全氟辛烷磺酸盐的神经发育毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PFOS是一种八碳全氟有机化合物,因其具有良好的理化特性,被广泛应用于工农业生产和日常用品制造。自从上个世纪50年代使用该化合物以来,环境中PFOS的浓度越来越高,使得人类及其它生物有更多的机会暴露PFOS。已在多种环境介质和野生动物及人体内检测到它的存在。由于该化合物具有难降解和易富集的特性,因此,它造成的环境污染范围及污染程度远远超出了人们的预想。2001年,它被列为美国环保局持久性环境污染物黑名单,要求进行严格管理。鉴于PFOS的全球分布,近年来,有关它的毒性已成为毒理学研究的热点。
     科学研究表明,PFOS能引起实验动物体重减轻,肝肿大,脂质代谢和能量代谢障碍,激素代谢混乱,胚胎毒性和潜在的神经发育毒性。由于PFOS能通过胎盘屏障和血脑屏障,富集于胚胎和幼鼠脑组织,有关它的神经发育毒性备受关注。近年来的研究表明,产前和泌乳期PFOS暴露导致幼鼠运动功能和认知功能损伤,PFOS是一种潜在的神经发育毒物,但是它的毒作用机制还不清楚。本文拟采用产前PFOS暴露致幼鼠神经毒性及其可能毒作用机制研究,为评价该化合物的潜在健康影响提供实验和理论基础。
     第一部分产前PFOS暴露对幼鼠海马基因表达谱的影响
     目的:观察产前PFOS暴露致幼鼠海马组织基因表达谱的改变。方法:40只SD孕鼠随机分成对照组、0.1mg/kg-d PFOS组、0.6mg/kg-d PFOS组、2.0mg/kg-d PFOS组,从GD2天到GD21天,每天灌胃一次。分别在PND0天和PND21天分批处死幼鼠,收集血液,并迅速取出脑组织,冰上迅速分离海马和皮层。采用高效液相,串联质谱技术检测血液、皮层和海马中PFOS浓度;应用大鼠Agilent表达芯片筛选0.6mg/kg-dPFOS组幼鼠海马差异表达基因。结果:海马、皮层和血液中PFOS呈剂量依赖方式升高,PND0天幼鼠的PFOS浓度高于PND21天幼鼠。PFOS诱导的差异表达基因主要与细胞周期、细胞凋亡、LTP、钙离子信号途径、突触传递、神经退行性疾病、炎症等有关。结论:产前PFOS暴露改变了幼鼠海马组织钙离子信号途径、突触传递、神经退行性疾病、炎症等有关基因的表达。
     第二部分产前PFOS暴露诱导幼鼠脑组织胶质样炎症反应
     目的:观察产前PFOS暴露致子代海马和皮层的胶质样炎症反应。方法:40只SD孕鼠随机分成对照组、0.1mg/kg PFOS组、0.6mg/kg PFOS组、2.0mg/kg PFOS组,从GD2天到GD21天,每天灌胃一次。分别在PND0天和PND21天处死幼鼠,并迅速取出脑组织,冰上分离海马和皮层,或者4%的多聚甲醛固定。GFAP免疫组织化学检测星形胶质细胞增生;QPCR分析鼠海马和皮层GFAP, S100β, IL-1β, TNF-α, CREB, AP-1和NF-Kb mRNA含量;WB分析GFAP蛋白的含量。结果:产前PFOS暴露激活了幼鼠星形胶质细胞,诱导了海马和皮层中GFAP, S100β, IL-1β, TNF-α, CREB,AP-1和NF-Kb mRNA含量增加,同时也诱导21天龄幼鼠皮层和海马GFAP蛋白含量增加。结论:产前PFOS暴露导致星形胶质细胞激活,炎症因子表达增加,产生胶质样炎症反应,其机制可能与转录因子AP-1, CREB和NF-Kb表达升高有关。
     第三部分产前PFOS暴露致幼鼠突触发生的影响
     目的:观察产前PFOS暴露对子代神经元突触结构的影响。方法:40只SD孕鼠随机分成对照组、0.1mg/kg PFOS组、0.6mg/kg PFOS组、2.0mg/kg PFOS组,从GD2天到GD21天,每天灌胃一次。分别在PND0天和PND21天处死幼鼠,并迅速取出脑组织,冰上分离海马和皮层。QPCR检测Syp和Synl mRNA水平;WB检测Syp和Syn1蛋白含量;利用HE染色方法和电镜技术观察脑组织常规病理和超微结构改变。结果:PFOS暴露降低了突触小泡含量,增宽了突触间隙,并伴随突触标志物Syn1和Syp表达的改变。PND0天幼鼠和PND21天幼鼠海马组织Syp和Syn1含量呈现剂量依赖方式下降,而在皮层组织,PFOS抑制了Syn1表达,但是诱导了Syp含量呈现剂量依赖方式升高。同时,PFOS暴露减少了幼鼠海马神经突触小泡,导致活性区变窄。结论:PFOS诱导的神经发育毒性可能与改变突触小泡相关蛋白表达及突触超微结构有关。
Perfluorooctane sulfonate (PFOS), which is a kind of fluorine-saturated eight-carbon compounds belonged to the degradation product of many perfluorinated compounds, has been used in a variety of commercial and industrial applications. Since 1950s, concentration of PFOS in the environment increased gradually. PFOS is believed to be an emerging persistent organic pollutant because of its worldwide distribution, extreme stability and bioaccumulative nature. Recent years studies indicated that the scope and extent of environmental contamination caused by PFOS had gone beyond our anticipation. In 2001, it was classified as a kind of persistent organic pollutants by environmental protection agency of U.S and should be strictly administered. The study of toxicity about PFOS has been become one of the hotspots of toxicology research.
