A, Copani A, et al. Two sides of the same coin:Wnt signaling in neurodegeneration and neuro-oncology[J]. Biosci Rep,2005,25(5-6):309-27.
    [22]Caricasole A,Caruso A,et al.The Wnt pathway, cell-cycle activation and (3-amyloid: novel therapeutic strategies in Alzheimer's disease? [J]. TRENDS in Pharmacological Sciences,2003,5:233-238.
    [23]Carro E, Torres-Aleman I. The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer's disease[J]. Eur J Pharmacol,2004,490:127-33
    [24]Cerpa W, Dinamarca MC, Inestrosa NC. Structure-function implications in Alzheimer's disease:effect of Abeta oligomers at central synapses[J]. Curr Alzheimer Res, 2008,5:233-243.
    [25]Cerpa W, Farias GG, Godoy JA, Inestrosa NC. Wnt-5a occludes Aβ oligomer-induced depression of glutamatergic transmission in hippocampal neurons[J]. Molecular Neurodegeneration,2010,5:3.
    [26]Chavis P, Westbrook G. Integrins mediate functional pre-and postsynaptic maturation at a hippocampal synapse[J]. Nature,2001,411(6835):317-21.
    [27]Chen JY, Park CS, Tang SJ. Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation [J]. J Biol Chem,2006,281:11910-11916.
    [28]Chen L, Chetkovich DM, Petralia RS, et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms[J]. Nature,2000,408:936-943.
    [29]Chen QS, Kagan BL, Hirakura Y, Xie CW. Impairment of hippocampal long-term potentiation by Alzheimer beta peptides[J]. J Neurosci Res,2000,60:65-72.
    [30]Chen S, Guttridge DC, Wang CY et al.Wnt-1 signaling inhibits apoptosis by activating β-catenin/T cell factor-mediated transcription[J].J Cell Biol,2001,152:87-96.
    [31]Chen SY,Wright JW, Barnes CD.The neurochemical and behavioral effects of β-amyloid peptide(25-35) [J]. Brain Research,1996,720:54-60.
    [32]Chili B, Engelman H, and Scheiffele P. Control of excitatory and inhibitory synapse formation by neuroligins[J]. Science,2005,307:1324-1328.
    [33]Choi DW. Excitotoxic cell death[J]. J Neurobiol.1992,23:1261-1276.
    [34]Chromy BA, Lambert MP, Viola KL, et al. Self-assembly of Aβ1-42 into globular neurotoxins [J]. Biochemistry,2003,42:12749-12760.
    [35]Clevers H. Wnt/beta-catenin signaling in development and disease[J]. Cell,2006, 127:469-480.
    [36]Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synaptic plasticity [J]. Nature Rev Neurosei,2004,5:952-962.
    [37]Cotter D, Kerwin R, al-Sarraji S, et al. Abnormalities of Wnt signalling in schizophrenia evidence for neurodevelopmental abnormality [J]. Neuroreport,1998,9: 1379-1383.
    [38]Craven SE, Bredt DS. PDZ proteins organize synaptic signaling pathways[J]. Cell, 1998,93(4):495-498
    [39]Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits:diversity, develop-ment and disease[J]. Curr Opin Neurobiol,2001,11(3):327-35.
    [40]De Felice FG, Velasco PT, Lambert MP et al.Abeta oligomers induce neuronal Oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine [J]. Biol Chem,2007,282(15):11590-11601.
    [41]De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer's disease[J]. Brain Res Rev,2000,33:1-12.
    [42]De Ferrari GV, Chaco'n MA, et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils[J]. Molecular Psychiatry,2003,8:195-208.
    [43]De Ferrari GV, Papassotiropoulos A, Zhao A et al.Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease[J].Proc Nat Acad Sci,2007,104:9434-9439.
    [44]DeKosky ST, Scheff SW, Styren SD. Structural correlates of cognition in dementia: quantification and assessment of synapse change[J]. Neurodegeneration,1996,5:417-421
    [45]Dinamarca MC, Cerpa W, Nibaldo C, et al. β-Amyloid Oligomers Affect the Structure and Function of the Postsynaptic Region:Role of the Wnt Signaling Pathway [J]. Neurodegenerative Dis,2008,5:149-152.
    [46]Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels [J]. Pharmacol Rev,1999,51(1):7-61.
