ATP synthase α抑制Aβ神经毒性损伤的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer's disease, AD)是一种脑神经元进行性变性的痴呆性疾病。AD的神经病理标志是脑内分布有大量的β-淀粉样蛋白(β-amyloid,Aβ)沉积形成老年斑(senile plaque, SP),神经元内过度磷酸化tau蛋白聚集形成神经原纤维缠结(neurofibrillary tangle),神经元的营养障碍(Neuronal dystrophy)以及神经元大量缺失,突触的损害和丢失。但其具体的机制还不是很清楚,目前对于AD的发生机制提出了多种假设,主要包括p淀粉样蛋白级联假说、tau蛋白过度磷酸化假说、胆碱能假说、基因假说、金属离子假说和突触功能障碍假说等。十几年前Selkoe和Hardy及Higgins等提出Ap假说,该假说解释了AD的发生原因,并且为治疗该疾病提供了依据。而Aβ神经毒性是各种因素引起AD的共同通路,是AD形成和发展的关键因素。因此,近年来AD的治疗研究,大多围绕Ap的形成、聚集以及清除或Ap的神经毒性机制进行。
     Ap的毒性作用依赖于它的聚集,因此,抑制Ap的聚集成为治疗AD的有效的手段,目前用于抑制Aβ聚集的物质有多种,大量的报道证实热休克蛋白可以抑制Aβ聚集。ATP合酶(ATP synthase)α亚单位被认为是一种热休克蛋白,并与Aβ相互作用,因此,也成为研究的热点。
     ATP合酶又称为F0F1-ATPase,是一个酶复合物,负责ADP的氧化磷酸化驱动的ATP合成,该酶是通常定位于线粒体内膜,除了在线粒体外还在细胞的其他部位分布,如细胞浆膜上。细胞浆膜上ATP合酶可作为受体介导血管形成、肿瘤存活的调节和细胞内pH调节。值得注意的是,近期的证据显示FOF1-ATP合酶α亚单位可能在神经退行性疾病中发挥重要的作用,例如:在AD病人前脑皮质F0F1-ATP合酶表达增加;ATP合酶在PD病人标本中含量增加两倍;ATP合酶α亚单位能与Aβ和APP结合,也与神经纤维退行性相关。
     ATP合酶α亚单位可归为热休克蛋白(Heat Shock Protein, HSP)家族,热休克蛋白的主要功能为抑制误折叠的多肽和抑制蛋白质聚集。已发现HSP 70、90,以及小热休克蛋白如HSP22、27均可抑制Ap的聚集和Ap引起的细胞毒性作用。ATP合酶的α亚单位与HSP60的DNA序列具有一定的同源性,尤其在具有分子伴侣功能的两个保守的元件中具有极高的同源性。我们实验室研究发现ATP合酶α亚单位可以降低突变型亨廷顿蛋白(Mutant huntingtin, mhtt)的聚集,减小mhtt对神经细胞的毒性作用。鉴于FoF1-ATP合酶a亚单位有HSP样的功能,及其在AD脑内的异常表达。我们推测ATP合酶a亚单位可能参与抑制Aβ诱导损伤的机制。因此,本课题研究ATP合酶α亚单位是否抑制Aβ诱导的神经毒性损伤,并探讨其机制,
     主要研究内容如下:
     1.构建的构建、鉴定和定位
     构建含有成熟型的ATP合酶a亚单位cDNA的表达载体(pDsRed-N1-ATP syn),PCR和酶切鉴定及DNA测序结果显示载体构建成功,插入序列为ATP syn(M)的DNA片段。Western Blot结果显示有重组蛋白(ATP syn)的阳性条带出现。免疫荧光组化结果显示细胞内有红色荧光蛋白表达。免疫荧光标记结果显示,ATP合酶α亚单位与APP或TOM或者TIM在线粒体内共定位。
     2.ATP合酶α亚单位过表达对Ap介导的细胞损伤和线粒体膜电位降低的调节