     Scientific research have showed that PFOS can cause body weight of experimental animals lessen, liver hyperplasia, lipid metabolism and energy metabolism disorders, hormone metabolic disorders, embryonic toxicity and and potentially developmental neurotoxicity. Since PFOS can across the placental barrier and the blood brain barrier and can accumulate embryonic brain tissue, the developmental neurotoxicity has been attracted more attention. Recent studies show that prenatal and lactation exposure to PFOS exposure lead to the impairment of offspring movement function and cognitive function. Although PFOS is a potentially developmental nerve poison, its toxic effect mechanism is unclear. This study will explore that prenatal exposure to PFOS may cause offspring neurotoxicity and its mechanisms. It provides the experimental and theoretical basis for the evaluation of the potential health effects of PFOS.
     PartⅠ:Gene expression profiling in the hippocampus of pups by prenatal exposure to PFOS
     Objective:To study the changes of gene expression profile in the hippocampus of pups by prenatal exposure to PFOS. Method:Pregnant Sprague Dawley (SD) rats were administrated 0.1,0.6, and 2.0mg/kg bw/day by gavage from gestation day (GD) 2 to GD21. Control received 0.5% Tween-20 vehicle (4mg/kg bw/day). PFOS concentrations in hippocampus of offspring were observed on postnatal day (PND) 0 and PND21. Agilent expression microarray was used to evaluate the changes of gene expression profile in the hippocampus of pups by prenatal exposure to PFOS. Results:PFOS was increased in serum, hippocampus and cortex in dose-dependent manner, and gradually decreased depending on time. The concentrations of PFOS in tissue on PNDO were higher than on PND21. The differentially expressed genes were related to cell cycle, cell apoptosis, long-term potentiation, calcium ion signal pathways, synapse, neurodegenerative diseases, inflammation, etc. Conclusion:Prenatal exposure to PFOS altered the expression of genes that were related to cell cycle, cell apoptosis, long-term potentiation, calcium ion signaling pathways, synapse, and inflammation.
     PartⅡ:The effect of inflammation-like glial response in offspring brain induced by prenatal PFOS exposure
     Objective:To study the effect of inflammation-like glial response in offspring brain induced by prenatal PFOS exposure. Method:Pregnant Sprague Dawley (SD) rats were given 0.1,0.6, and 2.0mg/kg bw/day by gavage from gestation day (GD) 2 to GD21. Control received 0.5% Tween-20 vehicle (4ml/kg bw/day). Reactive astrocytes were detected by GFAP of immunohistochemical staining. QPCR was used to detect mRNA level of GFAP, S100β, IL-1β, TNF-α, CREB, AP-1and NF-κb in offspring hippocampus and cortex. The protein level of GFAP was detected by western blot. Results:In 2.0mg/kg-d PFOS group, the mRNA levels of GFAP, S100β, IL-1β,TNF-α, CREB, AP-1and NF-κb were significantly increased compared with control group either on PNDO or on PND21. Compared with control, the protein levels of GFAP were significantly increased in all treated groups either on PNDO or on PND21. Conclusion:PFOS can increase the expression of inflammatory factor and transcription factor as well as active astrocyte, and lead to the inflammation-like glial response in offspring brain.