    [47]Dong YN, Waxman EA, Lynch DR. Interactions of postsynaptic density-95 and the NMDA receptor 2 subunit control calpain-mediated cleavage of the NMDA receptor[J]. J Neurosci,2004,24:11035-11045.
    [48]Doraiswamy PM. Non-Cholinergic Strategies for Treating and Preventing Alzheimer's [J]. Disease CNS Drugs,2002,16:811-24.
    [49]Drouet B, Pincon-Raymond M, Chambaz J, Pillot T. Molecular basis of Alzheimer's disease [J]. Cell Mol Life Sci,2000,57(5):705-715.
    [50]Du SJ, Purcell SM, Christian JL,et al. Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos[J]. Mol Cell Biol,1995,15:2625-2634.
    [51]Duchen MR Mitochondria in health and disease:Perspectives on a new mitochondrial biology[J]. Mol Aspects Med,2004,25:365-451.
    [52]El-Husseini AE, Schnell BE, Chetkovich DM, et al. PSD-95 involvement in maturation of excitatory synapses [J]. Science,2000,290(5495):1364-1368.
    [53]Ehrlich I, Malinow R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 2004,24(4):916-27.
    [54]Elgersma Y, Silva A. Molecular mechanisms of synaptic plasticity and memory[J]. Curr Opin Neurobiol,1999,9:209-213.
    [55]Farias GG, Alfaro IE, Cerpa W. Wnt-5a/JNK Signaling Promotes the Clustering of PSD-95 in Hippocampal neurons[J]. J Biol Chem,2009,284:15857-15866.
    [56]Ferreira A, Chin LS, Li L, et al. Distinct roles of synapsin Ⅰ and synapsin Ⅱ during neuronal development [J]. Mol Med,1998,4(1):22-28.
    [57]Ferrari GD, Chaco'n MA, Inestrosa NC et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils[J]. Molecular Psychiatry,2003,8:195-208.
    [58]Foster TC. Involvement of hippocampal synaptic plasticity in agerelated memory decline[J]. Brain Res Rev,1999,30(30):236-49.
    [59]Freir DB, Costello DA, Herron CE.Aβ[25-35]-induced depression of long-term potentiation in area CA1 in vivo and in vitro is attenuated by verapamil[J].J Neurophysiol, 2003,89:3061-3069.
    [60]Frick KM, Baxter MG, Markowska AL, et al. Agerelated spatial reference and working memory deficits assessed in the water maze[J]. Neurobiol Aging,1995,16(2): 149-60.
    [61]Fuentealba RA, Farias G, Scheu J and Bronfman M. Signal transduction during amyloid-β-peptide neurotoxicity role in Alzheimer disease[J]. Brain Research Reviews,2004, 47:275-289.
    [62]Gardoni F, Schrama LH, Kamal A, et al. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor[J]. J Neurosci,2001,21: 1501-1509.
    [63]Gogolla, Galimberti I, Deguchi Y, et al.Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus [J]. Neuron,2009,62:510-525.
    [64]Gordon MD, Nusse R. Wnt signaling:multiple pathways, multiple receptors, and multiple transcription factors[J]. J Biol Chem,2006,281:22429-22433.
    [65]Greenberg BD, Savage MJ, Howland DS.APP transgenesis:Approaches toward the development of animal models for Alzheimer disease neuropathology[J]. Neurobiol Aging, 1996,17:153-171.
    [66]Greene JG and Greenamyre JT. Bioenergetics and gluamate excitotoxicity[J]. Prog Neurobiol,1996,48:613-634.
    [67]Guo F, Jing W, Zhang JM, Qi JS. [Gly14]-Humanin Rescues Long-Term Potentiation From Amyloid β Protein-Induced Impairment in the Rat Hippocampal CA1 Region In Vivo[J]. Synapse,2010,64:83-91.
    [68]Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration:lessons from the Alzheimer's amyloid beta-peptide[J]. Nat Rev Mol Cell Biol,2007,8:101-112.
    [69]Hall AC, Lucas FR and Salinas PC. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling[J]. Cell,2000,100:525-535.
    [70]Hans Clevers. Wnt/beta-catenin signaling in development and disease [J]. Cell, 2006,127(3):469-80.
    [71]Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics [J]. Science,2002,297(5580):353-35661.
    [72]Harris LW, Sharp T, Gartlon J, et al. Long-term behavioural,molecular and morphological effects of neonatal NMDA receptor antagonism[J].Eur J Neurosci,2003,18(6): 1706-10.