     纤维状Ap处理情况下可快速上调ATP合酶α亚单位表达。在SY-SH5Y细胞转染pDsRed-N1-ATP syn,纤维状Aβ处理情况下,MTT检测细胞的活力,结果显示与转染空载体DsRed的对照相比,ATP合酶α亚单位过表达情况下,OD值显著增加,提示,ATP合酶α亚单位过表达可抑制Aβ诱导的细胞损伤。同时,WST检测结果显示,表达DsRed-ATP syn融合蛋白的细胞株具有较高的活力。进一步提示,ATP合酶α亚单位过表达可抑制Aβ介导的神经毒性。罗丹明123荧光染色检测线粒体膜电位,结果显示,过表达ATP syn的细胞株的线粒体膜电位明显高于表达空质粒的细胞,提示ATP合酶α亚单位可抑制Aβ引起的细胞毒性介导的线粒体损害。
     3.ATP合酶α亚单位过表达下调Ap介导的Bax/ Bcl-2比值和活化型caspase-3的增加,可上调Ap诱导的HSP70和ATP合酶p亚单位的表达。
     稳定表达ATP syn的细胞株给予Ap处理24h,Western blot的结果显示,与转染空载体pDsRed-N 1的细胞组相比,转染了pDsRed-N 1-ATP syn DNA的细胞在Aβ处理后,其Bax/Bcl-2比值和活化型caspase-3均明显小于对照组,提示ATP合酶α亚单位可抑制Ap诱导的凋亡相关蛋白表达及caspase-3激活。另外,ATP合酶α亚单位过表达可调节Ap诱导的HSP70和ATP合酶p亚单位的表达。
     4.ATP合酶α亚单位原核表达载体的构建
     对载体中的基因进行PCR鉴定和酶切鉴定结果与理论预测值一致,且DNA测序分析结果进一步证实该表达载体pGEX-4T2-ATP-syn构建的成功。IPTG诱导后,SDS-PAGE电泳结果显示,在79kD处新增一条富聚的条带,与预测的GST-ATP syn融合蛋白大小一致。在优化诱导表达和分离条件的基础上,大量表达并用GST亲和纯化,用凝血酶酶切切去GST,在经过GST亲和纯化获得ATP synα。
     5.ATP可协同ATP合酶α亚单位抑制Aβ的聚集,但不能解聚纤维状Aβ,ATP也不能促进ATP合酶α亚单位解聚纤维状Aβ这种情况。
     原核表达的ATP合酶α亚单位与Aβ共孵育不同时间,ThT法检测Ap的荧光强度,结果显示,Aβ和ATP合酶α亚单位组荧光强度明显降低,提示,ATP合酶α亚单位抑制Aβ的聚集,且在ATP存在的情况下,ATP合酶a亚单位抑制Aβ聚集的作用更明显,提示ATP可协同ATP合酶α亚单位抑制Aβ的聚集。此外,浊度法结果同样提示,ATP合酶α亚单位抑制Ap的聚集。解聚实验结果提示,ATP合酶α亚单位不能解聚纤维状的Aβ,ATP不能促进ATP合酶α亚单位的这种解聚作用。
     6.在AD转基因动物脑内的老年斑内有ATP合酶α亚单位的分布增加,但β亚单位没有增加。
     总之,ATP合酶α亚单位可以抑制Aβ介导的神经毒性损伤,并且抑制Aβ的聚集,但是对纤维状Ap无解聚作用,同时,ATP能增加ATP合酶α亚单位对Aβ聚集抑制。可能对AD的治疗具有重要的指导意义。
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by deposition of extracellular senile plaques formed by accumulatedβ-amyloid proteins (AP), accumulation of intracellular neurofibrillary tangles formed by abnormal phosphorylated tau, neuronal dystrophy and neuronal cell loss. P-amyloid precursor protein (APP), a transmembrane protein, is important for the pathophysiology of AD. Aβpeptide is generated by proteolysis of APP. Most of previous attentions have been focused on the neurotoxicity of Aβ.