     PartⅢ:The effect of prenatal exposure to PFOS on synaptic ultra-structure of pups
     Objective:To study the effect of prenatal exposure to PFOS on synaptic ultra-structure of pups. Method:Pregnant Sprague Dawley (SD) rats were adminstrated 0.1, 0.6, and 2.0mg/kg bw/day by gavage from gestation day (GD) 2 to GD21. Control received 0.5% Tween-20 vehicle (4mg/kg bw/day). QPCR was used to detect mRNA level of Synl and Syp in offspring hippocampus and cortex. The protein levels of Synl and Syp were detected by western blot. The synaptic ultra-structure of hippocampus was analyzed by electron microscope. Results:In 2.0mg/kg-d PFOS group, the expression of Synl and Syp in hippocampus were significant decreased compared with control group either on PNDO or on PND21. In cortex, the expression of Synl were significant decreased in PFOS-treated group, but the expression of Syp in cortex increased. In the hippocampus of PFOS exposed offspring, synaptic vesicles became decreased, active synaptic zone became shorter, and synaptic curvature became uneven.Conclusion:PFOS can change the expression of Syp and Synl as well as impair the synaptic ultra-structure, which may play an important role in the developmental neruotoxicity of PFOS.
引文
1. Renner, R. Growing concern over perfluorinated chemicals. Environ Sci Technol, 2001,35(7),154A-160 A.
    2. Steenland, K., Fletcher, T., and Savitz, D.A. Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA). Environ Health Perspect.
    3. Kovarova, J. and Svobodova, Z. Perfluorinated compounds:occurrence and risk profile. Neuro Endocrinol Lett,2008,29(5),599-608.
    4. Rumsby, P.C., McLaughlin, C.L., and Hall, T. Perfluorooctane sulphonate and perfluorooctanoic acid in drinking and environmental waters. Philos Transact A Math Phys Eng Sci,2009,367(1904),4119-4136.
    5. Bao, J., Liu, W., Liu, L., et al. Perfluorinated compounds in urban river sediments from Guangzhou and Shanghai of China Chemosphere.
    6. Clarke, D.B., Bailey, V.A., Routledge, A., et al. Dietary intake estimate for perfluorooctanesulphonic acid (PFOS) and other perfluorocompounds (PFCs) in UK retail foods following determination using standard addition LC-MS/MS. Food additives & contaminants,27(4),530-545.
    7. Volkel, W., Genzel-Boroviczeny, O., Demmelmair, H., et al. Perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA) in human breast milk:results of a pilot study. Int J Hyg Environ Health,2008,211(3-4),440-446.
    8. Giesy, J.P. and Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol,2001,35(7),1339-1342.
    9. Fromme, H., Tittlemier, S.A., Volkel, W., et al. Perfluorinated compounds-exposure assessment for the general population in Western countries. Int J Hyg Environ Health, 2009,212(3),239-270.
    10. Giesy, J.P. and Kannan, K. Perfluorochemical surfactants in the environment Environ Sci Technol,2002,36(7),146A-152A.
    11. Sohlenius, A.K., Andersson, K., Bergstrand, A., et al. Effects of perfluorooctanoic acid--a potent peroxisome proliferator in rat--on Morris hepatoma 7800C1 cells, a rat cell line. Biochim Biophys Acta,1994,1213(1),63-74.
    12. Apelberg, B.J., Goldman, L.R., Calafat, A.M., et al. Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore, Maryland. Environ Sci Technol,2007, 41(11),3891-3897.
    13. Olsen, G.W., Mair, D.C., Church, T.R., et al. Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, 2000-2006. Environ Sci Technol,2008,42(13),4989-4995.
    14. Karrman, A., Domingo, J.L., Llebaria, X., et al. Biomonitoring perfluorinated compounds in Catalonia, Spain:concentrations and trends in human liver and milk samples. Environ Sci Pollut Res Int,17(3),750-758.
    15. Tao, L., Kannan, K., Wong, C.M., et al. Perfluorinated compounds in human milk from Massachusetts, U.S.A. Environ Sci Technol,2008,42(8),3096-3101.
    16. Tao, L., Ma, J., Kunisue, T., et al. Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environ Sci Technol,2008,42(22),8597-8602.
    17. von Ehrenstein, O.S., Fenton, S.E., Kato, K., et al. Polyfluoroalkyl chemicals in the serum and milk of breastfeeding women. Reprod Toxicol,2009,27(3-4),239-245.
    18. Johansson, N., Fredriksson, A., and Eriksson, P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology,2008,29(1),160-169.
    19. Fuentes, S., Vicens, P., Colomina, M.T., et al. Behavioral effects in adult mice exposed to perfluorooctane sulfonate (PFOS). Toxicology,2007,242(1-3),123-129.
    20. Butenhoff, J.L., Ehresman, D.J., Chang, S.C., et al. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:developmental neurotoxicity. Reprod Toxicol,2009,27(3-4),319-330.
