滋补脾阴方药对谷氨酸损伤神经元中树突棘的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:突触是神经元间进行信号传递的重要结构,它的破坏和丢失对神经系统的机能将产生重大影响。突触功能障碍及缺失是发生于阿尔茨海默病(Alzheimer’s disease, AD)早期的病理过程,是AD疾病过程中的重要神经病理改变之一,并且是与认知功能下降最为密切的病理表现。树突棘是存在于哺乳动物大脑神经元树突干上的小突起,它构成中枢神经系统兴奋性突触传递的原始位点,是学习和记忆活动的生物学基础。在AD病人脑中,发现有树突棘丢失及密度的减少,树突退化等现象。树突棘内含有多种细胞表面受体、肌动蛋白细胞骨架、脚手架蛋白等多种成分,它们对树突棘的生长发育成熟以及结构的稳定起调节作用。其中以树突棘相关的Rap-特异性GTPase-活化蛋白(spine-associated Rap guanosine triphosphatase (GTPase) activating protein, SPAR)为代表,它与树突棘成熟及形态的维持密切相关。在神经元活化时SPAR可被血清诱导激酶(serum-inducible kinase, SNK)降解,从而导致树突棘结构的失稳定。本课题组既往研究表明,滋补脾阴方药(Zi-Bu-Pi-Yin decoction, ZBPY)具有抗氧化及改善衰老个体学习记忆能力,具有显著的神经保护作用。因此探讨滋补脾阴方药的神经保护作用与维持树突棘结构和功能之间的相关性及其分子机制,对于防治AD及相关的以进行性脑功能障碍为特点的神经退行性疾病是有重要意义的。本实验目的在于观察滋补脾阴方药预处理对于谷氨酸引起的原代培养的大鼠海马神经元树突棘形态结构损伤的保护作用,探讨滋补脾阴方药对于树突棘内与其形态结构稳定密切相关的SNK-SPAR途径的调节作用,从而深入探讨其相应的神经保护作用及其与树突棘形态调节之间
Synapse is the important structure for transmission between neurons. The dysfunction and loss of synapse will destroy the function of nervous system greatly. Synapse loss is one of the most important pathological changes of Alzheimer’s disease (AD). Synaptic dysfunction and failure are processes that occur early in AD, it is the best current pathologic correlate of cognitive decline. Dendritic spines are some small protrusions from the dendrites of the principal neurons in mammalian. Dendritic spines represent the postsynaptic component of most excitatory synapses. Spines are the main sites of excitatory synaptic transmission in central nervous system. Synaptic transmission is thought to be the physiological basis of learning and memory. Hundreds of molecules have been identified in the PSD: receptors, cytoskeletal proteins, scaffolding proteins, and signal proteins who are in charge of the density and shape of dendritic spines. Spine-associated Rap guanosine triphosphatase (GTPase) activating protein (SPAR) is an important candidate for mediating activity-dependent remodeling of synapses. And is critically involved in spine maturity, especially in the mature spine formation and the maintenance of spine maturity. Serum-inducible kinase (SNK), one of the polo-like kinases, induced by synaptic activity and was targeted to dendritic spines, eliminates SPAR protein, and causes loss of mature dendritic spines and synapses. The previous studies of our group suggested that Zi-Bu-Pi-Yin decoction (ZBPY) has notable functions of against aging such as anti-oxidation, improve the ability of study and memory. Therefore we want to make it clear that the molecular mechanism of ZBPY for preserving the structure and function of synapses, especially the
引文
1. Parihar MS, Taruna H. Alzheimer disease pathogenesis and therapeutic interventions. Journal of clinical neuroscience.2004, 11(5):456-467.
    2. Shelley H, Kathy S,Simone G. Dynamics and pathology of dendritic spines. Progress in Brain Research.2005, 147:29-37.
    3. Pascale N, et.al. Synaptic Targeting by Alzheimer’s-related Amyloid Oligomers. The Journal of Neuroscience.2004, 24(45):10191-10200.
    4. Paul C, Howard F, Roger K. A focus on the synapse for neuroprotection in Alzheimer’s disease and other dementias. Neurology. 2004, 63(7): 1155- 1162.
    5. Gazzaley A, Kay S, Benson DL. Dendritic spines plasticity in hippocampus. Neurosci.2002, 111(4):853-862
    6. Esther AN, Bernardo LS, Karel S. Structure and Function of Dendritic Spines. Annu. Rew. Phisiol. 2002, 64:313-353.
    7. Raphael L, Joseph L. Structure plasticity and memory. Nat. Rev. Neurosci. 2004, 5:45-54.
    8. Iryna M, Ethell E, Elena B. P. Molecular mechanisms of dendritic spines development and remodeling. Pro. Neurobio.2005, 75(3): 161–205.