     The F0F1-ATP synthase is the enzyme complex responsible for ATP synthesis driven by oxidative phosphorylation. The complex is a molecular motor that normally operates as an ATP synthase in the mitochondrial inner membrane in which ADP phosphorylation is driven by the movement of protons along the electrochemical potential gradient established by respiration. During conditions of reduced membrane, the ability of the F0F1-ATP synthase to reverse by hydrolyzing ATP and generating an electrochemical proton gradient across a membrane to support locomotion or nutrient uptake and act as an ATPase potential has been appreciated for many years.
     Many reports from several laboratories in recent years have concerned the location and function of the ATP synthase complex or its component subunits on the external surface of the plasma membrane of various mammalian cell types, including vascular endothelial cells, hepatocytes, adipocytes and tumor cells. F0F1 components, especialy a subunit, have been identified as cell-surface receptors for multiple ligands in studies of angiogenesis, tumor proliferation/toxicity, lipid/lipoprotein metabolism, immune recognition of tumors, hypertension, the synthesis of ATP, the regulation of intercellular pH, and the cytolytic pathway of tumor cells.
     Currently, mounting evidences indicate ATP synthase a may play a role in neurodegenerative diseases, including AD and PD. For example, increased ATP synthase levels were found in the frontal cortex in PD. ATP synthase has a twofold higher abundance in PD specimens. ATP synthase a can bind the extracellular domain of APP and Aβ. A study showed that Aβ25-35 can induce the expression of ATP synthaseα-chain in primary rat cortical neurons. An interesting research showed that ATP synthase a-chain associated with neurofibrillary degeneration accumulate in the cytosol of Alzheimer degenerating neurons in AD. However, little is understood about the role of ATP synthase a in cell death and neurodegeneration.
     Recent reports have also implicated that the nuclear coded F0F1-ATP synthase a physically interacts with HSP60, which is known to stabilize numerous mitochondrial proteins and HSP90. We studied the role of ATP synthase a in mhtt aggregate formation in SH-SY5Y cells. The studies reporte demonstrated that ATP synthas areduced aggregate formation and neurotoxicity in cultured neuronal cells expressing htt protein with an expanded polyglutamine tract. We previously studied the role of ATP synthase a in mhtt aggregate formation in SH-SY5Y cells. Results demonstrated that ATP synthase a reduced aggregate formation and neurotoxicity in cultured neuronal cells expressing htt protein with an expanded polyglutamine tract.
     These and other results have stimulated the search for pharmacological compounds capable of up-regulatinga subunit of ATP synthase expression, thus such compounds would theoretically have potential as treatments for these and other neurologic disorders. In this light very promising, in this study, we investigated whether ATP synthase a protecting the SH-SY5Y cells from Aβ25-35-induced oxidative cell death, and explored the underlying protective mechanisms. The results were summarized as follows:
     1. In this study, we cloned ATP syn a cDNA, and constructed pDsRed-N 1-ATP syn-αplasmid. After treansfected into SH-SY5Y cells, westen blot detected DsRed-ATP syna bands, and showed DsRed-ATP syn a in mitochrondia marker TOM or TIM labeled subcellular structures.
     2. First, we showed that Aβcould induced an increase of ATP syn-a in SH-SY5Y cell. The overexpression of a subunit of ATP synthase protected beta-amyloid-induced cytotoxicity and regulated the expression of Bcl-2 family proteins and to decrease the activation of caspase-3. The a subunit of ATP synthase ameliorated Aβ25-35-induced cell injury. The overexpression of a subunit of ATP synthase protected SH-SY5Y cells against Aβ25-35-induced cell apoptosis and death showed by MTT assay. WST assay also showed that the overexpression of a subunit of ATP synthase inhibited Aβ25-35-induced cell injury in SH-SY5Y cells transfected with pDsRed-Nl-ATP syn compared that transfected with pDsRed-N 1 DNA.