    21. Liu, L., Jin, Y.H., Wang, L., et al. [Effects of perfluorooctane sulfonate on learning and
    memory of rat pups]. Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine],2009,43(7),622-627.
    22. Lau, C., Anitole, K., Hodes, C., et al. Perfluoroalkyl acids:a review of monitoring and toxicological findings. Toxicol Sci,2007,99(2),366-394.
    23. Lau, C., Butenhoff, J.L., and Rogers, J.M. The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol,2004,198(2), 231-241.
    24. Lau, C., Thibodeaux, J.R., Hanson, R.G., et al. Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci,2006,90(2),510-518.
    25. Grandjean, P., Bellinger, D., Bergman, A., et al. The faroes statement:human health effects of developmental exposure to chemicals in our environment Basic Clin Pharmacol Toxicol,2008,102(2),73-75.
    26. Bjork, J.A., Lau, C., Chang, S.C., et al. Perfluorooctane sulfonate-induced changes in fetal rat liver gene expression. Toxicology,2008,251(1-3),8-20.
    27. Yeung, L.W., Guruge, K.S., Yamanaka, N., et al. Differential expression of chicken hepatic genes responsive to PFOA and PFOS. Toxicology,2007,237(1-3),111-125.
    28. Krovel, A.V., Softeland, L., Torstensen, B., et al. Transcriptional effects of PFOS in isolated hepatocytes from Atlantic salmon Salmo salar L. Comp Biochem Physiol C Toxicol Pharmacol,2008,148(1),14-22.
    29. Grasty, R.C., Bjork, J.A., Wallace, K.B., et al. Effects of prenatal perfluorooctane sulfonate (PFOS) exposure on lung maturation in the perinatal rat Birth Defects Res B Dev Reprod Toxicol,2005,74(5),405-416.
    30. Wang, F., Liu, W., Jin, Y., et al. Transcriptional effects of prenatal and neonatal exposure to PFOS in developing rat brain. Environ Sci Technol,44(5),1847-1853.
    31. Johansson, N., Eriksson, P., and Viberg, H. Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicol Sci,2009,108(2),412-418.
    32. Liu, X., Liu, W., Jin, Y, et al. Effect of gestational and lactational exposure to perfluorooctanesulfonate on calcium-dependent signaling molecules gene expression in rats' hippocampus. Arch Toxicol,84(1),71-79.
    33. Lau, C., Thibodeaux, J.R., Hanson, R.G., et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Ⅱ:postnatal evaluation. Toxicol Sci,2003,74(2), 382-392.
    34. Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods,2001, 25(4),402-408.
    35. Chang, S.C., Ehresman, D.J., Bjork, J.A., et al. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:toxicokinetics, thyroid hormone status, and related gene expression. Reprod Toxicol,2009,27(3-4),387-399.
    36. Reddy, P.H. Role of mitochondria in neurodegenerative diseases:mitochondria as a therapeutic target in Alzheimer's disease. CNS Spectr,2009,14(8 Suppl 7),8-13; discussion 16-18.
    37. Streit, W.J., Braak, H., Xue, Q.S., et al. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Acta Neuropathol,2009,118(4),475-485.
    38. Josselyn, S.A. and Nguyen, P.V. CREB, synapses and memory disorders:past progress and future challenges. Curr Drug Targets CNS Neurol Disord,2005,4(5),481-497.
    39. von Bernhardi, R. Glial cell dysregulation:a new perspective on Alzheimer disease. Neurotox Res,2007,12(4),215-232.
    40. Liao, C.Y., Li, X.Y., Wu, B., et al. Acute enhancement of synaptic transmission and chronic inhibition of synaptogenesis induced by perfluorooctane sulfonate through mediation of voltage-dependent calcium channel. Environ Sci Technol,2008,42(14), 5335-5341.
    1. Rumsby, P.C., McLaughlin, C.L., and Hall, T. Perfluorooctane sulphonate and perfluorooctanoic acid in drinking and environmental waters. Philosophical transactions,2009,367(1904),4119-4136.
    2. Chang, S.C., Ehresman, D.J., Bjork, J.A., et al. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:toxicokinetics, thyroid hormone status, and related gene expression. Reproductive toxicology (Elmsford, N.Y, 2009,27(3-4),387-399.
    3. Hagenaars, A., Knapen, D., Meyer, I.J., et al. Toxicity evaluation of perfluorooctane sulfonate (PFOS) in the liver of common carp (Cyprinus carpio). Aquatic toxicology (Amsterdam, Netherlands),2008,88(3),155-163.