    [73]Hartmann T. Role of amyloid precursor protein, amyloid-beta and gamma-secretase in cholesterol maintenance [J]. Neurodegener Dis,2006,3:305-11.
    [74]Harwood AJ. Lithium and bipolar mood disorder:the inositoldepletion hypothesis revisited [J]. Mol Psychiatry,2005,10:117-126.
    [75]Haydon PG. GLIA:listening and talking to the synapse[J]. Nat Rev Neurosci,2001, 2(3):185-93.
    [76]Hemming ML, Selkoe DJ. Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor[J]. Biol Chem,2005, 280:37644-50.
    [77]Holscher C, Gengler S, Mallot HA et al.Soluble beta-amyloid [25-35] reversibly impairs hippocampal synaptic plasticity and spatial learning[J].European Journal of Pharmacology,2007,561:85-90.
    [78]Holscher C. Possible causes of Alzheimer's disease:amyloid fragments,free radicals, and calcium homeostasis[J]. Neurobiol Dis,1998,5:129-141.
    [79]Hyrc K, Handran SD, Rothman SM, Goldberg MP. Ionized intracellular calcium concentration predicts excitotoxic neuronal death:Observations with low-affinity fluorescent calcium indicators[J]. J Neurosci,1997,17:6669-6677.
    [80]Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? [J]. Lancet Neurol,2002,1:383-386.
    [81]Inestrosa N, De Ferrari GV, Chacon MA.Wnt signaling involvement in β-amyloid-dependent neurodegeneration [J]. Neurochem Int,2002,41:341-344.
    [82]Inestrosa NC, Toledo EM. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease[J]. Molecular Neurodegeneration,2008,3:9.
    [83]Iqbal K,Grundke-Iqbal I. Alzheimer neurofibrillary degeneration:significance, etiopathogenesis, therapeutics and prevention[J]. Cell Mol Med,2008,12:38-55.
    [84]Itoh K, Lisovsky M,Sokol SY, et al.Reorganization of actin cytoskeleton by FRIED, a Frizzled-8 associated protein tyrosine phosphatase[J].Dev Dyn,2005,234:90-101.
    [85]Iwamoto T, Yamada Y, Hori K,et al.Differential modulation of NR1-NR2A and NR1-NR2B subtypes of NMD A receptor by PDZ domain-containing proteins. J Neurochem, 2004,89:100-108.
    [86]Jaeobsen JS, Reinhart PH, Bloom FE. Early onset behavioral and synaptic deficits in a mouse model of Alzheimer'disease[J]. PNAS,2006,103(13):5161-5166.
    [87]Jho EH, Zhang T, Costantini F et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway[J].Mol Cell Biol,2002, 22:1172-1183.
    [88]Jing L, Lefebvre JL, Granato M. Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor[J]. Neuron,2009,61:721-733
    [89]Kennedy MB. The postsynaptic density at glutamatergic synapses[J]. Trends Neurosci,1997,20(6):264-268.
    [90]Kennedy MB. Signal-processing machines at the postsynaptic density[J]. Science, 2000,290(5492):750-754.
    [91]Klauck TM, Scott JD. The postsynaptic density:a subcellular anchor for signal transduction enzymes [J]. Cell Signal,1995,7(8):747-757.
    [92]Klein WL, Krafft GA, Finch CE. Targeting small Abeta oligomers:the solution to an Alzheimer's disease conundrum? [J]. Trends Neurosci,2001,24:219-224.
    [93]Kohn AD and Moon RT. Wnt and calcium signaling:β-Catenin-independent pathways[J].Cell Calcium,2005,38:439-446.
    [94]Korkut and V Budnik. WNTs tune up the neuromuscular junction[J].Nat Rev Neurosci,2009,10:627-634.
    [95]Kozlovsky N, Belmaker RH, Agam G. GSK-3 and the neurodevelopmental hypothesis of schizophrenia[J]. Eur Neuropsychopharmacol,2002,12 (1):13-25.
    [96]Kuhl M.The WNT/calcium pathway:biochemical mediators, tools and future requirements [J]. Front Biosci,2004,9:967-974.
    [97]Lacor PN, et al. Synaptic targeting by Alzheimer's-related amyloid β-oligomers[J]. J Neurosci,2004,24:10191-10200.
    [98]Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins[J]. Proc Natl Acad Sci,1998, 95:6448-6453.