     3. The overexpression of a subunit of ATP synthase inhibited Aβ25-35-induced dissipation of the mitochondrial membrane potential (MMP) monitored using the Rh123 in SH-SY5Y cells transfected with pDsRed-Nl-ATP syn compared to transfected with pDsRed-N1 DNA. After Aβtreatment, the overexpression ofαsubunit of ATP synthase increased the Bcl-2/Bax ratio in SH-SY5Y cells transfected with pDsRed-N1-ATP compared to the cells pDsRed-N1 DNA detected by Western blot. The overexpression ofαsubunit of ATP synthase also downregulated the caspase-3 activation in SH-SY5Y cells transfected with pDsRed-N1-ATP syn compared to that transfected with pDsRed-N1 DNA.
     4. In this study, we constructed pGEX-4T2-ATP-syn-αplasmid, and expressed and purified ATP-syn-α. With turbid assay and Thioflavin T measurement, experiments showed thatαsubunit of ATP synthase counteract the the aggregation of amyloid Aβin vitro and the anti-aggregation activity ofαsubunit of ATP synthase was enhanced by ATP. These effects are not only for Aβ25-35 but also for Aβ1-40 in vitro
     5. With turbid assay and Thioflavin T measurement, we showed thatαsubunit of ATP synthase did not disassemble existing fibrils Aβ. ATP synthaseαincubated with Aβ25-35 and Aβ1-40 did not disassemble existing fibrils Aβ25-35 and Aβ1-40. Addition of ATP did not induce the function of ATP synthaseαfor Aβdisassembly.
     5. By immunostaining and Thioflavin S staining, we observed that in amyloid plaques of APPswe/PS1ΔE9 AD mice, there are many amyloid plaques with high level ofαsubunit of ATP synthase, but notβsubunit of ATP synthase.
     In summary, we described that amyloid could induced the increase of ATP synthaseαexpression, the increased ATP synthaseαcould inhibited amyloid toxicity. Moreover, ATP synthaseαcould inhibited amyloid aggregation but did not disassemble aggregated amyloid. In addition, ATP synthaseαin amyloid plaques of AD transgenic mice, imply that ATP synthaseαmight try to inhibit amyloid aggregation.
引文
1. Hyman BT:New neuropathological criteria for Alzheimer disease. Arch Neurol 1998,55(9):1174-1176.
    2. Kontush A, Berndt C, Weber W, Akopyan V, Arlt S, Schippling S, Beisiegel U: Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med 2001,30(1):119-128.
    3. Arlt S, Beisiegel U, Kontush A:Lipid peroxidation in neurodegeneration: new insights into Alzheimer's disease. Curr Opin Lipidol 2002, 13(3):289-294.
    4. Kontush A, Donarski N, Beisiegel U:Resistance of human cerebrospinal fluid to in vitro oxidation is directly related to its amyloid-beta content. Free Radic Res 2001,35(5):507-517.
    5. Soto C, Branes MC, Alvarez J, Inestrosa NC:Structural determinants of the Alzheimer's amyloid beta-peptide. JNeurochem 1994,63(4):1191-1198.
    6. Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW:Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures. Eur J Pharmacol 1991,207(4):367-368.
    7. Yankner BA, Duffy LK, Kirschner DA:Neurotrophic and neurotoxic effects of amyloid beta protein:reversal by tachykinin neuropeptides. Science 1990,250(4978):279-282.
    8. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE: beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992, 12(2):376-389.
    9. Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA:Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 1998, 4(7):827-831.
    10. Grace EA, Rabiner CA, Busciglio J:Characterization of neuronal dystrophy induced by fibrillar amyloid beta:implications for Alzheimer's disease. Neuroscience 2002,114(1):265-273.
    11. Camilleri P, Haskins NJ, Howlett DR:beta-Cyclodextrin interacts with the Alzheimer amyloid beta-A4 peptide. FEBS Lett 1994,341(2-3):256-258.
    12. Tomiyama T, Asano S, Suwa Y, Morita T, Kataoka K, Mori H, Endo N: Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem Biophys Res Commun 1994,204(1):76-83.