    4. Yeung, L.W., Guruge, K.S., Yamanaka, N., et al. Differential expression of chicken hepatic genes responsive to PFOA and PFOS. Toxicology,2007,237(1-3),111-125.
    5. Rosen, M.B., Thibodeaux, J.R., Wood, C.R., et al. Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses. Toxicology,2007,239(1-2),15-33.
    6. Harada, K., Xu, F., Ono, K., et al. Effects of PFOS and PFOA on L-type Ca2+ currents in guinea-pig ventricular myocytes. Biochemical and biophysical research communications,2005,329(2),487-494.
    7. Shi, X., Du, Y., Lam, P.K., et al. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicology and applied pharmacology,2008,230(1),23-32.
    8. Keil, D.E., Mehlmann, T., Butterworth, L., et al. Gestational exposure to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicol Sci, 2008,103(1),77-85.
    9. Luebker, D.J., Case, M.T., York, R.G., et al. Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology,2005, 215(1-2),126-148.
    10. Butenhoff, J.L., Ehresman, D.J., Chang, S.C., et al. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:developmental neurotoxicity. Reproductive toxicology (Elmsford, N.Y,2009,27(3-4),319-330.
    11. Johansson, N., Fredriksson, A., and Eriksson, P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology,2008,29(1),160-169.
    12. Apelberg, B.J., Goldman, L.R., Calafat, A.M., et al. Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore, Maryland. Environmental science & technology,2007,41(11),3891-3897.
    13. Olsen, G.W., Mair, D.C., Church, T.R., et al. Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, 2000-2006. Environmental science & technology,2008,42(13),4989-4995.
    14. Karrman, A., Domingo, J.L., Llebaria, X., et al. Biomonitoring perfluorinated compounds in Catalonia, Spain:concentrations and trends in human liver and milk samples. Environ Sci Pollut Res Int,2009.
    15. Tao, L., Kannan, K., Wong, C.M., et al. Perfluorinated compounds in human milk from Massachusetts, U.S.A Environmental science & technology,2008,42(8), 3096-3101.
    16. Tao, L., Ma, J., Kunisue, T., et al. Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environmental science & technology,2008,42(22),8597-8602.
    17. von Ehrenstein, O.S., Fenton, S.E., Kato, K., et al. Polyfluoroalkyl chemicals in the serum and milk of breastfeeding women. Reproductive toxicology (Elmsford, N.Y, 2009,27(3-4),239-245.
    18. Grandjean, P., Bellinger, D., Bergman, A., et al. The faroes statement:human health effects of developmental exposure to chemicals in our environment Basic & clinical pharmacology & toxicology,2008,102(2),73-75.
    19. Fuentes, S., Vicens, P., Colomina, M.T., et al. Behavioral effects in adult mice exposed
    to perfluorooctane sulfonate (PFOS). Toxicology,2007,242(1-3),123-129.
    20. Cui, L., Zhou, Q.F., Liao, C.Y., et al. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Archives of environmental contamination and toxicology,2009,56(2),338-349.
    21. Qazi, M.R., Bogdanska, J., Butenhoff, J.L., et al. High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar fashion. Toxicology,2009, 262(3),207-214.
    22. Norton, W.T., Aquino, D.A., Hozumi, I., et al. Quantitative aspects of reactive gliosis: a review. Neurochemical research,1992,17(9),877-885.
    23. Ekdahl, C.T., Kokaia, Z., and Lindvall, O. Brain inflammation and adult neurogenesis: the dual role of microglia Neuroscience,2009,158(3),1021-1029.
    24. Struzynska, L., Dabrowska-Bouta, B., Koza, K., et al. Inflammation-like glial response in lead-exposed immature rat brain. Toxicol Sci,2007,95(1),156-162.
    25. Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods (San Diego, Calif,2001,25(4),402-408.
    26. Sofroniew, M.V. and Vinters, H.V. Astrocytes:biology and pathology. Acta neuropathologica,119(1),7-35.
    27. Griffin, W.S., Sheng, J.G., Royston, M.C., et al. Glial-neuronal interactions in Alzheimer's disease:the potential role of a'cytokine cycle'in disease progression. Brain pathology (Zurich, Switzerland),1998,8(1),65-72.
    28. Donato, R. S100:a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. The international journal of biochemistry & cell biology,2001,33(7),637-668.
    29. Koppal, T., Lam, A.G., Guo, L., et al. S100B proteins that lack one or both cysteine residues can induce inflammatory responses in astrocytes and microglia Neurochemistry international,2001,39(5-6),401-407.