    [99]Lauren J, Gimbel DA, Nygaard HB, et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid beta oligomers[J]. Nature,2009,457: 1128-1132.
    [100]Lee HG, Zhu X, O'Neill MJ, et al. The role of metabotropic glutamate receptors in Alzheimer's disease[J]. Acta Neurobiol Exp(Wars),2004,64(1):89-98.
    [101]Lesne S, Koh MT, Kotilinek L.A specific amyloid-beta protein assembly in the brain impairs memory[J]. Nature,2006,440:352-357.
    [102]Levesque G, Yu G, George-Hyslop St, et al.Presenilins interact with armadillo proteins including neural-specific plakophilin-related protein and β-catenin[J]. J Neurochem, 1999,72:999-1008.
    [103]Li B, Otsu Y, Murphy TH, Raymond LA. Developmental decrease in NMDA receptor desensitization associated with shift to synapse and interaction with postsynaptic density-95[J]. J Neurosci.2003,23:11244-11254.
    [104]Li H, Peng X and Cooper RL, Development of Drosophila larval neuromuscular junctions:maintaining synaptic strength[J]. Neuroscience,2002,115:505-513.
    [105]Liang H, Chen Q, Coles AH, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue[J]. Cancer Cell,2003,4:349-360.
    [106]Lipton SA. Pathologically activated therapeutics for neuroprotection[J]. Nat Rev Neurosci,2007,8:803-808.
    [107]Lipton SA.Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer's disease and other neurologic disorders[J]. J Alzheimers Dis,2004,6 (6Suppl): S61-74.
    [108]Liu L,Wong TP,Pozza MF, et al.Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity[J].Science,2004,304(5673):1021-4.
    [109]Logan CY, Nusse R.The Wnt signaling pathway in development and disease[J]. Annu Rev Cell Dev Biol,2004,20:781-810. [110] Love S,Siew LK,Dawbarn D,et al.Premorbid effects of APOE on synaptic proteins in human temporal neocortex[J]. Neurobiol Aging,2006,27(6):797-803
    [111]Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction [J]. Am J Physiol Cell Physiol,2001,280:719-41.
    [112]Lucas FR, Salinas PC. WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons [J]. Dev Biol,1997,192:31-44.
    [113]Lucas FR, Goold RG, Gordon-Weeks PR, Salinas PC. Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium [J].J Cell Sci,1998,111 (10):1351-1361.
    [114]MacDermott AB, Mayer ML, Westbrook GL, et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones[J]. Nature,1986, 321(6069):519-22.
    [115]Maren S and Baudry M. Properties and mechanisms of long-term synaptic plasticity in the mammalian brain:relationships to learning and memory [J]. Neurobiol Learn Mem,1995,63:1-18.
    [116]Masliah E, Mallory M, Alford M, et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease[J]. Neurology,2001,56:127-129.
    [117]Matsuzaki M, Honkura N. Structural basis of long-term potentiation in single dendritic spines [J]. Nature,2004,429:761-766.
    [118]Mattson MP. Secreted forms of β-amyloid precursor protein modulate dendritic outgrowth and calcium responses to glutamatein cultured embryonic hippocampal neurons[J]. Neurobiology,2004,25:439-50.
    [119]Maurice T, Lockhart BP, Privat A. Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction[J]. Brain Res,1996, 706:181-193.
    [120]Miller JR. The Wnts[J]. Genome Biol,2003,3 (3001):1-15.
    [121]Migaud M, Chatlesworth P, Dempster M, el al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein[J]. Nature,1998, 396(6710):433-439
    [122]Mikulecka A., Mares P. NMDA receptor antagonists impair motor performance in immature rats[J]. Psychopharmacology,2002,162(4):364-72.
    [123]Miyaoka T, Seno T, Ishino H. Increased expression of Wnt-1 in schizophrenic brains [J]. Schizophr Res,1999,38:1-6.
    [124]Moon RT, Bowerman B, Boutros M, et al, The promise and perils of Wnt signaling through β-Catenin[J]. Science,2002,296:1644-1646.
    [125]Moon RT, Kohn AD, De Ferrari GV, et al. WNT and β-catenin signalling:diseases and therapies[J]. Nat Rev Genet,2004,5:691~701.
    [126]Monji A, Utsumi H, Ueda T, et al.Amyloid-beta-protein (A beta) (25-35)-associated free radical generation is strongly influenced by the aggregational state of the peptides[J]. Life Sci,2002,70(7):833-4.