    13. Podlisny MB, Walsh DM, Amarante P, Ostaszewski BL, Stimson ER, Maggio JE. Teplow DB, Selkoe DJ:Oligomerization of endogenous and synthetic amyloid beta-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry 1998,37(11):3602-3611.
    14. Wegele H, Wandinger SK, Schmid AB, Reinstein J, Buchner J:Substrate transfer from the chaperone Hsp70 to Hsp90. J Mol Biol 2006, 356(3):802-811.
    15. Pratt WB, Toft DO:Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003,228(2):111-133.
    16. Bukau B, Weissman J, Horwich A:Molecular chaperones and protein quality control. Cell 2006,125(3):443-451.
    17. Pearl LH, Prodromou C:Structure and in vivo function of Hsp90. Curr Opin Struct Biol 2000,10(1):46-51.
    18. Pellecchia M, Montgomery DL, Stevens SY, Vander Kooi CW, Feng HP, Gierasch LM, Zuiderweg ER:Structural insights into substrate binding by the molecular chaperone DnaK. Nat Struct Biol 2000,7(4):298-303.
    19. Craig EA, Weissman JS, Horwich AL:Heat shock proteins and molecular chaperones:mediators of protein conformation and turnover in the cell. Cell 1994,78(3):365-372.
    20. Becker J, Craig EA:Heat-shock proteins as molecular chaperones. Eur J Biochem 1994,219(1-2):11-23.
    21. Hartl FU:Molecular chaperones in cellular protein folding. Nature 1996, 381(6583):571-579.
    22. Hartl FU, Hlodan R, Langer T:Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci 1994,19(1):20-25.
    23. Westerheide SD, Morimoto RI:Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 2005, 280(39):33097-33100.
    24. Dul JL, Davis DP, Williamson EK, Stevens FJ, Argon Y:Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains. J Cell Biol 2001, 152(4):705-716.
    25. Diamant S, Ben-Zvi AP, Bukau B, Goloubinoff P:Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem 2000,275(28):21107-21113.
    26. Raman B, Ban T, Sakai M, Pasta SY, Ramakrishna T, Naiki H, Goto Y, Rao Ch M:AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin. Biochem J 2005,392(Pt 3):573-581.
    27. Barral JM, Broadley SA, Schaffar G, Haitl FU:Roles of molecular chaperones in protein misfolding diseases. Semin Cell Dev Biol 2004, 15(1):17-29.
    28. Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Haitl FU: Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A 2000, 97(14):7841-7846.
    29. Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD:Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 2002,99(14):9439-9444.
    30. Bagatell R, Paine-Murrieta GD, Taylor CW, Pulcini EJ, Akinaga S, Benjamin IJ, Whitesell L:Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res 2000,6(8):3312-3318.
    31. Wang HQ, Xu YX, Zhao XY, Zhao H, Yan J, Sun XB, Guo JC, Zhu CQ: Overexpression of F(0)F(1)-ATP synthase alpha suppresses mutant huntingtin aggregation and toxicity in vitro. Biochem Biophys Res Commun 2009,390(4):1294-1298.
    32. Sergeant N, Wattez A, Galvan-valencia M, Ghestem A, David JP, Lemoine J, Sautiere PE, Dachary J, Mazat JP, Michalski JC et al:Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer's disease. Neuroscience 2003,117(2):293-303.
    33. Verdier Y, Huszar E, Penke B, Penke Z, Woffendin G, Scigelova M, Fulop L, Szucs M, Medzihradszky K, Janaky T:Identification of synaptic plasma membrane proteins co-precipitated with fibrillar beta-amyloid peptide. J Neurochem 2005,94(3):617-628.
    34. Schmidt C, Lepsverdize E, Chi SL, Das AM, Pizzo SV, Dityatev A, Schachner M:Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol Psychiatry 2008,13(10):953-969.
    35 Luis AM, Alconada A, Cuezva JM:The alpha regulatory subunit of the mitochondrial F1-ATPase complex is a heat-shock protein. Identification of two highly conserved amino acid sequences among the alpha-subunits and molecular chaperones. J Biol Chem 1990,265(14):7713-7716.