    9. Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Current Opinion in Neurobiology. 2006, 16:1–7.
    10. Pak DT, Yang S, Rudolph CS, Kim E, Sheng M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron. 2001, 31(2): 289-303.
    11. Pak DT, Sheng M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science.2003, 302(5649):1368-1373.
    12. Seeburg DP, Pak DT, Sheng M. Polo-like kinases in the nervous system. Oncogene.2005, 24(2), 292–298.
    13. Gazulla J, Cavero-Nagore M. Glutamate and Alzheimer's disease. Rev Neurol. 2006,42(7): 427-432.
    14. 战丽彬,徐枫, 董玉宽等. 滋补脾阴方药对老龄大鼠脑线粒体膜ATP酶活性的影响.中药药理与临床 2000;16(1):24-25.
    15. 曲明阳,战丽彬. 滋补脾阴方药对衰老大鼠学习记忆能力的影响及脑内机制.中药药理与临床 2002;18(6):32-35.
    16. 张红敏,谢春光,陈世伟.含药血清体外药理试验的评价.中国中西医结合杂志2004;24 (8): 741-745.
    17. 王筠,张军平.中药血清药理学实验方法研究概况.天津中医药 2005;22(1): 86-88.
    18. Hering H, Sheng M. Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J Neurosci. 2003, 23(37): 11759-11769.
    19. Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, Bockaert J, Fagni L. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci. 2005, 25(14): 3560-3570.
    20. Takahashi H, Sekino Y, Tanaka S, Mizui T, Kishi S, Shirao T. Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis. J Neurosci. 2003, 23(16): 6586-6595.
    21. Sekino Y, et al. Activation of N-methyl-D-aspartate receptor induces a shift of drebrin distribution: Disappearance from dendritic spines and appearance in dendritic shafts. Mol. Cell. Neurosci.2005, 31(3):493-504.
    1. Donna LM, Ottavio VV, Jean PG, Vonsattel, Michael LS. Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol. 2004, 33(3):377–387.
    2. Pascale N,et.al. Synaptic Targeting by Alzheimer’s-related Amyloid Oligomers. J Neurosci.2004, 24(45):10191–10200.
    3. Paul C,Howard F, Roger K. A focus on the synapse for neuroprotection in Alzheimer’s disease and other dementias. Neurol. 2004, 63(7):1155- 1162.
    4. Hyoung-gon L, Paula I, Moreira, Xiongwei Zhu, Mark A. S, and George P. Staying Connected: Synapses in Alzheimer Disease. Amer J Pathol. 2004, 165(5): 1461-1464.
    5. Terry RD, Masliah E, Salmon DP, Butters ND, Teresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol.1991, 30:572–580.
    6. Bonhoeffer T, Yuste R. Spine motility: phenomenology, mechanisms, and function. Neuron. 2002, 35(6):1019-1027.
    7. Li Z, Sheng M. Some assembly required: the development of neuronal synapses. Nat. Mol. Cell. Biol.2003, 4(11):833–841.
    8. Raphael L, Joseph L. Structure plasticity and memory. Nat. Rev. Neurosci.2004, 5:45-54.
    9. Shelley H, Kathy S, Simone G. Dynamics and pathology of dendritic spines. Pro. Brain Res.2005, 147:29-37.
    10. Esther AN, Bernardo LS, Karel S. Structure and Function of Dendritic Spines. Annu. Rew. Phisiol. 2002, 64:313-53.
    11. Iryna M, Ethell, Elena B. P. Molecular mechanisms of dendritic spines development and remodeling. Pro Neurobio.2005, 75(3): 161–205.
    12. Hering H, Sheng M. 2001. Dendritic spines: structure, dynamics and regulation. Nat. Rev. Neurosci. 2001, 2(12):880–888.
    13. Harris KM. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 1999, 9(3):343–348.
    14. Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev. 2002, 39(1):29-54.
    15. Bonhoeffer T, Yuste R. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu.Rev.Neurosci. 2001,24:1071-1089.
    16. Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 2006, 16:1–7.