    [127]Moore AH, O'Banion MK. Neuroinflammation and anti-inflammatory therapy for Alzheimer's disease [J]. Adv Drug Deliv Rev,2002,54:1627-56.
    [128]Morin PJ. beta-catenin signaling and cancer[J]. Bioessays,1999,21:1021-1030.
    [129]Mudher M,Lovestone S. Alzheimer's disease-do tauists and Baptists finally shake hands [J]. Trends Neurosci,2002,25:22-6.
    [130]Nagerl UV, Eberhorn N, Cambridge SB, et al. Bidirectional activity-dependent morphological plasticity in hippocampal neurons [J]. Neuron,2004,44:759-767.
    [131]Nelson WJ, Nusse R.Convergence of Wnt, beta-catenin, and cadherin pathways[J]. Science,2004,303:1483-1487.
    [132]Neve RL, McPhie DL. The cell cycle as therapeutic target for Alzheimer's disease [J]. Pharmacol Ther,2006,111:99-113.
    [133]Nibaldo C, Inestrosa and Enrique MT. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease[J]. Molecular Neurodegeneration,2008,3:9.
    [134]Nicholson DA, Yoshida R, Berry RW, et al. Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments[J].J Neurosci,2004,24(35):7648-53.
    [135]Nicholls DG. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures[J]. Curr Mol Med,2004,4:149-177.
    [136]Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators[J]. Oncogene,2006,25:7469-7481.
    [137]Niethammer M, Kim E, Sheng M. Interaction between the C terminus of NMD A receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases[J]. J Neurosci,1996,16:2157-2163.
    [138]Nikolaev A, Lavigne MT.APP binds DR6 to trigger axon pruning and neuron death via distinct caspases [J]. Nature,2009,457:981-989.
    [139]Nimmrich V, Ebert U. Is Alzheimer's disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid [J]. Rev Neurosci,2009,20:1-12.
    [140]Nunes PV, Forlenza OV, Gattaz WF. Lithium and risk for Alzheimer's disease in elderly patients with bipolar disorder[J]. Br J Psychiatry,2007,190:359-360.
    [141]Oakley H, Cole SL, Logan S, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration,and neuron loss in transgenic mice with five familial Alzheimer's disease mutations:potential factors in amyloid plaque formation[J]. J Neurosci,2006,26(40): 10129-10140.
    [142]Ondrejcak T, Klyubin I, Cullen WK, et al. Alzheimer's disease amyloid beta-protein and synaptic function, Neuromolecular Med,2010,12:13-26.
    [143]Packard M, Koo ES, Gorczyca M, et al.2002. The Drosophila Wnt, wingless, provides an essential signal for pre-and postsynaptic differentiation [J]. Cell 111(3):319-330.
    [144]Packard M, Mathew D, Budnik V. Wnts and TGF beta in synaptogenesis:old friends signalling at new places[J].Nat Rev Neurosci,2003,4:113-120.
    [145]Pakaski M, Kalman J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer's disease[J]. Neurochem Int,2008,53:103-11.
    [146]Papadia S and Hardingham GE. The dichotomy of NMDA receptor signaling[J]. Neuroscientist,2007,13:572-579.
    [147]Parsons CG, Stoffler A, Danysz W. Memantine:a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system-too little activation is bad, too much is even worse[J]. Neuropharmacology,2007,53:699-723.
    [148]Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates [J]. San Diego: Academic Press,2004,5:7-12.
    [149]Pike CJ, Walencewicz-Wasserman AJ,Cotman CW, et al. Structure-activity analyses of beta-amyloid peptides:contributions of the beta 25-35 region to aggregation and neurotoxicity[J]. Neurochem,1995,64:253-265.
    [150]Pivovarova NB, et al. Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons[J].J Neurosci,2004,24: 5611-5622.
    [151]Polakis P. The oncogenic activation of beta-catenin[J]. Curr Opin Genet Dev,1999, 9:15-21.
    [152]Puglielli L, Tanzi RE, Kovacs DM. Alzheimer's disease:the cholesterol connection [J]. Nat Neurosci,2003,6:345-51.
    [153]Purro SA, Ciani L, Salinas PC, et al. Wnt regulates axon behavior through changes in microtubule growth directionality:a new role for adenomatous polyposis coli[J]. J Neurosci 2008,28:8644-8654.