    36. Gillardon F, Skutella T, Uhlmann E, Holsboer F, Zimmermann M, Behl C: Activation of c-Fos contributes to amyloid beta-peptide-induced neurotoxicity. Brain Res 1996,706(1):169-172.
    37. Marcus DL, Strafaci JA, Miller DC, Masia S, Thomas CG, Rosman J, Hussain S, Freedman ML:Quantitative neuronal c-fos and c-jun expression in Alzheimer's disease. Neurobiol Aging 1998,19(5):393-400.
    38. MacGibbon GA, Lawlor PA, Walton M, Sirimanne E, Faull RL, Synek B, Mee E, Connor B, Dragunow M:Expression of Fos, Jun, and Krox family proteins in Alzheimer's disease. Exp Neurol 1997,147(2):316-332.
    39. Veitonmaki N, Cao R, Wu LH, Moser TL, Li B, Pizzo SV, Zhivotovsky B, Cao Y:Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for kl-5-induced antiangiogenesis. Cancer Res 2004, 64(10):3679-3686.
    40. Tupling AR, Bombardier E, Vigna C, Quadrilatero J, Fu M:Interaction between Hsp70 and the SR Ca2+ pump:a potential mechanism for cytoprotection in heart and skeletal muscle. Appl Physiol Nutr Metab 2008, 33(5):1023-1032.
    41. Otani M, Tabata J, Ueki T, Sano K, Inouye S:Heat-shock-induced proteins from Myxococcus xanthus. J Bacteriol 2001,183(21):6282-6287.
    42. Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M: Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics 2004,4(12):3943-3952.
    43. Martin BL, Schrader-Fischer G, Busciglio J, Duke M, Paganetti P, Yankner BA: Intracellular accumulation of beta-amyloid in cells expressing the Swedish mutant amyloid precursor protein. J Biol Chem 1995, 270(45):26727-26730.
    44. Somlo M, Reid RA, Krupa M:An oligomycin-resistant adenosine triphosphatase and its effects on cellular growth, mitochondrial oxidative phosphorylation and respiratory proton translocation in Saccharomyces cerevisiae. Biochem J 1977,162(1):51-59.
    45. Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI:Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2000, 97(11):5750-5755.
    46. Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU: Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. P Natl Acad Sci USA 2000, 97(14):7841-7846.
    47. Dedmon MM, Christodoulou J, Wilson MR, Dobson CM:Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 2005,280(15):14733-14740.
    48. Wacker JL, Zareie MH, Fong H, Sarikaya M, Muchowski PJ:Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat Struct Mol Biol 2004, 11(12):1215-1222.
    49. Knauer MF, Soreghan B, Burdick D, Kosmoski J, Glabe CG:Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc Natl Acad Sci U S A 1992,89(16):7437-7441.
    50. Sengupta P, Garai K, Sahoo B, Shi Y, Callaway DJE, Maiti S:The amyloid beta peptide (A beta(1-40)) is thermodynamically soluble at physiological concentrations. Biochemistry 2003,42(35):10506-10513.
    51. Esler WP, Stimson ER, Ghilardi JR, Lu YA, Felix AM, Vinters HV, Mantyh PW, Lee JP, Maggio JE:Point substitution in the central hydrophobic cluster of a human beta-amyloid congener disrupts peptide folding and abolishes plaque competence. Biochemistry 1996,35(44):13914-13921.
    52. Evans CG, Wisen S, Gestwicki JE:Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J Biol Chem 2006, 281(44):33182-33191.
    53. Pollard TD, Mooseker MS:Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol 1981,88(3):654-659.
    54. De Los Rios P, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P:Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci U S A 2006, 103(16):6166-6171.
    55. Dunn SD:ATP causes a large change in the conformation of the isolated alpha subunit of Escherichia coli F1 ATPase. J Biol Chem 1980, 255(24):11857-11860.
    1. Ding Q, Dimayuga E, Keller JN:Oxidative damage, protein synthesis, and protein degradation in Alzheimer's disease. Curr Alzheimer Res 2007, 4(1):73-79.