    30. Li, Y., Barger, S.W., Liu, L., et al. S100beta induction of the proinflammatory cytokine interleukin-6 in neurons. Journal of neurochemistry,2000,74(1),143-150.
    31. von Bernhardi, R. Glial cell dysregulation:a new perspective on Alzheimer disease. Neurotoxicity research,2007,12(4),215-232.
    32. Wainwright, M.S., Craft, J.M., Griffin, W.S., et al. Increased susceptibility of S100B transgenic mice to perinatal hypoxia-ischemia Annals of neurology,2004,56(1), 61-67.
    33. Kniesel, U., Risau, W., and Wolburg, H. Development of blood-brain barrier tight junctions in the rat cortex. Brain research,1996,96(1-2),229-240.
    34. Graeber, M.B. and Streit, W.J. Microglia:biology and pathology. Acta neuropathologica,119(1),89-105.
    35. Herx, L.M. and Yong, V.W. Interleukin-1 beta is required for the early evolution of reactive astrogliosis following CNS lesion. Journal of neuropathology and experimental neurology,2001,60(10),961-971.
    36. Giulian, D., Baker, T.J., Shih, L.C., et al. Interleukin 1 of the central nervous system is produced by ameboid microglia The Journal of experimental medicine,1986,164(2), 594-604.
    37. Kim, Y.J., Hwang, S.Y., Oh, E.S., et al. IL-1beta, an immediate early protein secreted by activated microglia, induces iNOS/NO in C6 astrocytoma cells through p38 MAPK and NF-kappaB pathways. Journal of neuroscience research,2006,84(5),1037-1046.
    38. Guha, M., Bai, W., Nadler, J.L., et al. Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and-independent pathways. The Journal of biological chemistry, 2000,275(23),17728-17739.
    39. Lee, Y.W., Hirani, A.A., Kyprianou, N., et al. Human immunodeficiency virus-1 Tat protein up-regulates interleukin-6 and interleukin-8 expression in human breast cancer cells. Inflamm Res,2005,54(9),380-389.
    1. Grasty, R.C., Bjork, J.A., Wallace, K.B., et al. Effects of prenatal perfluorooctane sulfonate (PFOS) exposure on lung maturation in the perinatal rat Birth Defects Res B Dev Reprod Toxicol,2005,74(5),405-416.
    2. Johansson, N., Fredriksson, A., and Eriksson, P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology,2008,29(1),160-169.
    3. Butenhoff, J.L., Ehresman, D.J., Chang, S.C., et al. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats:developmental neurotoxicity. Reprod Toxicol,2009,27(3-4),319-330.
    4. Liao, C.Y., Li, X.Y., Wu, B., et al. Acute enhancement of synaptic transmission and chronic inhibition of synaptogenesis induced by perfluorooctane sulfonate through mediation of voltage-dependent calcium channel. Environmental science & technology, 2008,42(14),5335-5341.
    5. Goodlett, C.R. and Horn, K.H. Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health,2001,25(3),175-184.
    6. Wiersma-Meems, R., Van Minnen, J., and Syed, N.I. Synapse formation and plasticity: the roles of local protein synthesis. Neuroscientist,2005,11(3),228-237.
    7. Fdez, E. and Hilfiker, S. Vesicle pools and synapsins:new insights into old enigmas. Brain cell biology,2006,35(2-3),107-115.
    8. Evans, G.J. and Cousin, M.A. Tyrosine phosphorylation of synaptophysin in synaptic vesicle recycling. Biochemical Society transactions,2005,33(Pt 6),1350-1353.
    9. Rizzoli, S.O. and Betz, W.J. Synaptic vesicle pools. Nat Rev Neurosci,2005,6(1), 57-69.
    10. Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends in neurosciences,2009,32(12),638-647.
    11. Lau, C., Thibodeaux, J.R., Hanson, R.G., et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Ⅱ:postnatal evaluation. Toxicol Sci,2003,74(2), 382-392.
    12. Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods,2001, 25(4),402-408.
    13. Coleman, W.L., Bill, C.A., Simsek-Duran, F., et al. Synapsin Ⅱ and calcium regulate vesicle docking and the cross-talk between vesicle pools at the mouse motor terminals. The Journal of physiology,2008,586(Pt 19),4649-4673.
    14. Lin, R.C. and Scheller, R.H. Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol,2000,16,19-49.
    15. Yamagata, Y. New aspects of neurotransmitter release and exocytosis:dynamic and differential regulation of synapsin Ⅰ phosphorylation by acute neuronal excitation in vivo. J Pharmacol Sci,2003,93(1),22-29.
    16. Greengard, P., Valtorta, F., Czernik, A.J., et al. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science,1993,259(5096),780-785.