    [154]Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitorsand memantine for treating dementia:evidence review for a clinical practice guideline[J]. Ann Intern Med,2008,148:379-397.
    [155]Reya and H Clevers, Wnt signaling in stem cells and cancer[J], Nature,2005,434: 843-850.
    [156]Roselli F, Tirard M, Almeida OFX, et al. Soluble β-Amyloidl-40 Induces NMDA-Dependent Degradation of Postsynaptic Density-95 at Glutamatergic Synapses [J]. J Neuroscience,2005,25(48):11061-11070.
    [157]Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development [J]. Nat Neurosci,2005,8:34-42.
    [158]Rowan MJ, Klyubin I, Wang Q, Anwyl R. Synaptic plasticity disruption by amyloid beta protein:modulation by potential Alzheimer's disease modifying therapies [J]. Biochem Soc Trans,2005,33:563-567.
    [159]Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium[J]. Biochem Biophys Res Commun,2001,280:720-725.
    [160]Sanes JR and Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic apparatus[J]. Nat. Rev. Neurosci.2001,2:791-805.
    [161]Sans N, Prybylowski K, Petralia RS, et al. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex[J]. Nat Cell Biol,2003, 5:520-530.
    [162]Sattler R, Xiong Z, Lu WY et al. Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity[J]. J Neurosci,2000,20:22-33.
    [163]Scheff SW, Price DA, Sparks DL. Quantitative assessment of possible age-related change in synaptic numbers in the human frontal cortex[J]. Neurobiol Aging,2001,22: 355-365.
    [164]Scheff SW, Price DA. Synaptic density in the inner molecular layer of the hippocampal dentate gyrus in Alzheimer disease. J Neuropathol Exp Neurol 1998; 57: 1146-1153.
    [165]Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer's disease [J]. Neural Transm,2006,113:1625-44.
    [166]Selkoe DJ. Alzheimer disease is a synaptic failure [J]. Science,2002,298(5594): 789-791.
    [167]Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior [J]. Behav Brain Res,2008,192:106-113.
    [168]Shankar GM, Li S, Selkoe DJ et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory [J]. Nat Med,2008,14: 837-842.
    [169]Sheng M. The postsynaptic NMDA-receptor-PSD-95 signaling complex in excitatory synapses of the brain [J]. J Cell Sci,2001,114:1251-1252.
    [170]Smith MA, Rottkamp CA, Nunomura A, et al.Oxidative stress in Alzheimer's disease[J].Biochimica Biophysica Acta,2000,1502:139-44.
    [171]Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-β[J].Nat Neurosci,2005,8:1051-1058.
    [172]Soriano FX, et al. Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand[J]. J Neurosci,2008,28:10696-10710.
    [173]Speese SD and Budnik V.Wnts:up-and-coming at the synapse[J].Trends Neurosci 30 (2007),268-275.
    [174]Starkov AA, Chinopoulos C, FiskumG. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury[J]. Cell Calcium,2004,36:257-264.
    [175]Steward O, and Falk PM. Protein-synthetic machinery at postsynaptic sites during synaptogenesis:a quantitative study of the association between polyribosomes and developing synapses[J]. J Neurosci,1986,6:412-423.
    [176]Strutt D.Frizzled signalling and cell polarisation in Drosophila and vertebrates [J]. Development,2003,130:4501-4513.
    [177]Takashima A, Murayama M, Wolozin B. Presenilin 1 associates with glycogen synthase kinase-3h and its substrate tau[J].Proc Natl Acad Sci,1998,95:9637-9641.
    [178]Tanzi RE, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective[J]. Cell,2005,120(4):545-555.
    [179]Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease:synapse loss is the major correlate of cognitive impairment. Ann Neurol, 1991,30:572-580.
    [180]Tohda C, Matsumoto N, Komatsu K,et al. Aβ25-35 induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, a metabolite of protopanaxadiol-type saponins [J]. Neuropsychopharmacology,2004,29:860-8.
    [181]de Toledo-Morrell L, Geinisman Y, Morrell F. Age-dependent alterations in hippocampal synaptic plasticity:relation to memory disorders[J].Neurobiol Aging,1988, 9(5/6):581-90.
    [182]de La Torre JC. Vascular basis of Alzheimer's pathology [J]. Ann N Y Acad Sci, 2002,977:196-215.
    [183]Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease[J]. Int J Biochem Cell Biol,2005,37:289-305.