    2. Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT, Irizarry MC:Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 2004,62(6):925-931.
    3. Wyss-Coray T:Inflammation in Alzheimer disease:driving force, bystander or beneficial response? Nat Med 2006,12(9):1005-1015.
    4. Yankner BA:Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 1996,16(5):921-932.
    5. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G:Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996,184(4):1331-1341.
    6. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X:Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997,90(3):405-413.
    7. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X:Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997,91(4):479-489.
    8. Mullan M, Houlden H, Windelspecht M, Fidani L, Lombardi C, Diaz P, Rossor M, Crook R, Hardy J, Duff K et al: A locus for familial early-onset Alzheimer's disease on the long arm of chromosome 14, proximal to the alpha 1-antichymotrypsin gene. Nat Genet 1992,2(4):340-342.
    9. Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB, Muller-Spahn F, Haass C, Czech C, Pradier L et al: Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem 2004,279(48):50310-50320.
    10. Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J et al: Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-sretase complexes in mitochondria. J Biol Chem 2004,279(49):51654-51660.
    11. Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I, Leinonen V, Ito A, Winblad B, Glaser E et al: The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A 2008,105(35):13145-13150.
    12. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK: Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neuro sci 2006,26(35):9057-9068.
    13. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B:The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987, 325(6106):733-736.
    14. Mattson MP:Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997,77(4):1081-1132.
    15. Nunan J, Small DH:Regulation of APP cleavage by alpha-, beta-and gamma-sretases. FEBS Lett 2000,483(1):6-10.
    16. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K:Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985,82(12):4245-4249.
    17. Dahlgren KN, Manelli AM, Stine WB, Jr., Baker LK, Krafft GA, LaDu MJ: Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. JBiol Chem 2002,277(35):32046-32053.
    18. Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB: Amyloid beta-protein (Abeta) assembly:Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 2003, 100(1):330-335.
    19. Murakami K, Irie K, Morimoto A, Ohigashi H, Shindo M, Nagao M, Shimizu T, Shirasawa T:Neurotoxicity and physicochemical properties of Abeta mutant peptides from cerebral amyloid angiopathy:implication for the pathogenesis of cerebral amyloid angiopathy and Alzheimer's disease. J Biol Chem 2003,278(46):46179-46187.
    20. Cao X, Sudhof TC:A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 2001,293(5527):115-120.
    21. Scheinfeld MH, Matsuda S, D'Adamio L:JNK-interacting protein-1 promotes transcription of A beta protein precursor but not A beta precursor-like proteins, mechanistically different than Fe65. Proc Natl Acad Sci USA 2003,100(4):1729-1734.
    22. Amijee H, Scopes DI:The quest for small molecules as amyloid inhibiting therapies for Alzheimer's disease. J Alzheimers Dis 2009,17(1):33-47.
    23. Wisniewski T, Sadowski M:Preventing beta-amyloid fibrillization and deposition:beta-sheet breakers and pathological chaperone inhibitors. BMC Neurosci 2008,9 Suppl 2:S5.
    24. Swerdlow RH, Khan SM:A "mitochondrial cascade hypothesis" for sporadic Alzheimer's disease. Med Hypotheses 2004,63(1):8-20.
    25. Swerdlow RH, Khan SM:The Alzheimer's disease mitochondrial cascade hypothesis:an update. Exp Neurol 2009,218(2):308-315.
    26. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S et al: Oxidative damage is the earliest event in Alzheimer disease. JNeuropathol Exp Neurol 2001,60(8):759-767.
    27. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM:Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001,21(12):4183-4187.
    28. Hauptmann S, Scherping I, Drose S, Brandt U, Schulz KL, Jendrach M, Leuner K, Eckert A, Muller WE:Mitochondrial dysfunction:an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 2009,30(10):1574-1586.
    29. LaFerla FM, Green KN, Oddo S:Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci 2007,8(7):499-509.
    30. Kroemer G:Mitochondrial control of apoptosis:an introduction. Biochem Biophys Res Commun 2003,304(3):433-435.
    31. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J et al: Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 2000, 14(5):729-739.