    17. Akbergenova, Y. and Bykhovskaia, M. Synapsin maintains the reserve vesicle pool and spatial segregation of the recycling pool in Drosophila presynaptic boutons. Brain research,2007,1178,52-64.
    18. Santos, M.S., Li, H., and Voglmaier, S.M. Synaptic Vesicle Protein Trafficking at the Glutamate Synapse. Neuroscience,2009,158(1),189-203.
    19. Gitler, D., Takagishi, Y., Feng, J., et al. Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci,2004,24(50),11368-11380.
    20. Baldelli, P., Fassio, A., Valtorta, F., et al. Lack of synapsin Ⅰ reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J Neurosci,2007, 27(49),13520-13531.
    21. Onofri, F., Messa, M., Matafora, V., et al. Synapsin phosphorylation by SRC tyrosine kinase enhances SRC activity in synaptic vesicles. The Journal of biological chemistry, 2007,282(21),15754-15767.
    22. Lynch, M. Analysis of the presynaptic signalling mechanisms underlying the inhibition of LTP in rat dentate gyrus by the tyrosine kinase inhibitor, genistein. Hippocampus,2004,14(1),4.
    23. Wu, D.M., Lu, J., Zheng, Y.L., et al. Purple sweet potato color repairs d-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiology of learning and memory,2008,90(1), 19-27.
    24. Gomez-Palacio-Schjetnan, A. and Escobar, M.L. In vivo BDNF modulation of adult functional and morphological synaptic plasticity at hippocampal mossy fibers. Neuroscience letters,2008,445(1),62-67.
    25. Lu, Y., Christian, K., and Lu, B. BDNF:a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiology of learning and memory,2008,89(3),312-323.
    1. Lechuga-Sancho, A.M., Arroba, A.I., Frago, L.M., et al. Reduction in the number of astrocytes and their projections is associated with increased synaptic protein density in the hypothalamus of poorly controlled diabetic rats. Endocrinology,2006,147(11), 5314-5324.
    2. Miller, R.H. and Raff, M.C. Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct J Neurosci,1984,4(2),585-592.
    3. Sofroniew, M.V. and Vinters, H.V. Astrocytes:biology and pathology. Acta neuropathologica,119(1),7-35.
    4. Wislet-Gendebien, S., Leprince, P., Moonen, G., et al. Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. Journal of cell science,2003,116(Pt 16),3295-3302.
    5. Pekny, M. and Pekna, M. Astrocyte intermediate filaments in CNS pathologies and regeneration. The Journal of pathology,2004,204(4),428-437.
    6. von Bernhardi, R. Glial cell dysregulation:a new perspective on Alzheimer disease. Neurotoxicity research,2007,12(4),215-232.
    7. Herrmann, J.E., Imura, T., Song, B., et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci,2008,28(28),7231-7243.
    8. Yasuda, Y., Tateishi, N., Shimoda, T., et al. Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain research,2004,1021(1),20-31.
    9. Fleischer-Lambropoulos, E., Kazazoglou, T., Geladopoulos, T., et al. Stimulation of glutamine synthetase activity by excitatory amino acids in astrocyte cultures derived from aged mouse cerebral hemispheres may be associated with non-N-methyl-D-aspartate receptor activation. Int J Dev Neurosci,1996,14(4), 523-530.
    10. Ekmark-Lewen, S., Lewen, A., Israelsson, C., et al. Vimentin and GFAP responses in astrocytes after contusion trauma to the murine brain. Restorative neurology and neuroscience,28(3),311-321.
    11. Isobe, I., Watanabe, T., Yotsuyanagi, T., et al. Astrocytic contributions to blood-brain barrier (BBB) formation by endothelial cells:a possible use of aortic endothelial cell for in vitro BBB model. Neurochemistry international,1996,28(5-6),523-533.
    12. Forsyth, R., Fray, A., Boutelle, M., et al. A role for astrocytes in glucose delivery to neurons? Developmental neuroscience,1996,18(5-6),360-370.
    13. Brown, A.M. and Ransom, B.R. Astrocyte glycogen and brain energy metabolism. Glia,2007,55(12),1263-1271.
    14. Brown, A.M., Sickmann, H.M., Fosgerau, K., et al. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. Journal of neuroscience research,2005,79(1-2),74-80.
    15. Suh, S.W., Bergher, J.P., Anderson, C.M., et al. Astrocyte glycogen sustains neuronal activity during hypoglycemia:studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmet hyl)propyl]-1H-indole-2-carboxamide). The Journal of pharmacology and experimental therapeutics,2007,321(1),45-50:
    16. Takano, T., Tian, G.F., Peng, W., et al. Astrocyte-mediated control of cerebral blood flow. Nature neuroscience,2006,9(2),260-267.