    [184]Tu JC, Xiao B, Naisbitt S, et al.Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins[J]. Neuron,1999,23: 583-592.
    [185]Varela-Nallar L, Alfaro IE, Inestrosa NC, et al.Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses[J]. PNAS, 2010,107:21164-21169.
    [186]Veeman MT, Axelrod JD, Moon RT. Functions and mechanisms of beta-catenin-independent Wnt signaling [J]. Dev Cell,2003,5:367-37
    [187]de Vrij FM, Fischer DF, van Leeuwen FW, Hol EM. Protein quality control in Alzheimer's disease by the ubiquitin proteasome system[J]. Prog Neurobiol,2004,74: 249-270.
    [188]Wada A, Yokoo H, Yanagita T, Kobayashi H. Lithium:potential therapeutics against acute brain injuries and chronic neurodegenerative diseases[J]. J Pharmacol Sci,2005, 99:307-321.
    [189]Walsh DM, Klyubin I, Fadeeva JV. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo[J]. Nature,2002,416: 535-539
    [190]Wang HW, Pasternak JF, Kuo H, et al. Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long term depression in rat dentate gyrus[J]. Brain Res, 2002,924:133-40.
    [191]Wang J, et al. Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53[J]. Oncogene,2000,19:1843-1848.
    [192]Walton HS, Dodd PR. Glutamate-glutamine cycling in Alzheimer's disease[J]. Neurochem Int,2007,50:1052-66.
    [193]Washbourne P, Bennett JE and McAllister AK. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nat Neurosci,2002,5:751-759.
    [194]Wassink TH, Piven J, Swiderski E, Pietila J et al. Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet,2001,105:406-413.
    [195]Wellington CL. Cholesterol at the crossroads:Alzheimer's disease and lipid metabolism [J]. Clin Genet,2004,66:1-16.
    [196]Wengenack TM,Curran GL,Poduslo JF.Targeting Alzheimer amyloid plaques in vivo[J]. Nat Biotech,2000,18(8):868-872.
    [197]West MJ.Stereological methods for estimating the total number of neurons a synapses:issues of precision and bias[J]. Trends Neurosci,1999,22:51-61
    [198]Williams JM, Guevremont D, Kennard JT, et al. Long-term regulation of N-methyl-D-aspartate receptor subunits and associated synaptic proteins following hippocampal synaptic plasticity[J]. Neurosci,2003,118:1003-13.
    [199]Wu Y, Watanbae M, Ito I, et al. Target cell-specific left-right a symmetry of NMDA receptor content in Schaffer collateral synapse in epsilon 1/N1R2A knock-Out mice [J]. Neuorsci,2005,25:9213-9226.
    [200]Xu X, Zhang Z. Effects of puerarin on synaptic structural modification in hippocampus of ovariectomized mice[J]. Planta Med,2007,73(10):1047-1053..
    [201]Yan Z, Feng J. Alzheimer's disease:interactions between cholinergic functions and β-amyloid[J]. Curr Alzheimer Res,2004,1:241-8.
    [202]Ye L, Qiao JT. Suppressive action produced by beta-amyloid peptide fragment 31-35 on long-term potentiation in rat hippocampus is N-methyl-D-aspartate receptor-independent:it's offset by huperzine A[J]. Neurosci Lett,1999,275:187-190.
    [203]Yu G, Chen F, Fraser PE. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin[J]. J Biol Chem,1998,273: 16470-16475.
    [204]Zajaczkowski W, Frankiewicz T, Parsons CG and Danys Z. Uncompetitive NMDA receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and LTP[J]. Neuropharmacology,1997,36:961-71.
    [205]Zarros AC, Kalopita KS, Tsakiris S. Serotonergic impairment and aggressive behavior in Alzheimer's disease[J]. Acta Neurobiol Exp,2005,65:277-86.
    [206]Zhang Y, McLaughlin R, Goodyear C, LeBlanc A. Selective cytotoxicity of intracellular amyloid-b peptide 1-42 through p53 and Bax in cultured primary human neurons [J]. Cell Biol,2002,156:519-29.
    [207]Zhang JF, Qi JS, Qiao JT. Protein kinase C mediates amyloid beta-protein fragment 31-35-induced suppression of hippocampal late-phase long-term potentiation in vivo[J]. Neurobiol Learn Mem,2009,91:226-234.
    [208]Zhang Z, Hartmann H, Yankner BA, et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis[J].Nature,1998,395:698-702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700