    32. Coskun PE, Beal MF, Wallace DC:Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 2004, 101(29):10726-10731.
    33. Gibson GE, Sheu KF, Blass JP:Abnormalities of mitochondrial enzymes in Alzheimer disease. JNeural Transm 1998,105(8-9):855-870.
    34. Blass JP:The mitochondrial spiral. An adequate cause of dementia in the Alzheimer's syndrome. Ann N Y Acad Sci 2000,924:170-183.
    35. Sheu KF, Kim YT, Blass JP, Weksler ME:An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer's disease brain. Ann Neurol 1985,17(5):444-449.
    36. Sorbi S, Bird ED, Blass JP:Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 1983,13(1):72-78.
    37. Simonian NA, Hyman BT:Functional alterations in Alzheimer's disease: diminution of cytochrome oxidase in the hippocampal formation. J Neuropathol Exp Neurol 1993,52(6):580-585.
    38. Chandrasekaran K, Giordano T, Brady DR, Stoll J, Martin LJ, Rapoport SI: Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Res Mol Brain Res 1994,24(1-4):336-340.
    39. Berridge MJ:Neuronal calcium signaling. Neuron 1998,21(1):13-26.
    40. Augustine GJ, Santamaria F, Tanaka K:Local calcium signaling in neurons. Neuron 2003,40(2):331-346.
    41. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA:Gene regulation and DNA damage in the ageing human brain. Nature 2004, 429(6994):883-891.
    42. Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA:Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment:insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease. Neurobiol Dis 2008, 30(1):107-120.
    43. Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA:Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis 2006, 22(1):76-87.
    44. Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A, Cash AD, Obrenovich ME, Perry G, Smith MA:Role of mitochondrial dysfunction in Alzheimer's disease. JNeurosci Res 2002,70(3):357-360.
    45. Swegert CV, Dave KR, Katyare SS:Effect of aluminium-induced Alzheimer like condition on oxidative energy metabolism in rat liver, brain and heart mitochondria. Mech Ageing Dev 1999,112(1):27-42.
    46. Atamna H, Frey WH,2nd:A role for heme in Alzheimer's disease:heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci U S A 2004,101(30):11153-11158.
    47. Atamna H:Heme binding to Amyloid-beta peptide:mechanistic role in Alzheimer's disease. J Alzheimers Dis 2006,10(2-3):255-266.
    48. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG: Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 2003,161(1):41-54.
    49. Lustbader JW, Chilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M et al: ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 2004, 304(5669):448-452.
    50. Dell'agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, Prelle A, Roubertoux P, Rizzuto R, Zeviani M:Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surfl knockout mice. Hum Mol Genet 2007,16(4):431-444.
    51. Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, Trillat AC, Stern DM, Arancio O, Yan SS:ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J 2005,19(6):597-598.
    52. Reddy PH, Beal MF:Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res Brain Res Rev 2005,49(3):618-632.
    53. Reddy PH:Amyloid precursor protein-mediated free radicals and oxidative damage:implications for the development and progression of Alzheimer's disease. JNeurochem 2006,96(1):1-13.
    54. Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, Barnham KJ, Curtain CC, Cherny RA, Cappai R, Dyrks T et al:Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-betal-42. J Neurosci 2005,25(3):672-679.
    55. Dante S, Hauss T, Dencher NA:Cholesterol inhibits the insertion of the Alzheimer's peptide Abeta(25-35) in lipid bilayers. Eur Biophys J 2006, 35(6):523-531.
    56. Aleardi AM, Benard G, Augereau O, Malgat M, Talbot JC, Mazat JP, Letellier T, Dachary-Prigent J, Solaini GC, Rossignol R:Gradual alteration of mitochondrial structure and function by beta-amyloids:importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J Bioenerg Biomembr 2005, 37(4):207-225.
    57. Reddy PH, Beal MF:Amyloid beta, mitochondrial dysfunction and synaptic damage:implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med 2008,14(2):45-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700