    17. Koehler, R.C., Roman, R.J., and Harder, D.R. Astrocytes and the regulation of cerebral blood flow. Trends in neurosciences,2009,32(3),160-169.
    18. Jakovcevic, D. and Harder, D.R. Role of astrocytes in matching blood flow to neuronal activity. Current topics in developmental biology,2007,79,75-97.
    19. Wolf, F. and Kirchhoff, F. Neuroscience. Imaging astrocyte activity. Science (New York,N.Y,2008,320(5883),1597-1599.
    20. Sattler, R. and Rothstein, J.D. Regulation and dysregulation of glutamate transporters. Handbook of experimental pharmacology,2006, (175),277-303.
    21. Seifert, G, Schilling, K., and Steinhauser, C. Astrocyte dysfunction in neurological disorders:a molecular perspective. Nature reviews,2006,7(3),194-206.
    22. Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends in neurosciences,2009,32(12),638-647.
    23. Miguel-Hidalgo, J.J. The role of glial cells in drug abuse. Current drug abuse reviews, 2009,2(1),72-82.
    24. Baker, S.J. and McKinnon, P.J. Tumour-suppressor function in the nervous system. Nature reviews,2004,4(3),184-196.
    25. Fasen, K., Elger, C.E., and Lie, A.A. Distribution of alpha and beta integrin subunits in the adult rat hippocampus after pilocarpine-induced neuronal cell loss, axonal reorganization and reactive astrogliosis. Acta neuropathologica,2003,106(4), 319-322.
    26. Rothstein, J.D., Dykes-Hoberg, M., Pardo, C.A., et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron,1996,16(3),675-686.
    27. Swanson, R.A., Ying, W., and Kauppinen, T.M. Astrocyte influences on ischemic neuronal death. Current molecular medicine,2004,4(2),193-205.
    28. Bush, T.G., Puvanachandra, N., Horner, C.H., et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron,1999,23(2),297-308.
    29. Giri, S., Khan, M., Nath, N., et al. The role of AMPK in psychosine mediated effects on oligodendrocytes and astrocytes:implication for Krabbe disease. Journal of neurochemistry,2008,105(5),1820-1833.
    30. Wu, H.M., Tzeng, N.S., Qian, L., et al. Novel neuroprotective mechanisms of memantine:increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology, 2009,34(10),2344-2357.
    31. Schachtrup, C., Ryu, J.K., Helmrick, M.J., et al. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci,30(17),5843-5854.
    32. Farina, C., Aloisi, F., and Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends in immunology,2007,28(3),138-145.
    33. Sofroniew, M.V. Reactive astrocytes in neural repair and protection. Neuroscientist, 2005,11(5),400-407.
    34. Sykova, E., Vargova, L., Prokopova, S., et al. Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord Glia,1999,25(1),56-70.
    35. Brambilla, R., Persaud, T., Hu, X., et al. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol,2009,182(5), 2628-2640.
    36. Argaw, A.T., Gurfein, B.T., Zhang, Y., et al. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proceedings of the National Academy of Sciences of the United States of America,2009,106(6),1977-1982.
    37. He, J., McCarthy, M., Zhou, Y., et al. Infection of primary human fetal astrocytes by human herpesvirus 6. Journal of virology,1996,70(2),1296-1300.
    38. Donati, D., Martinelli, E., Cassiani-Ingoni, R., et al. Variant-specific tropism of human herpesvirus 6 in human astrocytes. Journal of virology,2005,79(15),9439-9448.
    39. Akaoka, H., Szymocha, R., Beurton-Marduel, P., et al. Functional changes in astrocytes by human T-lymphotropic virus type-1 T-lymphocytes. Virus research,2001, 78(1-2),57-66.
    40. Voskuhl, R.R., Peterson, R.S., Song, B., et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci,2009,29(37),11511-11522.
    41. Wyss-Coray, T., Loike, J.D., Brionne, T.C., et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ Nature medicine,2003,9(4),453-457.
    42. Koistinaho, M., Lin, S., Wu, X., et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nature medicine, 2004,10(7),719-726.
    43. Pekny, M. and Nilsson, M. Astrocyte activation and reactive gliosis. Glia,2005,50(4), 427-434.
    44. Ouchi, Y., Yagi, S., Yokokura, M., et al. Neuroinflammation in the living brain of Parkinson's disease. Parkinsonism & related disorders,2009,15 Suppl 3, S200-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700