    17. Gazzaley A, Kay S, Benson DL. Dendritic spines plasticity in hippocampus. Neurosci.2002, 111(4):853-862.
    18. Segal M. Dendritic spines and long-term plasticity. Nat. Rev. Neurosci. 2005, 6:277-284.
    19. Li Z, Okamoto K, Hayashi Y, Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses.Cell.2004,119(6): 873–887.
    20. Ackermann M, Matus A. Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat. Neurosci. 2003, 6(11):1194-1200.
    21. Takahashi H, Sekino Y, Tanaka S, Mizui T, Kishi S, Shirao T. Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 anddendritic spine morphogenesis. J Neurosci. 2003, 23(16):6586-6595.
    22. Hering H, Sheng M. Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J Neurosci. 2003, 23(37):11759-11769.
    23. Newey SE, Velamoor V, Govek EE, Van Aelst L. Rho GTPases, dendritic structure, and mental retardation. J Neurobiol. 2005, 64(1):58-74.
    24. Ishikawa Y, Katoh H, Negishi M.A role of Rnd1 GTPase in dendritic spine formation in hippocampal neurons. J Neurosci. 2003, 23(35):11065-11072.
    25. Tashiro A, Yuste R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci. 2004, 26(3):429-440.
    26. Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF. A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci. 2005, 25(13): 3379-3388.
    27. Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron. 2005, 45(4):525-538.
    28. Bryan B, Kumar V, Stafford LJ, Cai Y, Wu G, Liu M. GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J Biol Chem. 2004, 279(44): 45824-45832.
    29. Vazquez LE, Chen HJ, Sokolova I, Knuesel I, Kennedy MB. SynGAP regulatesspine formation. J Neurosci. 2004, 24(40):8862-8872.
    30. Zhu Y, Pak D, Qin Y, McCormack SG, Kim MJ, Baumgart JP,Velamoor V, Auberson YP, Osten P, van Aelst L et al. Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron. 2005, 46(2):905-916.
    31. Pak DT, Yang S, Rudolph-Correia S, Kim E, Sheng M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron. 2001, 31(2):289-303.
    32. Pak DT, Sheng M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science.2003, 302(5649):1368-1373.
    33. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci 2004, 5:771-781.
    34. Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, Bockaert J, Fagni L. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci. 2005, 25(14):3560-3570.
    35. Sala C, Futai K, Yamamoto K, Worley PF, Hayashi Y, Sheng M. Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J Neurosci. 2003, 23(15):6327-6337.
    36. Salinas PC, Price SR. Cadherins and catenins in synapse development. Curr.Opin. Neurobiol. 2005, 15(1):73-80.
    37. Passafaro M, Nakagawa T, Sala C, Sheng M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature. 2003, 424(6949): 677-681.
    38. Nakagawa T, Cheng Y, Ramm E, Sheng M, Walz T. Structure and different conformational states of native AMPA receptor complexes. Nature. 2005, 433(7025): 545-549.
    39. Richards DA, Mateos JM, Hugel S, Paola V, Caroni P, Gahwiler BH, McKinney RA. Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proc Natl Acad Sci.2005, 102(17):6166-6171.
    40. Sabatini BL, Maravall M, Svoboda K. Ca2+ signaling in dendritic spines. Curr. Opin. Neurobiol. 2001, 11(3): 349–356.
    41. Yuste R, Majewska A, Holthoff, K. From form to function: calcium compartmentalization in dendritic spines. Nat. Neurosci. 2000, 3(7): 653–659.
    42. Sabatini BL, Svoboda K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature. 2000, 408(30):589–593.
    43. Julia T, Jaime G, Karen D, WenBiao G. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neurosci.2004, 7(11):1181-1183.
    44. Oddo S, Caccamo A, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003, 39(3):409–421.
    45. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science.2002,298:789 –791.
    46. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002, 416(4):535–539.
    47. Naoki A, Koutoku A, Rivka R, Masato H. Reduction of NR1 and phosphorylated Ca2+/calmodulin-dependent protein kinase II levels in Alzheimer’s disease. Neuroreport.2005, 16(16): 1809-1813.
    48. Shim KS, Lubec G. Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer’s disease and Down syndrome. Neurosci Lett. 2002,324(3): 209–212.
    49. Mattson MP, Partin J, Begley JG. Amyloid beta peptide induces apoptosis-related events in synapses and dendrites. Brain Res. 1998,807(1-2):167–176.
    50. Harigaya Y, Shoji M, Shirao T, Hirai S. Disappearance of actin-binding protein, drebrin, from hippocampal synapses in Alzheimer’s disease. J. Neurosci. Res. 1996, 43(1):87–92.
    51. Claudia GA, Davide T, Reisuke HT, Paul G, Michael TL, Eric MS, Gunnar KG. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobio of Dis. 2005, 20(2):187– 198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700